Home Enhancing physico-chemical and antibacterial properties of gamma irradiated poly (vinyl alcohol) films filled with silver-bagasse fiber nanocomposite
Article
Licensed
Unlicensed Requires Authentication

Enhancing physico-chemical and antibacterial properties of gamma irradiated poly (vinyl alcohol) films filled with silver-bagasse fiber nanocomposite

  • Mohamad Bekhit , Heba A. Raslan ORCID logo EMAIL logo , Mohamed S. Abd El-Al and Khaled F. El-Nemr
Published/Copyright: September 29, 2025
Radiochimica Acta
From the journal Radiochimica Acta

Abstract

Recently, environmental pollution and inhibition of non-degradable and non-renewable resources have attracted researchers to develop a new kind of natural products. Fibers obtained from natural sources provide certain assistance to synthetic fibers because of their characteristics such as low cost, low density, non-toxicity and similar strength, and they do not encounter any problem during the disposal of materials into the environment. Silver nano-hybrid materials are getting much attention in antibacterial applications, due to its bactericidal nature. In this study, nanosilver-bagasse (Ag-bagasse) fiber as a nanocomposite was successfully prepared by using gamma radiolysis method. The Ag-bagasse fibers were blended with PVA at different weight ratioto improveits physicochemical and antimicrobial capabilities. All prepared films were exposed to 25 kGy of gamma radiation. Various analytical techniques are utilized to investigate the crystal structures, functional groups and surface morphology of the prepared Ag-bagasse fiber and PVA nanocomposite films. XRD shows the formation of silver nanoparticles over bagasse fiber in a single phase with an average crystallite size 10.89 nm. The mechanical properties of nanocomposite films obtained with different amounts of Ag-bagasse fiber reinforcement have been demonstrated. The PVA films were strengthened by the addition of Ag-bagassefiber and the optimum ratio was 5 wt%. Owing to the addition of Ag in the biopolymer matrices, the PVA/8 % Ag-bagasse nanocomposite film demonstrated good antibacterial activity against Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, and Bacillus subtilis. The utilization of bagasse fiber can boost the economic worth of agricultural waste, and the unique characteristics of PVA/Ag-bagasse nanocomposites may find application in the packaging and medical industries.


Corresponding author: Heba A. Raslan, Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: All other authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Omanović-Mikličanin, E.; Badnjević, A.; Kazlagić, A.; Hajlovac, M. Nanocomposites: a Brief Review. Health and Technol. 2020, 10, 51–59; https://doi.org/10.1007/s12553-019-00380-x.Search in Google Scholar

2. Shameem, M. M.; Sasikanth, S. M.; Annamalai, R.; Raman, R. G. A Brief Review on Polymer Nanocomposites and its Applications. Mater. Today: Proc. 2021, 45, 2536–2539; https://doi.org/10.1016/j.matpr.2020.11.254.Search in Google Scholar

3. Gaikwad, P.; Sharma, S.; Sudarshan, K.; Kumar, V.; Kshirsagar, A; Pujari, P. Molecular Packing of Polyvinyl Alcohol in PVA-gold Nanoparticles Composites and its Role on Thermo-mechanical Properties. Polym. Compos. 2018, 39 (4), 1137–1143; https://doi.org/10.1002/pc.24042.Search in Google Scholar

4. Ali, Z. I.; Bekhit, M.; Sokary, R.; Afify, T. A Radiation Synthesis of Copper Sulphide/poly (Vinyl Alcohol) Nanocomposites Films: an Efficient and Reusable Catalyst for P-Nitrophenol Reduction. Int. J. Environ. Anal. Chem. 2019, 99 (13), 1313–1324; https://doi.org/10.1080/03067319.2019.1619717.Search in Google Scholar

5. Abdelsalam, S.; Hemeda, O.; Sharshar, T.; Henaish, A.; Ali, M. Defect Probing Using Positron Annihilation and Dielectric Spectroscopy of PVA/Al Thin Films. J. Mol. Struct. 2022, 1259, 132738; https://doi.org/10.1016/j.molstruc.2022.132738.Search in Google Scholar

6. Abdel Maksoud, M.; Abdelhaleem, S.; Tawfik, E. K.; Awed, A. Gamma Radiation-Induced Synthesis of Novel PVA/Ag/CaTiO3 Nanocomposite Film for Flexible Optoelectronics. Sci. Rep. 2023, 13 (1), 12385; https://doi.org/10.1038/s41598-023-38829-9.Search in Google Scholar PubMed PubMed Central

7. Tan, B. K.; Ching, Y. C.; Poh, S. C.; Abdullah, L. C.; Gan, S. N. A Review of Natural Fiber Reinforced Poly (Vinyl Alcohol) Based Composites: Application and Opportunity. Polymers 2015, 7 (11), 2205–2222; https://doi.org/10.3390/polym7111509.Search in Google Scholar

8. Li, Z.; Zhang, X.; Fa, C.; Zhang, Y.; Xiong, J.; Chen, H. Investigation on Characteristics and Properties of Bagasse Fibers: Performances of Asphalt Mixtures with Bagasse Fibers. Constr. Build. Mater. 2020, 248, 118648; https://doi.org/10.1016/j.conbuildmat.2020.118648.Search in Google Scholar

9. Fiorelli, J.; Bueno, S. B.; Cabral, M. R. Assessment of Multilayer Particleboards Produced with Green Coconut and Sugarcane Bagasse Fibers. Constr. Build. Mater. 2019, 205, 1–9; https://doi.org/10.1016/j.conbuildmat.2019.02.024.Search in Google Scholar

10. Ribeiro Filho, S. L. M.; Oliveira, P. R.; Panzera, T. H.; Scarpa, F. Impact of Hybrid Composites Based on Rubber Tyres Particles and Sugarcane Bagasse Fibres. Compos., Part B: Eng. 2019, 159, 157–164; https://doi.org/10.1016/j.compositesb.2018.09.054.Search in Google Scholar

11. Kooti, M.; Kharazi, P.; Motamedi, H. Preparation, Characterization, and Antibacterial Activity of CoFe2O4/polyaniline/Ag Nanocomposite. J. Taiwan Inst. Chem. Eng. 2014, 45 (5), 2698–2704; https://doi.org/10.1016/j.jtice.2014.04.006.Search in Google Scholar

12. Dou, P.; Tan, F.; Wang, W.; Sarreshteh, A.; Qiao, X.; Qiu, X.; Chen, J. One-step Microwave-Assisted Synthesis of Ag/ZnO/graphene Nanocomposites with Enhanced Photocatalytic Activity. J. Photochem. Photobiol. Chem. 2015, 302, 17–22; https://doi.org/10.1016/j.jphotochem.2014.12.012.Search in Google Scholar

13. Maksoud, M. A.; Bekhit, M.; El-Sherif, D. M.; Sofy, A. R.; Sofy, M. R. Gamma Radiation-Induced Synthesis of a Novel chitosan/silver/Mn-Mg Ferrite Nanocomposite and its Impact on Cadmium Accumulation and Translocation in brassica Plant Growth. Int. J. Biol. Macromol. 2022, 194, 306–316; https://doi.org/10.1016/j.ijbiomac.2021.11.197.Search in Google Scholar PubMed

14. Eltaweil, A. S.; Abdelfatah, A. M.; Hosny, M.; Fawzy, M. Novel Biogenic Synthesis of a Ag@ Biochar Nanocomposite as an Antimicrobial Agent and Photocatalyst for Methylene Blue Degradation. ACS Omega 2022, 7 (9), 8046–8059; https://doi.org/10.1021/acsomega.1c07209.Search in Google Scholar PubMed PubMed Central

15. Fortunati, E.; Peltzer, M.; Armentano, I.; Jiménez, A.; Kenny, J. M Combined Effects of Cellulose Nanocrystals and Silver Nanoparticles on the Barrier and Migration Properties of PLA Nano-Biocomposites. J. Food Eng. 2013, 118 (1), 117–124; https://doi.org/10.1016/j.jfoodeng.2013.03.025.Search in Google Scholar

16. Perelshtein, I.; Applerot, G.; Perkas, N.; Guibert, G.; Mikhailov, S.; Gedanken, A. Sonochemical Coating of Silver Nanoparticles on Textile Fabrics (Nylon, Polyester and Cotton) and Their Antibacterial Activity. Nanotechnology 2008, 19 (24), 245705; https://doi.org/10.1088/0957-4484/19/24/245705.Search in Google Scholar PubMed

17. Kumar, A.; Vemula, P. K.; Ajayan, P. M; John, G. Silver-nanoparticle-embedded Antimicrobial Paints Based on Vegetable Oil. Nat. Mater. 2008, 7 (3), 236–241; https://doi.org/10.1038/nmat2099.Search in Google Scholar PubMed

18. Chaloupka, K.; Malam, Y.; Seifalian, A. M. Nanosilver as a New Generation of Nanoproduct in Biomedical Applications. Trends Biotechnol. 2010, 28 (11), 580–588; https://doi.org/10.1016/j.tibtech.2010.07.006.Search in Google Scholar PubMed

19. Lin, J.; Chen, R.; Feng, S.; Pan, J.; Li, Y.; Chen, G.; Cheng, M.; Huang, Z.; Yu, Y.; Zeng, H. A Novel Blood Plasma Analysis Technique Combining Membrane Electrophoresis with Silver Nanoparticle-Based SERS Spectroscopy for Potential Applications in Noninvasive Cancer Detection. Nanomed. Nanotechnol. Biol. Med. 2011, 7 (5), 655–663; https://doi.org/10.1016/j.nano.2011.01.012.Search in Google Scholar PubMed

20. Edwards-Jones, V. The Benefits of Silver in Hygiene, Personal Care and Healthcare. Lett. Appl. Microbiol. 2009, 49 (2), 147–152; https://doi.org/10.1111/j.1472-765x.2009.02648.x.Search in Google Scholar

21. Kokura, S.; Handa, O.; Takagi, T.; Ishikawa, T.; Naito, Y.; Yoshikawa, T. Silver Nanoparticles as a Safe Preservative for Use in Cosmetics. Nanomed. Nanotechnol. Biol. Med. 2010, 6 (4), 570–574; https://doi.org/10.1016/j.nano.2009.12.002.Search in Google Scholar PubMed

22. Kaegi, R.; Voegelin, A.; Sinne, t. B.; Zuleeg, S.; Hagendorfer, H.; Burkhardt, M.; Siegrist, H. Behavior of Metallic Silver Nanoparticles in a Pilot Wastewater Treatment Plant. Environ. Sci. Technol. 2011, 45 (9), 3902–3908; https://doi.org/10.1021/es1041892.Search in Google Scholar PubMed

23. Marambio-Jones, C.; Hoek, E. M. A Review of the Antibacterial Effects of Silver Nanomaterials and Potential Implications for Human Health and the Environment. J. Nanoparticle Res. 2010, 12, 1531–1551; https://doi.org/10.1007/s11051-010-9900-y.Search in Google Scholar

24. Das, T.; Yeasmin, S.; Khatua, S.; Acharya, K.; Bandyopadhyay, A. Influence of a Blend of Guar Gum and Poly (Vinyl Alcohol) on Long Term Stability, and Antibacterial and Antioxidant Efficacies of Silver Nanoparticles. RSC Adv. 2015, 5 (67), 54059–54069; https://doi.org/10.1039/c5ra08257a.Search in Google Scholar

25. Dube, E.; Okuthe, G. E. Silver Nanoparticle-Based Antimicrobial Coatings: Sustainable Strategies for Microbial Contamination Control. Microbiol. Res. 2025, 16, 110; https://doi.org/10.3390/microbiolres16060110.Search in Google Scholar

26. Flores-Rojas, G.; López-Saucedo, F.; Bucio, E. Gamma-irradiation Applied in the Synthesis of Metallic and Organic Nanoparticles: A Short Review. Radiat. Phys. Chem. 2020, 169, 107962; https://doi.org/10.1016/j.radphyschem.2018.08.011.Search in Google Scholar

27. Bekhit, M.; Orabi, A. S.; Abou El-Nour, K. M. A Facile One-Pot γ-radiation Formation of Gum Arabic-stabilized Cobalt Ferrite Nanoparticles as an Efficient Magnetically Retrievable Heterogeneous Catalyst. RSC Adv. 2025, 15, 9119; https://doi.org/10.1039/d5ra00651a.Search in Google Scholar PubMed PubMed Central

28. Abdel Maksoud, M.; El-Sayyad, G. S.; Mamdouh, N.; El Rouby, W. M Gamma-Rays Induced Synthesis of Ag-Decorated ZnCo2O4–MoS2 Heterostructure as Novel Photocatalyst and Effective Antimicrobial Agent for Wastewater Treatment Application. J. Inorg. Organomet. Polym. Mater. 2022, 32 (9), 3621–3639; https://doi.org/10.1007/s10904-022-02387-w.Search in Google Scholar

29. Maksoud, M. A.; Elsaid, M. A.; Abd Elkodous, M. Gamma Radiation Induced Synthesis of Ag Decorated NiMn2O4 Nanoplates with Enhanced Electrochemical Performance for Asymmetric Supercapacitor. J. Energy Storage 2022, 56, 105938; https://doi.org/10.1016/j.est.2022.105938.Search in Google Scholar

30. Raslan, H. A.; Fathy, E.; Mohamed, R. M. Effect of Gamma Irradiation and Fiber Surface Treatment on the Properties of Bagasse Fiber-Reinforced Waste Polypropylene Composites. Int. J. Polym. Anal. Charact. 2018, 23 (2), 181–192; https://doi.org/10.1080/1023666x.2017.1405535.Search in Google Scholar

31. Obada, D. O.; Salami, K. A.; Oyedeji, A. N.; Ocheme, F. U.; Okafor, C. A.; Umaru, S.; Egbo, C. A. Physico-chemical and Mechanical Properties of Coir-Coconut Husk Reinforced LDPE Composites: Influence of Long Term Acid Ageing. Iran. Polym. J. 2023, 32 (2), 115–123; https://doi.org/10.1007/s13726-022-01111-2.Search in Google Scholar

32. Chmielewska, D.; Sartowska, B. Radiation Synthesis of Silver Nanostructures in Cotton Matrix. Radiat. Phys. Chem. 2012, 81, 1244–1248; https://doi.org/10.1016/j.radphyschem.2011.11.067.Search in Google Scholar

33. Nikolić, N.; Spasojević, J.; Radosavljević, A.; Milošević, M.; Barudžija, T.; Rakočević, L.; Kačarević-Popović, Z. Influence of Poly(vinyl alcohol)/poly(N-Vinyl-2-Pyrrolidone) Polymer Matrix Composition on the Bonding Environment and Characteristics of Ag Nanoparticles Produced by Gamma Irradiation. Radiat. Phys. Chem. 2023, 202, 110564; https://doi.org/10.1016/j.radphyschem.2022.110564.Search in Google Scholar

34. Fathy, E. S.; Abdel-Fatah, S. S.; Bekhit, M. Physicochemical and Antimicrobial Characteristics of Polypropylene-Based Nanocomposite Containing SiO2-Ag Nanoparticles Prepared by Gamma Irradiation. J. Thermoplast. Compos. Mater. 2025, 38 (2), 564–587; https://doi.org/10.1177/08927057241255013.Search in Google Scholar

35. EL-Arnaouty, M. B.; Eid, M.; Salah, M.; Hegazy, E. S. A. Preparation and Characterization of Poly Vinyl Alcohol/Poly Vinyl Pyrrolidone/Clay Based Nanocomposite by Gamma Irradiation, Journal of Macromolecular Science, Part A. Pure Appl. Chem. 2012, 49, 1041–1051; https://doi.org/10.1080/10601325.2012.728466.Search in Google Scholar

36. Sayed, A.; Hegazy, D. E.; Mahmoud, G. A Integration of Ionizing Radiation and Nano-Clay for Enhancing Characters of CMC-PVA/Nano-clay Biobased Films. Radiochim. Acta 2025, 113 (4), 319–333; https://doi.org/10.1515/ract-2024-0300.Search in Google Scholar

37. da Silva, F. F.; Aquino, K. A. S.; Araújo, E. S. Effects of Gamma Irradiation on Poly(vinyl Chloride)/polystyrene Blends: Investigation of Radiolytic Stabilization and Miscibility of the Mixture. Polym. Degrad. Stab. 2008, 93, 2199–2203; https://doi.org/10.1016/j.polymdegradstab.2008.07.024.Search in Google Scholar

38. Madivoli, E. S.; Kareru, P. G.; Gichuki, J.; Elbagoury, M. M. Cellulose Nanofibrils and Silver Nanoparticles Enhances the Mechanical and Antimicrobial Properties of Polyvinyl Alcohol Nanocomposite Film. Sci. Rep. 2022, 12 (1), 19005; https://doi.org/10.1038/s41598-022-23305-7.Search in Google Scholar PubMed PubMed Central

39. Jacob, J.; Peter, G.; Thomas, S.; Haponiuk, J. T.; Gopi, S. Chitosan and Polyvinyl Alcohol Nanocomposites with Cellulose Nanofibers from Ginger Rhizomes and its Antimicrobial Activities. Int. J. Biol. Macromol. 2019, 129, 370–376; https://doi.org/10.1016/j.ijbiomac.2019.02.052.Search in Google Scholar PubMed

40. Fu, Y.; Zu, Y.; Chen, L.; Shi, X.; Wang, Z.; Sun, S.; Efferth, T. Antimicrobial Activity of Clove and Rosemary Essential Oils Alone and in Combination. Phytother. Res. 2007, 21 (10), 989–994; https://doi.org/10.1002/ptr.2179.Search in Google Scholar PubMed

41. Lanje, A. S.; Sharma, S. J.; Pode, R. B. Synthesis of Silver Nanoparticles: A Safer Alternative to Conventional Antimicrobial and Antibacterial Agents. J. Chem. Pharm. Res 2010, 2 (3), 478–483.Search in Google Scholar

42. Eisa, W. H.; Abdel-Baset, T.; Mohamed, E. M.; Mahrous, S. Crosslinked PVA/PVP Supported Silver Nanoparticles: a Reusable and Efficient Heterogeneous Catalyst for the 4-nitrophenol Degradation. J. Inorg. Organomet. Polym. Mater. 2017, 27, 1703–1711; https://doi.org/10.1007/s10904-017-0632-7.Search in Google Scholar

43. Abdelgawad, A. M.; El-Naggar, M. E.; Eisa, W. H.; Rojas, O. J. Clean and High-Throughput Production of Silver Nanoparticles Mediated by Soy Protein via Solid State Synthesis. J. Clean. Prod. 2017, 144, 501–510; https://doi.org/10.1016/j.jclepro.2016.12.122.Search in Google Scholar

44. Zhan, T.; Ding, G.; Cao, W.; Li, J.; She, X.; Teng, H. Amperometric Sensing of Catechol by Using a Nanocomposite Prepared from Ag/Ag2O Nanoparticles and N, S-doped Carbon Quantum Dots. Microchim. Acta 2019, 186, 743; https://doi.org/10.1007/s00604-019-3848-0.Search in Google Scholar PubMed

45. Trotta, F.; Da Silva, S.; Massironi, A.; Mirpoor, S. F.; Lignou, S.; Ghawi, S. K.; Charalampopoulos, D. Silver Bionanocomposites as Active Food Packaging: Recent Advances & Future Trends Tackling the Food Waste Crisis. Polymers 2023, 15, 4243; https://doi.org/10.3390/polym15214243.Search in Google Scholar PubMed PubMed Central

46. Akl, M. A.; Hashem, M. A.; Mostafa, A. G. Synthesis, Characterization, Antimicrobial and Photocatalytic Properties of Nano-Silver-Doped Flax Fibers. Polym. Bull. 2023, 80 (9), 9745–9777; https://doi.org/10.1007/s00289-022-04531-5.Search in Google Scholar

47. Rabbi, M. A.; Akter, R.; Khatun, M. H.; Ahmed, F.; Kadri, H. J.; Maitra, B.; Rasel, M. Z. U.; Al-Amin, M.; Kabir, S. R.; Habib, M. R. Extraction of Wood Vinegar from Bagasse and its Application as Bio-Reducer to Produce Stable Silver Nanoparticles with Enhanced Antibacterial Activity. Heliyon 2024, 10, e40976; https://doi.org/10.1016/j.heliyon.2024.e40976.Search in Google Scholar PubMed PubMed Central

48. Fitch-Vargas, P. R.; Camacho-Hernández, I. L.; Rodríguez-González, F. J.; Martínez-Bustos, F.; Calderón-Castro, A.; de Jesús Zazueta-Morales, J.; Aguilar-Palazuelos, E. Effect of Compounding and Plastic Processing Methods on the Development of Bioplastics Based on Acetylated Starch Reinforced with Sugarcane Bagasse Cellulose Fibers. Ind. Crops Prod. 2023, 192, 116084; https://doi.org/10.1016/j.indcrop.2022.116084.Search in Google Scholar

49. Iftikhar, M.; Zahoor, M.; Naz, S.; Nazir, N.; Batiha, G. E.-S.; Ullah, R.; Bari, A.; Hanif, M.; Mahmood, H. M. Green Synthesis of Silver Nanoparticles Using Grewia Optiva Leaf Aqueous Extract and Isolated Compounds as Reducing Agent and Their Biological Activities. J. Nanomater. 2020, 2020, 1–10; https://doi.org/10.1155/2020/8949674.Search in Google Scholar

50. Shameli, K.; Ahmad, M. B.; Zamanian, A.; Sangpour, P.; Shabanzadeh, P.; Abdollahi, Y.; Mohsen, Z. Green Biosynthesis of Silver Nanoparticles Using Curcuma Longa Tuber Powder. Int. J. Nanomed. 2012, 5603–5610; https://doi.org/10.2147/ijn.s36786.Search in Google Scholar

51. Siddiqui, M. R. H.; Adil, S.; Assal, M.; Ali, R.; Al-Warthan, A. Synthesis and Characterization of Silver Oxide and Silver Chloride Nanoparticles with High Thermal Stability. Asian J. Chem. 2013, 25 (6), 3405–3409; https://doi.org/10.14233/ajchem.2013.13874.Search in Google Scholar

52. Bibi, A.; Rehman, S.-U.; Akhtar, T.; Akhter, K.; Shahzad, M. I. Use of Alginate-chitosan/MWCNTs as a Novel Support for Ag2O-Immobilization in Catalytic Reduction of 4-NP. Desalination Water Treat. 2021, 228, 261–275; https://doi.org/10.5004/dwt.2021.27336.Search in Google Scholar

53. Alhazime, A. A.; Barakat, M. M. M.; Benthami, K.; Nouh, S. A. Gamma Irradiation-induced Modifications in the Structural, Thermal, and Optical Properties of Polyvinyl Alcohol-polyethylene Glycol/cobalt Oxide Nanocomposite Films. J. Vinyl Addit. Technol. 2021, 27 (2), 347–355; https://doi.org/10.1002/vnl.21808.Search in Google Scholar

54. Mallakpour, S.; Motirasoul, F. Ultrasonication Synthesis of PVA/PVP/α-MnO2-stearic Acid Blend Nanocomposites for Adsorbing CdII Ion. Ultrason. Sonochem. 2018, 40, 410–418; https://doi.org/10.1016/j.ultsonch.2017.07.034.Search in Google Scholar PubMed

55. Nayak, S.; Mohanty, J. R. Study of Mechanical, Thermal, and Rheological Properties of Areca Fiber-Reinforced Polyvinyl Alcohol Composite. J. Nat. Fibers 2019, 16 (5), 688–701; https://doi.org/10.1080/15440478.2018.1432000.Search in Google Scholar

56. Ravindra, S.; Mohan, Y. M.; Reddy, N. N.; Raju, K. M Fabrication of Antibacterial Cotton Fibres Loaded with Silver Nanoparticles via “Green Approach”. Colloids Surf. A Physicochem. Eng. Asp. 2010, 367 (1–3), 31–40; https://doi.org/10.1016/j.colsurfa.2010.06.013.Search in Google Scholar

57. Cho, M.-J.; Park, B.-D. Tensile and Thermal Properties of Nanocellulose-Reinforced Poly (Vinyl Alcohol) Nanocomposites. J. Ind. Eng. Chem. 2011, 17 (1), 36–40; https://doi.org/10.1016/j.jiec.2010.10.006.Search in Google Scholar

58. Eisa, W. H.; Abdel-Moneam, Y. K.; Shaaban, Y.; Abdel-Fattah, A. A.; Abou Zeid, A. M. Gamma-irradiation Assisted Seeded Growth of Ag Nanoparticles within PVA Matrix. Mater. Chem. Phys. 2011, 128, 109; https://doi.org/10.1016/j.matchemphys.2011.02.076.Search in Google Scholar

59. Cárdenas-Triviño, G.; Linares-Bermudez, N.; Vergara-González, L.; Cabello-Guzmán, G.; Ojeda-Oyarzún, J.; Nuñez-Decap, M.; Arrué-Muñoz, R. Synthesis and Wound Healing Properties Ofpolyvinyl Alcohol Films Doped with Metal Nanoparticles of Cu and Ag. J. Chil. Chem. Soc. 2022, 67 (4), 5667; https://doi.org/10.4067/s0717-97072022000405667.Search in Google Scholar

60. Wiśniewska, M.; Chibowski, S.; Urban, T.; Sternik, D. Investigation of the Alumina Properties with Adsorbed Polyvinyl Alcohol. J. Therm. Anal. Calorim. 2011, 103, 329–337; https://doi.org/10.1007/s10973-010-1040-1.Search in Google Scholar

61. Ng, T. S.; Ching, Y. C.; Awanis, N.; Ishenny, N.; Rahman, M. R. Effect of Bleaching Condition on Thermal Properties and UV-Transmittance of PVA/cellulose Biocomposites. Mater. Res. Innov. 2014, 18, 400–404; https://doi.org/10.1179/1432891714z.000000000986.Search in Google Scholar

62. Carbone, M.; Mohan, Y. M.; Reddy, N. N.; Raju, K. M. Silver Nanoparticles in Polymeric Matrices for Fresh Food Packaging. J. King Saud Univ. Sci. 2016, 28 (4), 273–279; https://doi.org/10.1016/j.jksus.2016.05.004.Search in Google Scholar

63. Ghosh, S.; Kaushik, R.; Nagalakshmi, K.; Hoti, S.; Menezes, G.; Harish, B.; Vasan, H. Antimicrobial Activity of Highly Stable Silver Nanoparticles Embedded in Agar–Agar Matrix as a Thin Film. Carbohydr. Res. 2010, 345 (15), 2220–2227; https://doi.org/10.1016/j.carres.2010.08.001.Search in Google Scholar PubMed

64. Qing, Y. A.; Cheng, L.; Li, R.; Liu, G.; Zhang, Y.; Tang, X.; Wang, J.; Liu, H.; Qin, Y. Potential Antibacterial Mechanism of Silver Nanoparticles and the Optimization of Orthopedic Implants by Advanced Modification Technologies. Int. J. Nanomed. 2018, 13, 3311–3327; https://doi.org/10.2147/ijn.s165125.Search in Google Scholar PubMed PubMed Central

65. Dakal, T. C.; Kumar, A.; Majumdar, R. S.; Yadav, V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front. Microbiol. 2016, 7, 1831; https://doi.org/10.3389/fmicb.2016.01831.Search in Google Scholar PubMed PubMed Central

66. Cano, A.; Cháfer, M.; Chiralt, A.; González-Martínez, C. Development and Characterization of Active Films Based on Starch-PVA, Containing Silver Nanoparticles. Food Packag. Shelf Life 2016, 10, 16–24; https://doi.org/10.1016/j.fpsl.2016.07.002.Search in Google Scholar

67. Rao, M. M.; Mohammad, N.; Banerjee, S.; Khanna, P. K. Synthesis and Food Packaging Application of Silver Nano-Particles: A Review. Hybrid Adv. 2024, 6, 100230‏; https://doi.org/10.1016/j.hybadv.2024.100230.Search in Google Scholar

68. Ravindran, D. R.; Kannan, S.; Veeranan, V. D.; Vellasamy, S. Biogenic Synthesis of Lipopolysaccharide Facilitated Silver Nanoparticles (LPS-AgNPs) and its Molecular Mechanisms against Systemic Pathogens MRSA and Salmonella typhi, an In-Vitro and In-Vivo Based Approach. Carbohydr. Polym.Technol. Appl. 2025, 11, 100912‏; https://doi.org/10.1016/j.carpta.2025.100912.Search in Google Scholar

69. Yang, C.; Jian, R.; Huang, K.; Wang, Q.; Feng, B. Antibacterial Mechanism for Inactivation of E. Coli by AgNPs@ Polydoamine/titania Nanotubes via Speciation Analysis of Silver Ions and Silver Nanoparticles by Cation Exchange Reaction. Microchem. J. 2021, 160, 105636; https://doi.org/10.1016/j.microc.2020.105636.Search in Google Scholar

70. Gili, M. B. Z.; Manuel, W. A.; Guillermo, N. R. D.; Shankaregowda, R. G. H.; Phan, M. H.; Conato, M. T.; Vega, M. M. Antibacterial Evaluation of Radiolytically Synthesized Silver Nanoparticles with ι-carrageenan Stabilizers. Radiat. Phys. Chem. 2025, 236, 112941; https://doi.org/10.1016/j.radphyschem.2025.112941.Search in Google Scholar

71. Mossa, S.; Shameli, K. Gamma Irradiation-Assisted Synthesis of Silver Nanoparticle and Their Antimicrobial Applications: a Review. J. Res. J. Res. Nanotechnol. Nanosci. 2021, 3 (1), 53–75.10.37934/jrnn.3.1.5375Search in Google Scholar

Received: 2025-04-08
Accepted: 2025-08-07
Published Online: 2025-09-29

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2025-0041/html
Scroll to top button