Home Examining yttrium oxide-doped neodymium-phosphate glass’s optical properties and radiation protection effectiveness
Article
Licensed
Unlicensed Requires Authentication

Examining yttrium oxide-doped neodymium-phosphate glass’s optical properties and radiation protection effectiveness

  • Gharam A. Alharshan , Mamdouh I. Elamy , Ragab A. Elsad ORCID logo EMAIL logo , Asmaa M.A. Mahmoud and Mohamed Elsafi ORCID logo
Published/Copyright: September 8, 2025
Radiochimica Acta
From the journal Radiochimica Acta

Abstract

Melt-quenching was used to develop a new glass series with composition (59.5–x) P2O5–20 Li2O–15ZnO–5Bi2O3–0.5 Nd2O3 – x Y2O3, where x = 0.0, 0.25, 0.5, and 1.0 mol%. X-ray diffraction (XRD) was used to investigate these glasses’ glassy structure. Substituting phosphate oxide (P2O5) with yttrium oxide (Y2O3) increases density and decline molar volume of resulting glass specimen. Y3+ ions have an impact on the phosphate network by breaking P–O–P bonds, which increases the quantity of non-bridging oxygens (NBOs). The optical measurements of free and doped yttrium were studied in spectral domain from 190 to 1,100 nm. Glasses’ optical characteristics, such as their band gap for direct E g(d) and in direct E g(ind), surface-energy loss function, and extinction coefficient (k), were investigated in connection to energy refractive factor, n, investigated with wavelength. Where band gap E g(ind) decreases from 3.56 eV (N0.5Y0.0) to a minimum of 3.39 eV (N0.5Y1.0). As the Y3+ ions rises, the transmission (T) falls while reflectance (R) increase suggesting higher absorption and scattering as a result of structural instability and the creation of defect states. The radiation shielding characteristics were then thoroughly evaluated by using Phy-x software and the results were verified with Geant-4 simulation. A modest improvement in LAC values was observed when the mole quantity of Y2O3 in the composite was increased from 0 to 1 mol%. The LAC became 9.921, 10.131, 10.328, and 10.661 cm−1 in N0.5Y0.0, N0.5Y0.25, N0.5Y0.5, and N0.5Y1.0, respectively, for certain energies 0.04 MeV. For N0.5Y0.0, N0.5Y0.25, N0.5Y0.5, and N0.5Y1.0, the radiation shield efficiency (RSE) at 0.081 MeV was 63.0, 63.7, 64.3, and 65.2 % for thickness 0.5 cm, and 86.3, 86.8, 87.2, and 87.9 % for thickness 1 cm. These findings demonstrate the effectiveness of Y2O3-doped materials in gamma ray blocking, and they may find application in radiation protection.


Corresponding author: Ragab A. Elsad, Basic Engineering Science Department, Faculty of Engineering, Menoufia University, 32511, Shebin El-Koom, Egypt, E-mail:

Acknowledgments

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project Number (PNURSP2025R173), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The primary body of the document was written by GA, MIE, and AMM, while all of the figures were created and examined by RAE and ME.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors declare that they have no conflict of interest.

  6. Research funding: The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University, Arar, Kingdom of Saudi Arabia, for funding this research work through the project number “NBU-FFR-2025-2945-08.

  7. Data availability: Relevant research data is included in the text of the work.

References

1. Zakery, A.; Elliott, S. R. Optical Properties and Applications of Chalcogenide Glasses: a Review. J. Non Cryst. Solids 2003, 330, 1–12, https://doi.org/10.1016/j.jnoncrysol.2003.08.064. Search in Google Scholar

2. Knowles, J. C. Phosphate Based Glasses for Biomedical Applications. J. Mater. Chem. 2003, 10, 2395–2401. https://doi.org/10.1039/B307119G.Search in Google Scholar

3. Mariselvam, K.; Liu, J. Green Emission and Laser Properties of Ho3+ Doped Titano Lead Borate (TLB) Glasses for Colour Display Applications. J. Solid State Chem. 2021, 293, 121793. https://doi.org/10.1016/j.jssc.2020.121793.Search in Google Scholar

4. Bhargavi, K.; Sundara Rao, M.; Sudarsan, V.; Srinivasa Rao, C. H.; Piasecki, M.; Kityk, I. V.; Srinivasa Reddy, M.; Veeraiah, N. Influence of Al3+ Ions on Self up-conversion in Ho3+ Doped Lead Silicate Glasses. Optical Mat 2014, 36, 1189–1196. https://doi.org/10.1016/j.optmat.2014.02.027.Search in Google Scholar

5. Alqarni, A. S.; Hussain, R.; Ghoshal, S. K.; Alamri, S. N.; Yamusa, Y. A.; Jupri, S. A. Intense Red and Green Luminescence from Holmium Activated zinc-sulfo-boro-phosphate Glass: Judd-Ofelt Evaluation. J. Alloys Compd. 2019, 808, 151706. https://doi.org/10.1016/j.jallcom.2019.151706.Search in Google Scholar

6. Toloman, D.; Suciu, R.; Leostean, C.; Regos, A.; Ardel, I. The Influence of TiO2 Concentration in Some calcium-phosphate Glasses. Physica B 2014, 438, 84–87. https://doi.org/10.1016/j.physb.2014.01.005.Search in Google Scholar

7. Galleani, G.; Santagneli, S. H.; Messaddeq, Y.; de Oliveira, M.Jr.; Eckert, H. Rare-Earth Doped Fluoride Phosphate Glasses: Structural Foundations of their Luminescence Properties. Phys. Chem. Chem. Phys. 2017, 19, 21612–21624; https://doi.org/10.1039/C7CP03927A.Search in Google Scholar PubMed

8. Sayyed, M. I.; Kaky, K. M.; Mhareb, M. H. A.; Imheidat, M. A.; Es-soufi, H.; Kadhim, A. J.; Baki, S. O. The Influence of Mgo on the Physical, Structural, Mechanical, Optical, and Radiation Absorption Properties of the boro-germanate Glass System. Ceram. Int. 2024, 50 (18), 33618–33629. https://doi.org/10.1016/j.ceramint.2024.06.178.Search in Google Scholar

9. Mahmoud, K. A.; Sayyed, M. I.; Mhareb, M. H. A.; Kadhim, A. J.; Kaky, K. M.; Hamad, M. K. H; Baki, S. O. High Transparent Glass of germanate-borate-tellurite Modified by Different Concentration of Bismuth Oxide for Optical and Radiation Shielding Applications. Opt. Mater. 2024, 157 (2), 116319. https://doi.org/10.1016/j.optmat.2024.116319.Search in Google Scholar

10. Alawaideh, S. E.; Sayyed, M. I.; Mahmoud, K. A.; Hanfi, M.; Imheidat, M. A.; Kaky, K. M.; Thabit, H. A.; Elsafi, M. Effect of Different Metal Oxides on the Radiation Shielding Features of Borate Glasses. Radiat. Phys. Chem. 2024, 220, 111720. https://doi.org/10.1016/j.radphyschem.2024.111720.Search in Google Scholar

11. Kaky, K. M.; Sayyed, M. I.; Hamad, M. K. H.; Biradar, S.; Mhareb, M. H. A.; Altimari, U.; Taki, M. M. Bismuth Oxide Effects on Optical, Structural, Mechanical, and Radiation Shielding Features of Borosilicate Glasses. Opt. Mater. 2024, 155, 115853. https://doi.org/10.1016/j.optmat.2024.115853.Search in Google Scholar

12. Guntu, R. K. EPR-TL Correlation, in Radiation Shielding Ba(10-x)MnxLa30Si60 Glasses. J. Mol. Struct. 2022, 1248, 131533. https://doi.org/10.1016/j.molstruc.2021.131533.Search in Google Scholar

13. Guntu, R. K. Raman Deconvolution, Photoluminescence, Thermoluminescence, Radiation Shielding and Dielectric Investigations of Cu2+: Li2Al2Sio6 Glasses for Opto-electronic Use. Ceram. Int. 2025, 51 (12), 16524–16538. https://doi.org/10.1016/j.ceramint.2024.11.196.Search in Google Scholar

14. Ashok, K.; Guntu, R. K.; Devi, S. S.; Chand, N. R.; Rao, C. S.; Francis, E. D. FT-IR, Raman Deconvolution, TL and Dielectric Investigations of Radiation Shielding La(20−x)Pb10B70:Eux Glasses. Opt Quant Electron 2024, 56, 1051. https://doi.org/10.1007/s11082-024-06927-1.Search in Google Scholar

15. Koubisy, M. S. I.; Afifi, M.; Mahmoud, K. A.; Tashlykov, O. L.; Zatsepin, A. F.; Almuqrin, A. H.; Sayyed, M. I. Synthesis, FTIR, and Mechanical as Well as Radiation Shielding Characteristics in Nd2O3-doped Bismuth Lithium Borate Glasses. Ceram. Int. 2022, 48, 12829–12837. https://doi.org/10.1016/j.ceramint.2022.01.154.Search in Google Scholar

16. Guntu, R. K. Nd2O3 Influenced Al2O3 & Sb2O3 Functional PbO-SiO2 Glass Materials, 1.06 Μm Photonic Resource. Mater. Sci. Eng. B. 2020, 262, 114784. https://doi.org/10.1016/j.mseb.2020.114784.Search in Google Scholar

17. Boonin, K.; Kaewkhao, J.; Ratana, T.; Limsuwan, P. Preparation and Properties of Bi2O3-B2O3-Nd2O3 Glass System. Procedia Eng. 2011, 8, 207–211. https://doi.org/10.1016/j.proeng.2011.03.038.Search in Google Scholar

18. Algradee, M. A.; Saleh, E. E.; Samir, O. M.; Alwany, A. B.; El Sherbini, T. M. Evaluation of Structural, Elastic Properties and Nuclear Radiation Shielding Competence of Nd3 + Doped lithium-zinc-phosphate Glasses. J. Non-Cryst. Solids 2022, 576, 121304. https://doi.org/10.1016/j.jnoncrysol.2021.121304.Search in Google Scholar

19. Hegazy, H. H.; Al-Buriahi, M. S.; Alresheedi, F.; El-Agawany, F. I.; Sriwunkum, C.; Neffati, R.; Rammah, Y. S. Nuclear Shielding Properties of B2O3–Bi2O3–SrO Glasses Modified with Nd2O3: Theoretical and Simulation Studies. Ceram. Int. 2021, 47, 2772–2780. https://doi.org/10.1016/j.ceramint.2020.09.131.Search in Google Scholar

20. Alharshan, G. A.; Ebrahem, N. M.; Elsafi, M.; Elsad, R. A.; Mahmoud, A. M. A.; Mesalam, Y. I.; Said, S. A.; Mimouni, A. The Lanthanum-Doped Phosphate Glass System: Optical, Mechanical, and Gamma-Ray Shielding Properties. J. Inorg. Organomet. Polym. 2025, 35, 1397–1412. https://doi.org/10.1007/s10904-024-03371-2.Search in Google Scholar

21. Malidarre, R. B.; Akkurt, I.; Kocar, O.; Ekmekci, I. Analysis of Radiation Shielding, Physical and Optical Qualities of Various Rare Earth Dopants on Barium Tellurite Glasses: a Comparative Study. Radiat. Phys. Chem. 2023, 207, 110823. https://doi.org/10.1016/j.radphyschem.2023.110823.Search in Google Scholar

22. Al-Buriahi, M. S.; Alomairy, S.; Mutuwong, C.; Boukhris, I.; Olarinoye, O. I.; Tonguç, B. T. Effect of Nd3+ Ions on Radiation Attenuation Properties of PbF2–TeO2–WO3 Glass System for Shielding Applications. Boletín La Soc. Espanola Ceramica y Vidr 2022, 61, 470–486. https://doi.org/10.1016/j.bsecv.2021.03.005.Search in Google Scholar

23. Mhareb, M. H. A.; Sayyed, M. I.; Mahdi, R. I.; Kaky, K. M.; Hamad, M.Kh; Kadhim, A. J. Role of Nd (III) Ions on B2O3–TeO2-GeO2-MgO Glass Composition for Optical and Ionizing Protection Application. Nucl. Eng. Technol. 2025, 57 (1), 103162. https://doi.org/10.1016/j.net.2024.08.031.Search in Google Scholar

24. Fu, Y.; Christie, J. K. Atomic Structure and Dissolution Properties of yttrium-containing Phosphate Glasses. Int. J. App. Gla. Sci. 2017, 8, 412–417. https://doi.org/10.1111/ijag.12325.Search in Google Scholar

25. Riaz, A.; Lewandowski, R. J.; Kulik, L.; Salem, R. Yttrium-90 Radioembolization Using Therasphere in the Management of Primary and Secondary Liver Tumors. J. Nuc. Med. Mol. Ima. 2009, 53, 311.Search in Google Scholar

26. Riaz, A.; Kulik, L. M.; Mulcahy, M. F.; Lewandowski, R. J.; Salem, R. Yttrium-90 Radioembolization in the Management of Liver Malignancies. Sem. Onc. 2010, 37, 94–101. https://doi.org/10.1053/j.seminoncol.2010.03.006.Search in Google Scholar PubMed

27. Salem, R.; Hunter, R. D. Yttrium-90 Microspheres for the Treatment of Hepatocellular Carcinoma: a Review. Int. J. Rad. Onc. Bio. Phy. 2006, 66, S83–S88. https://doi.org/10.1053/j.gastro.2004.09.034.Search in Google Scholar PubMed

28. Dakhel, A. A. Dielectric Relaxation Behaviour of Li and La Co-doped Nio Ceramics. Ceram. Int. 2013, 39, 4263–4268. https://doi.org/10.1016/j.ceramint.2012.10.278.Search in Google Scholar

29. Timar-Gabor, A.; Ivascu, C.; Vasiliniuc, S.; Daraban, L.; Ardelean, I.; Cosma, C.; Cozar, O. Thermoluminescence and Optically Stimulated Luminescence Properties of the 0.5 P2O5–xBaO–(0.5−x)Li2O Glass Systems. Appl. Rad. Isot. 2011, 69, 780–784. https://doi.org/10.1016/j.apradiso.2011.01.015 Search in Google Scholar PubMed

30. Guntu, R. K. Luminescence and Dielectric Properties of Ni2+ Ions Added to Calcio Yttria Borophosphate Glasses for Optoelectronic Uses. J. Lumin. 2019, 209, 258–266. https://doi.org/10.1016/j.jlumin.2019.01.051.Search in Google Scholar

31. Hidi, J.; Melinte, G.; Stefan, R.; Bindea, M.; Baia, L. The Study of the Structure and Bioactivity of the B2O3–Na2O–P2O5 System. J. Raman Spectrosc. 2013, 44, 1187–1194. https://doi.org/10.1002/jrs.4330.Search in Google Scholar

32. Dhinakaran, A. P.; Vinothkumar, P.; Senthil, T. S.; Kalpana, S. Investigation on Structural, Optical Properties of Sm3+ Doped Antimony boro-phosphate Glass for Warm White Light Emitting Diode and Radiation Shielding Applications. J Opt 2024, 1–15; https://doi.org/10.1007/s12596-024-02113-4.Search in Google Scholar

33. Almuqrin, A.; Al-Otaibi, J. S.; Alwadai, N.; Albarzan, B.; Shams, M. S.; Rammah, Y. S.; Elsad, R. A. Neodymium ion-doped borate-silicate Glass: a Thorough Analysis for Applications in Optical and Protective Radiation. Eur. Phys. J. Plus 2025, 140, 259. https://doi.org/10.1140/epjp/s13360-025-06194-3.Search in Google Scholar

34. Arafat, A.; Samad, S. A.; Titman, J. J.; Lewis, A. L.; Barney, E. R.; Ahmed, I. Yttrium Doped Phosphate-based Glasses: Structural and Degradation Analyses. BG 2020, 6 (1), 34–49. https://doi.org/10.1515/bglass-2020-0004.Search in Google Scholar

35. Liang, X.; Li, H.; Wang, C.; Yu, H.; Li, Z.; Yang, S. H. Physical and Structural Properties of Calcium Iron Phosphate Glass Doped with Rare Earth. J. Non-Cryst. Solids 2014, 402, 135–140. https://doi.org/10.1016/j.jnoncrysol.2014.05.021.Search in Google Scholar

36. Alharshan, G. A.; Shaaban, S. M.; Said, S. H. A.; Mahmoud, A. M. A.; Altohamy, A. A.; Elsad, R. A.; Ebrahem, N. M. Impact of Yttrium Oxide on the Dielectric, Radiation-Shielding, and Physical Characteristics of Glasses Made of Lithium Bismuth Zinc Phosphate. J. Inorg. Organomet. Polym. 2025, 35, 3366–3386. https://doi.org/10.1007/s10904-024-03461-1.Search in Google Scholar

37. Thabit, H. A.; Ismail, A. K.; Mhareb, M. H. A.; Abdulmalik, D. A.; Abdullahi, I.; Al-Fakih, A. M.; Alajerami, Y. S. M.; Hashim, S. Exploring the Properties of Dy2O3–Y2O3 Co-activated telluro-borate Glass: Structural, Physical, Optical, Thermal, and Mechanical Properties. Heliyon 2023, 9 (7), e18309. https://doi.org/10.1016/j.heliyon.2023.e18309.Search in Google Scholar PubMed PubMed Central

38. Hammad, A. H.; Wassel, A. R.; Rabie, G. O.; Marzouk, S. Y. The Effect of Nd2O3 on the Structure and Spectroscopic Properties of SrO-ZnO-P2O5 Glass for NIR Emission at 1.058 Μm. Opt. Laser Technol. 2023, 161, 109134. https://doi.org/10.1016/j.optlastec.2023.109134.Search in Google Scholar

39. Arafat, A.; Samad, S. A.; Wadge, M. D.; Islam, M. d. T.; Lewis, A. L.; Barney, E. R.; Ahmed, I. Thermal and Crystallization Kinetics of yttrium-doped Phosphate-based Glasses. Int. J. Appl. Glass Sci. 2019, 11 (1), 120–133. https://doi.org/10.1111/ijag.14163.Search in Google Scholar

40. Almugren, K. S.; Elsayed, Y.; Shoukry, H.; Eltaher, A. Raman and Uv-Vis-Nir Spectroscopy of Phosphate Glasses. Dig. J. Nanomater. Biostruct. 2016, 11 (2), 607–614. Corpus ID: 161050883.Search in Google Scholar

41. El-Khayatt, A. M.; Saudi, H. A.; AlRowis, N. H. Synthesis and Characterization of zinc-lead-phosphate Glasses Doped with Europium for Radiation Shielding. Sustainability 2023, 15 (12), 9245. https://doi.org/10.3390/su15129245.Search in Google Scholar

42. Ghosh, D.; Karmakar, P.; Biswas, K.; Balaji, S.; Sontakke, A. D.; Kalyandurg, A. Variance of Energy Transfer Dynamics in Ce3+ Sensitized Eu3+ and Tb3+ Doped Alkali-free Ba–Al Metaphosphate Glass: Role of the Host Matrix. Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 2014, 55 (5), 196–206.Search in Google Scholar

43. Marzouk, M. A.; Ali, I. S. Enhancing the Luminescent Properties of Strontium Phosphate Glass via Controlled Crystallization and Rare Earth Dopants. J. Mater. Sci.: Mater. Electron. 2024, 35, 1767. https://doi.org/10.1007/s10854-024-13460-0.Search in Google Scholar

44. Brow, R. K. Review: the Structure of Simple Phosphate Glasses. J. Non-Cryst. Solids 2000, 263–264, 1–28. https://doi.org/10.1016/S0022-3093(99)00620-1.Search in Google Scholar

45. Pisarski, W. A. Rare Earth Doped Glasses/Ceramics: Synthesis, Structure, Properties and their Optical Applications. Materials 2022, 15 (22), 8099. https://doi.org/10.3390/ma15228099.Search in Google Scholar PubMed PubMed Central

46. Hoppe, U. A Structural Model for Phosphate Glasses. J. Non-Cryst. Solids 1996, 195, 138–147. https://doi.org/10.1016/0022-3093(95)00536-4.Search in Google Scholar

47. El-Hezzat, M.; Atbir, A.; Abid, M.; Montagne, L.; Méar, F. O. Structure – Properties Study of Na2O–CaO–PbO–P2O5 Metaphosphate Glasses. Solid State Sci. 2021, 118, 106666. https://doi.org/10.1016/j.solidstatesciences.2021.106666.Search in Google Scholar

48. Matic, A.; Börjesson, L.; Wannberg, A.; McGreevy, R. L. Structural Studies of Rare-Earth Doped Phosphate Glasses. MRS Online Proc. Libr. 1996, 455, 435–440. https://doi.org/10.1557/PROC-455-435.Search in Google Scholar

49. Liu, X.; Wang, X.; Sun, Y.; Zhang, H.; Chen, Y.; Feng, H.; Hu, L.; Chen, S. Effect of Y2O3 on Properties and Structure of Nd-doped P2O5-Al2O3-ZnO Glasses. J. Non-Cryst. Solids 2025, 650, 123381. https://doi.org/10.1016/j.jnoncrysol.2024.123381.Search in Google Scholar

50. Moustafa, Y. M.; El-Egili, K. Infrared Spectra of Sodium Phosphate Glasses. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2002, 58 (1), 127–147. https://doi.org/10.1016/S1386-1425(01)00571-2.Search in Google Scholar

51. Bhemarajam, J.; Varkolu, M.; Prasad, P. S.; Prasad, M. Effect of Yb3+ Ions on Spectroscopic and Optical Properties of Bi2O3–B2O3–Li2O–PbO Glass System. Results Opt. 2024, 14, 100582; https://doi.org/10.1016/j.rio.2023.100582.Search in Google Scholar

52. Bhemarajam, J.; Prasad, P. S.; Babu, M. M.; Prasad, M. Spectroscopic and Optical Investigations on Er3+/Yb3+ Co-Doped Bismuth–Boroleadlithium Glasses for Solid State Laser Applications. Opt. Mater. 2021, 122, 111657. https://doi.org/10.1016/j.optmat.2021.111657.Search in Google Scholar

53. Pisarska, J.; Pisarski, W. A.; Dominiak-Dzik, G.; Ryba-Romanowski, W. Spectroscopic Investigations of Nd3+ Ions in B2O3–PbO–Al2O3–WO3 Glasses. J. Mol. Struct. 2006, 792–793, 201–205. https://doi.org/10.1016/j.molstruc.2006.01.061.Search in Google Scholar

54. Swapna, K.; Lakshmi, Y. A.; Pravallika, C.; Mahamuda, S.; Venkateswarulu, M.; Rao, A. S.; Kotamraju, S. K.; Sri Kavya, K. C. Investigation of Radiation Shielding and Optical Properties of Neodymium Doped Bismuth Boro Tellurite Glasses for Solid State Device Applications. J. Lumin. 2024, 267, 120339. https://doi.org/10.1016/j.jlumin.2023.120339.Search in Google Scholar

55. Alves, A. S. B. Z.; Camilo, N. S.; Filho, J. C.; Mabjaia, J. E.; Pilla, V.; Dantas, N. O.; Andrade, A. A. Photoluminescence-Based Temperature Sensing in Nd3+-Doped Tellurite Glasses. J. Lumin. 2025, 121090. https://doi.org/10.1016/j.jlumin.2025.121090.Search in Google Scholar

56. Ahmed, E. M.; Mohamed, A.; Youssif, M. I.; El-Ghamaz, N. A.; El-shabaan, M. Effect of Y3+ on the Structural and Photoluminescence Properties of Yttrium-Doped Sodium Borate Glass. Luminescence 2022, 1, 10; https://doi.org/10.1002/bio.4317.Search in Google Scholar PubMed

57. Ebnalwaled, A. A.; Sadek, A. H.; Ismail, S. H.; Mohamed, G. G. Structural, Optical, Dielectric, and Surface Properties of Polyimide Hybrid Nanocomposites Films Embedded Mesoporous Silica Nanoparticles Synthesized from Rice Husk Ash for Optoelectronic Applications. Opt. Quantum Electron. 2022, 54, 690; https://doi.org/10.1007/s11082-022-03976-2.Search in Google Scholar

58. Ghosh, G. Handbook of Thermo-Optic Coefficients of Optical Materials with Applications. In Handbook of Optical Constants of Solids; Palik, E. D., Ed.; Academic Press: New York, Vol. 5, 1998.Search in Google Scholar

59. El-Diasty, F.; Abdel-Baki, M.; Abdel-Wahab, F. A. Oxyfluoro Aluminum-Borate Host Glass: Interband Gap Study and Estimation of Radiative Lifetime for Luminescent Dopant Ions. Opt. Quantum Electron. 2016, 48, 273. https://doi.org/10.1007/s11082-016-0434-0.Search in Google Scholar

60. Davis, E. A.; Mott, N. F. Conduction in Non-crystalline Systems Conductivity, Optical Absorption Photoconductivity in Amorphous Semiconductors. Philos. Mag. 1970, 22, 903–922. https://doi.org/10.1080/14786437008221061.Search in Google Scholar

61. Tauc, J. Amorphous and Liquid Semiconductors; Plenum Press: New York, 1974.10.1007/978-1-4615-8705-7Search in Google Scholar

62. Shaaban, S. M.; Al Ghamdi, H.; Alsaif, N. A. M.; Rammah, Y. S.; Khattari, Z. Y.; Shams, M. S.; El Refaey, A. M.; Misbah, M. H.; Abouhaswa, A. S.; Elsad, R. A. The Role of Eu3+ Ions on FTIR, UV–vis Spectroscopy, Photoluminescence, and Mechanical Properties of Newly Fabricated Borate Based Glasses. J. Aust. Ceram. Soc. 2023, 60, 543–551; https://doi.org/10.1007/s41779-023-00933-4.Search in Google Scholar

63. Kumar, M. V.; Jamalaiah, B.; Gopal, K. R.; Reddy, R. Novel Eu3+-Doped Lead Telluroborate Glasses for Red Laser Source Applications. J. Solid State Chem. 2011, 184 (8), 2145–2149. https://doi.org/10.1016/j.jssc.2011.06.007.Search in Google Scholar

64. Sohal, S.; Zhang, X.; Kuryatkov, V.; Chaudhuri, J.; Holtz, M. Correlation of Photoluminescence and Structural Order in YBO3: Eu3+ Micro and Nano Structures. Mater. Lett. 2013, 106, 381–384. https://doi.org/10.1016/j.matlet.2013.05.060.Search in Google Scholar

65. Mott, N. F.; Davis, E. A. Electronic Processes in Non-crystalline Materials; Clarendon Press: Oxford, 1979.Search in Google Scholar

66. Elashmawi, I. S.; Al-Muntaser, A. A. Influence of Co3O4 Nanoparticles on the Optical, and Electrical Properties of CMC/PAM Polymer: Combined FTIR/DFT Study. J. Inorg. Organomet. Polym. Mater. 2021, 31 (7), 2682; https://doi.org/10.1007/s10904-021-01956-9.Search in Google Scholar

67. Urbach, F. The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids. Phys. Rev. 1953, 92 (5), 1324. https://doi.org/10.1103/PhysRev.92.1324.Search in Google Scholar

68. Al-Yousef, H. A.; Sayyed, M. I.; Alotiby, M.; Kumar, A.; Alghamdi, Y. S.; Alotaibi, B. M.; Alsaif, N. A. M.; Mahmoud, K. A.; Al-Hadeethi, Y. Evaluation of Optical, and Radiation Shielding Features of New Phosphate-based Glass System. Optik 2021, 242, 167220; https://doi.org/10.1016/j.ijleo.2021.167220.Search in Google Scholar

69. Mahraz, Z. A. S.; Sazali, E. S.; Sahar, M. R. Spectral and Dielectric Characteristics of Er3+-Doped Multicomponent Tellurite Glasses. Optik 2021, 239, 166776. https://doi.org/10.1016/j.ijleo.2021.166776.Search in Google Scholar

70. Ngaram, S. M.; Hashim, S.; Sanusi, M. S. M.; Ibrahim, A.; Sayyed, M. I. Structural and Optical Characteristics of B2O3-TeO2-Bi2O3-SrCO3-K2CO3-Er2O3 Glass Systems: Role of Er3+ Doping. Ceram. Int. 2024, 51, 5882–5889; https://doi.org/10.1016/j.ceramint.2024.12.033.Search in Google Scholar

71. Taha, T. A.; Rammah, Y. S. Optical Characterization of New Borate Glass Doped with Titanium Oxide. J. Mater. Sci.: Mater. Electron. 2016, 27 (2), 1384–1390; https://doi.org/10.1007/s10854-015-3901-7.Search in Google Scholar

72. Hodgson, J. N. Optical Absorption and Dispersion in Solids; Springer: New York, 2012.Search in Google Scholar

73. Mahmoud, W. E.; Shirbeeny, W.; Al-Ghamdi, A. A.; Al-Heniti, S. Synthesis and Characterization of CdxZn1-xO Nanoparticles-Doped Aryl Poly Ether Ketone for Novel Application Potentials. J. Appl. Polym. Sci. 2012, 125 (1), 339. https://doi.org/10.1002/app.35570.Search in Google Scholar

74. Mallur, S. B.; Czarnecki, T.; Adhikari, A.; Babu, P. K. Compositional Dependence of Optical Band Gap and Refractive Index in Lead and Bismuth Borate Glasses. Mater. Res. Bull. 2015, 68, 27. https://doi.org/10.1016/j.materresbull.2015.03.033.Search in Google Scholar

75. Bouabdalli, E. M.; El Jouad, M.; Touhtouh, S.; Hajjaji, A. First Examination of the Influence of Y3+ Ions on the Structural, Physical and Optical Properties of Strontium Phosphate Glasses. J. Mater. Sci. 2023, 55, 788; https://doi.org/10.1007/s11082-023-05075-2.Search in Google Scholar

76. Sahoo, D.; Priyadarshini, P.; Aparimita, A.; Alagarasan, D.; Ganesan, R.; Varadharajaperumal, S.; Naik, R. Role of Annealing Temperature on Optimizing the Linear and Nonlinear Optical Properties of As40Se50Ge10 Films. RSC Adv. 2020, 10, 26675–26685. https://doi.org/10.1039/D0RA04763E.Search in Google Scholar PubMed PubMed Central

77. Sarkar, S.; Das, N. S.; Chattopadhyay, K. K. Optical Constants, Dispersion Energy Parameters and Dielectric Properties of Ultra-smooth Nanocrystalline BiVO4 Thin Films Prepared by RF-Magnetron Sputtering. Solid State Sci. 2014, 33, 58–66. https://doi.org/10.1016/j.solidstatesciences.2014.04.008.Search in Google Scholar

78. Ali, A. I.; Son, J. Y.; Ammar, A. H.; Moez, A. A.; Kim, Y. S. Optical and Dielectric Results of Y0.225Sr0.775CoO3±δ Thin Films Studied by Spectroscopic Ellipsometry Technique. Results Phys 2013, 3, 167–172. https://doi.org/10.1016/j.rinp.2013.08.004.Search in Google Scholar

79. Badran, H. A.; Mudhaffer, M. F.; Hassan, Q. M.; Ahamad, A. Y. Study of the Linear Optical Properties and Surface Energy Loss of 5’,5’’-Dibromo-O-Cresol-Sulfophthalein Thin Films. Chalcogenide Lett 2012, 9, 483–493. https://chalcogen.ro/483_Badran.pdf.Search in Google Scholar

80. Saudi, H. A.; Hassaan, M. Y.; Tarek, E.; Borham, E.; Bendary, A. A. Development of Advanced, Transparent Radiation Shielding Glass Possessing Boron and Lead Ions in the Glassy Matrix. Egypt. J. Phys. 2020, 48, 83–90; https://doi.org/10.21608/ejphysics.2020.23900.1035.Search in Google Scholar

81. Taha, T. A.; Abouhaswa, A. S. Preparation and Optical Properties of Borate Glass Doped with MnO2. J. Mater. Sci.: Mater. Electron. 2018, 29, 8100–8106. https://doi.org/10.1007/s10854-018-8816-7.Search in Google Scholar

82. Dimitrov, V.; Komatsu, T. Electronic Polarizability, Optical Basicity and Nonlinear Optical Properties of Oxide Glasses. J. Non-Cryst. Solids 1999, 249, 160–179. https://doi.org/10.1016/S0022-3093(99)00317-8.Search in Google Scholar

83. Dimitrov, V.; Komatsu, T. An Interpretation of Optical Properties of Oxides Glasses in Terms of the Electronic Ion Polarizability and Average Single Bond Strength (Review). J. Univ. Chem. Technol. Metall. 2010, 45 (3), 219–250. https://journal.uctm.edu/node/j2010-3/1_Veselin_Dimitrov_219-250.pdf.Search in Google Scholar

84. Rammah, Y. S.; Sayyed, M. I.; Abouhaswa, A.; Tekin, H. O. FTIR, Electronic Polarizability and Shielding Parameters of B2O3 Glasses Doped with SnO2. Appl. Phys. A 2018, 124 (9), 650; https://doi.org/10.1007/s00339-018-2069-4.Search in Google Scholar

85. Aliyu, U. S.; Kamari, H. M.; Hamza, A. M.; Awshah, A. A. The Structural, Physical and Optical Properties of Borotellurite Glasses Incorporated with Silica from Rice Husk. J. Sci. Math. Lett. 2018, 6, 32–46. https://doi.org/10.37134/jsml.vol6.4.2018.Search in Google Scholar

86. Annapoorani, K.; Basavapoornima, C. H.; Murthy, N. S.; Marimuthu, K. Investigations on Structural and Luminescence Behavior of Er3+ Doped Lithium Zinc Borate Glasses for Lasers and Optical Amplifier Applications. J. Non-Cryst. Solids 2016, 447, 273–282. https://doi.org/10.1016/j.jnoncrysol.2016.06.021.Search in Google Scholar

87. Dimitrov, V.; Komatsu, T. Classification of Oxide Glasses: a Polarizability Approach. J. Solid State Chem. 2005, 178, 831–846. https://doi.org/10.1016/j.jssc.2004.12.013.Search in Google Scholar

88. Zhao, X.; Wang, X.; Lin, H.; Wang, Z. A New Approach to Estimate Refractive Index, Electronic Polarizability, and Optical Basicity of Binary Oxide Glasses. Physica B 2008, 403 (17), 2450–2460. https://doi.org/10.1016/j.physb.2008.01.009.Search in Google Scholar

89. Speit, B. Radiation-Shielding Glasses Providing Safety Against Electrical Discharge and being Resistant to Discoloration. US Patent, 1991. https://patents.google.com/patent/US5073524A/en.Search in Google Scholar

90. Kaur, K.; Singh, K.; Anand, V. Correlation of Gamma Ray Shielding and Structural Properties of PbO–BaO–P2O5 Glass System. Nucl. Eng. Des. 2015, 285, 31–38. https://doi.org/10.1016/j.nucengdes.2014.12.033.Search in Google Scholar

Received: 2025-07-02
Accepted: 2025-08-25
Published Online: 2025-09-08

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2025-0062/html
Scroll to top button