Experimental investigation for the impacts of Er2O3 content on enhancing the physical and radiation shielding capabilities of composites based-epoxy
Abstract
By employing erbium oxide (Er2O3) as fillers, the current study seeks to improve the physical and radiation shielding performance of epoxy composites. Therefore, a series of epoxy-based composites were fabricated according to the chemical formula of (90−x) epoxy + 10 Eu2O3 + x Er2O3; x ≈ 0, 5, 10, and 15 wt%. The impact of Er2O3 fillers on the physical and radiation shielding properties of the prepared composites was investigated experimentally. The change in density of prepared epoxy-based Er2O3 composites was measured according to the Archimedes method. The recorded data confirms an increase in the prepared composites’ density between 1.188 ± 0.018 g/cm3 and 1.375 ± 0.021 g/cm3 when the Er2O3 concentration raised throughout a concentration range of 0–15 wt%. The impact of Er2O3 on the gamma-ray shielding performance of epoxy-based composites was evaluated experimentally using the narrow beam transmission method. During the application of the narrow beam transmission method, a 5.08 × 5.08 cm NaI (Tl) crystal and two radioactive sources (Cs-137 and Co-60) were utilized. The measured data showed that the increase in Er2O3 concentrations between 0 wt% and 15 wt% enhances the linear attenuation coefficient of the prepared composites between 0.0959 ± 0.0051 cm−1 and 0.1093 ± 0.0069 cm−1, respectively, at 0.662 MeV. The investigation shows that the increase in the Er2O3 concentration improves the linear attenuation coefficient by 14.04 %, 11.62 %, and 15.73 % at 0.662 MeV, 1.173 MeV, and 1.332 MeV, respectively.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: Laith Ahmed Najam and Taha Yaseen Wais: Material preparation, data collection, analysis; Karem A. Mahmoud and M.I. Sayyed: writing the draft manuscript and the final version, revision, software, investigations. All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors declare no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Aldhuhaibat, M. J. R.; Amana, M. S.; Jubier, N. J.; Salim, A. A. Improved Gamma Radiation Shielding Traits of Epoxy Composites: Evaluation of Mass Attenuation Coefficient, Effective Atomic and Electron Number. Radiat. Phys. Chem. 2021, 179, 109183; https://doi.org/10.1016/j.radphyschem.2020.109183.Search in Google Scholar
2. Sivanesan, D.; Kim, S.; Jang, T. W.; Kim, H. J.; Song, J.; Seo, B.; Lim, C. -S.; Kim, H. -G. Effects of Flexible and Rigid Parts of ε-Caprolactone and Tricyclodecanediol Derived Polyurethane on the Polymer Properties of Epoxy Resin. Polymer (Guildf) 2021, 237, 124374; https://doi.org/10.1016/j.polymer.2021.124374.Search in Google Scholar
3. de Kruijff, G. H. M.; Goschler, T.; Beiser, N.; Stenglein, A.; Türk, O. M.; Waldvogel, S. R. Sustainable Access to Biobased Biphenol Epoxy Resins by Electrochemical Dehydrogenative Dimerization of Eugenol. Green Chem. 2019, 21, 4815; https://doi.org/10.1039/c9gc02068c.Search in Google Scholar
4. More, C. V.; Bhosale, R. R.; Pawar, P. P. Detection of New Polymer Materials as Gamma-Ray-Shielding Materials. Radiat. Eff. Defects Solids 2017, 172, 469; https://doi.org/10.1080/10420150.2017.1336765.Search in Google Scholar
5. Canel, A.; Korkut, H.; Korkut, T. Improving Neutron and Gamma Flexible Shielding by Adding Medium-Heavy Metal Powder to Epoxy Based Composite Materials. Radiat. Phys. Chem. 2019, 158, 13; https://doi.org/10.1016/j.radphyschem.2019.01.005.Search in Google Scholar
6. Hashemi, S. A.; Mousavi, S. M.; Faghihi, R.; Arjmand, M.; Sina, S.; Amani, A. M. Lead Oxide-Decorated Graphene Oxide/Epoxy Composite towards X-Ray Radiation Shielding. Radiat. Phys. Chem. 2018, 146, 77; https://doi.org/10.1016/j.radphyschem.2018.01.008.Search in Google Scholar
7. Wang, H.; Zhang, H.; Su, Y.; Liu, T.; Yu, H.; Yang, Y.; Li, X.; Guo, B. Preparation and Radiation Shielding Properties of Gd2O3/PEEK Composites. Polym. Compos. 2015, 36, 651; https://doi.org/10.1002/pc.22983.Search in Google Scholar
8. Wang, K.; Ma, L.; Yang, C.; Bian, Z.; Zhang, D.; Cui, S.; Wang, M.; Chen, Z.; Li, X. Recent Progress in Gd-Containing Materials for Neutron Shielding Applications: A Review. Materials 2023, 16, 4305; https://doi.org/10.3390/ma16124305.Search in Google Scholar PubMed PubMed Central
9. Agar, O.; Kavaz, E.; Altunsoy, E. E.; Kilicoglu, O.; Tekin, H. O.; Sayyed, M. I.; Erguzel, T. T.; Tarhan, N. Er2O3 Effects on Photon and Neutron Shielding Properties of TeO2-Li2O-ZnO-Nb2O5 Glass System. Results Phys. 2019, 13, 102277; https://doi.org/10.1016/j.rinp.2019.102277.Search in Google Scholar
10. Gurushantha, K.; Jagannath, G.; Kolavekar, S. B.; Pramod, A. G.; Almuqrin, A. H.; Sayyed, M. I.; Keshavamurthy, K.; Ramesh, P. Nanosecond Nonlinear Optical and Gamma Radiation Shielding Behavior of Eu2O3 Doped Lanthanum Containing Heavy Metal Borate Glasses: a Comparative Investigation. J. Mater. Sci. 2023, 58, 7259; https://doi.org/10.1007/s10853-023-08474-8.Search in Google Scholar
11. Hegde, V.; Kamath, S. D.; Kebaili, I.; Sayyed, M. I.; Sathish, K. N.; Viswanath, C. S. D.; Pramod, A. G.; Ramesh, P.; Keshavamurthy, K.; Devarajulu, G.; Jagannath, G. Photoluminescence, Nonlinear Optical and Gamma Radiation Shielding Properties of High Concentration of Eu2O3 Doped Heavy Metal Borate Glasses. Optik (Stuttg) 2022, 251, 168433; https://doi.org/10.1016/j.ijleo.2021.168433.Search in Google Scholar
12. Chang, L.; Zhang, Y.; Liu, Y.; Fang, J.; Luan, W.; Yang, X.; Zhang, W. Preparation and Characterization of Tungsten/Epoxy Composites for γ-rays Radiation Shielding. Nucl. Instrum. Methods Phys. Res. B 2015, 356–357, 88; https://doi.org/10.1016/j.nimb.2015.04.062.Search in Google Scholar
13. Karabul, Y.; İçelli, O. The Assessment of Usage of Epoxy Based Micro and Nano-Structured Composites Enriched with Bi2O3 and WO3 Particles for Radiation Shielding. Results Phys. 2021, 26, 104423.10.1016/j.rinp.2021.104423Search in Google Scholar
14. Wu, J.; Hu, J.; Deng, Z.; Feng, Y.; Fan, H.; Wang, Z.; Wang, K.; Chen, Q.; Zhang, W. Comparative Investigation of Physical, X-Ray and Neutron Radiation Shielding Properties for B2O3-MnO2-CdO Borate Glasses. Ceram. Int. 2023, 49, 30915; https://doi.org/10.1016/j.ceramint.2023.07.118.Search in Google Scholar
15. Guven, B.; Ercenk, E.; Yilmaz, S. Investigation of Radiation Shielding Properties of Basalt-Based Glasses: Binodal/Spinodal Decomposition Effect Theory. Prog. Nucl. Energy 2023, 163, 104810; https://doi.org/10.1016/j.pnucene.2023.104810.Search in Google Scholar
16. Pacheco, M. H.; Gibin, M. S.; Silva, M. A.; Montagnini, G.; Viscovini, R. C.; Steimacher, A.; Pedrochi, F.; Zanuto, V. S.; Muniz, R. F. BaO–reinforced SiO2–Na2O–Ca(O/F2)–Al2O3 Glasses for Radiation Safety: On the Physical, Optical, Structural and Radiation Shielding Properties. J. Alloys Compd. 2023, 960, 171019; https://doi.org/10.1016/j.jallcom.2023.171019.Search in Google Scholar
17. Sayyed, M. I. Exploring the Impact of PbO in Improving the Gamma Radiation Shielding Characteristics of Silicate Glasses. Silicon 2024, 16, 1535; https://doi.org/10.1007/s12633-023-02776-x.Search in Google Scholar
18. Ahmadi, M.; Vahid, Z.; Darush, N. Investigated Mechanical, Physical Parameters and Gamma-Neutron Radiation Shielding of the Rare Earth (Er2O3/CeO2) Doped Barium Borate Glass: Role of the Melting Time and Temperature. Radiat. Phys. Chem. 2024, 217, 111450; https://doi.org/10.1016/j.radphyschem.2023.111450.Search in Google Scholar
19. Zanganeh, V. Effect of WO3 Addition on Mechanical, Structural, Optical, and Radiation Shielding Properties of Lead Boro Phosphate Glasses System Using Monte Carlo Simulation. Optik (Stuttg) 2022, 269, 169900; https://doi.org/10.1016/j.ijleo.2022.169900.Search in Google Scholar
20. Guntu, R. K. EPR-TL Correlation, in Radiation Shielding Ba(10-x)MnxLa30Si60 Glasses. J. Mol. Struct. 2022, 1248, 131533; https://doi.org/10.1016/j.molstruc.2021.131533.Search in Google Scholar
21. Saleh, A. Comparative Shielding Features for X/Gamma-rays, Fast and Thermal Neutrons of Some Gadolinium Silicoborate Glasses. Prog. Nucl. Energy 2022, 154, 104482; https://doi.org/10.1016/j.pnucene.2022.104482.Search in Google Scholar
22. Saleh, A.; Shalaby, R. M.; Abdelhakim, N. A. Comprehensive Study on Structure, Mechanical and Nuclear Shielding Properties of Lead Free Sn–Zn–Bi Alloys as a Powerful Radiation and Neutron Shielding Material. Radiat. Phys. Chem. 2022, 195, 110065; https://doi.org/10.1016/j.radphyschem.2022.110065.Search in Google Scholar
23. Saleh, A.; El-Feky, M. G.; Hafiz, M. S.; Kawady, N. A. Experimental and Theoretical Investigation on Physical, Structure and Protection Features of TeO2–B2o3 Glass Doped with PbO in Terms of Gamma, Neutron, Proton and Alpha Particles. Radiat. Phys. Chem. 2023, 202, 110586; https://doi.org/10.1016/j.radphyschem.2022.110586.Search in Google Scholar
24. Shahboub, A.; El Damrawi, G.; Saleh, A. A New Focus on the Role of Iron Oxide in Enhancing the Structure and Shielding Properties of Ag2O–P2o5 Glasses. Eur. Phys. J. Plus 2021, 136, 947; https://doi.org/10.1140/epjp/s13360-021-01948-1.Search in Google Scholar
25. Ambika, M. R.; Nagaiah, N.; Harish, V.; Lokanath, N. K.; Sridhar, M. A.; Renukappa, N. M.; Suman, S. K. Preparation and Characterisation of Isophthalic-Bi2O3 Polymer Composite Gamma Radiation Shields. Radiat. Phys. Chem. 2017, 130, 351; https://doi.org/10.1016/j.radphyschem.2016.09.022.Search in Google Scholar
26. Maksoud, M. I. A. A.; Kassem, S. M.; Bekhit, M.; Fahim, R. A.; Ashour, A. H.; Awed, A. S. Gamma Radiation Shielding Properties of Poly(vinyl butyral)/Bi2O3@BaZrO3 Nanocomposites. Mater. Chem. Phys. 2021, 268, 124728; https://doi.org/10.1016/j.matchemphys.2021.124728.Search in Google Scholar
27. Nuñez-Briones, A. G.; Benavides, R.; Bolaina-Lorenzo, E. D.; Martínez-Pardo, M. E.; Kotzian-Pereira-Benavides, C.; Mendoza-Mendoza, E.; Bentacourt-Galindo, R.; Garcia-Cerda, L. A. Nontoxic Flexible PVC Nanocomposites with Ta2O5 and Bi2O3 Nanoparticles for Shielding Diagnostic X-Rays. Radiat. Phys. Chem. 2023, 202, 110512; https://doi.org/10.1016/j.radphyschem.2022.110512.Search in Google Scholar
28. Marashdeh, M. W.; Mahmoud, K. A. CaO-Enhanced Polyester for Safety: Experimental Study on Fabrication, Characterization, and Gamma-Ray Attenuation. Radiochim. Acta 2024, 112, 209; https://doi.org/10.1515/ract-2023-0265.Search in Google Scholar
29. Mahmoud, K. G.; Sayyed, M. I.; Hashim, S.; Almuqrin, A. H.; El-Soad, A. M. A. Impacts of Halloysite Clay Nanoparticles on the Structural and γ-ray Shielding Properties of the Epoxy Resin. Nucl. Eng. Technol. 2023, 55, 1585; https://doi.org/10.1016/j.net.2023.02.015.Search in Google Scholar
30. Almuqrin, A. H.; ALasali, H. J.; Sayyed, M. I.; Mahmoud, K. G. Preparation and Experimental Estimation of Radiation Shielding Properties of Novel Epoxy Reinforced with Sb2 O3 and PbO. e-Polymers. 2023, 23; https://doi.org/10.1515/epoly-2023-0019.Search in Google Scholar
31. Mahmoud, K. G.; Tashlykov, O. L.; Praveenkumar, S.; Sayyed, M. I.; Hashim, S. Synthesis of a New Epoxy Resin Reinforced by ZnO Nanoparticles for γ-ray Shielding Purposes: Experimental and Monte Carlo Simulation Assesments. Radiat. Phys. Chem. 2023, 208, 110938; https://doi.org/10.1016/j.radphyschem.2023.110938.Search in Google Scholar
32. Mahmoud, K. A.; Tashlykov, O. L.; Kropachev, Y.; Samburov, A.; Zakharova, P.; Abu El-Soad, A. M. A Close Look for the γ-ray Attenuation Capacity and Equivalent Dose Rate Form Composites Based Epoxy Resin: An Experimental Study. Radiat. Phys. Chem. 2023, 212, 111063; https://doi.org/10.1016/j.radphyschem.2023.111063.Search in Google Scholar
33. Gaikwad, D. K.; Bhosle, R. R.; Awasarmol, V. V.; Raut, S. D.; Obaid, S. S.; Lokhande, R. M.; Pawar, P. P. Gamma Ray Shielding Properties of Natural Mineral Celadonite. In Proceedings of the thirteenth DAE-BRNS nuclear and radiochemistry symposium; Bhabha Atomic Research Centre: Bhubaneswar, India, 2017.Search in Google Scholar
34. Mahmoud, K. A.; Tashlykov, O. L.; Wakil, A. F. E.; Zakaly, H. M. H.; Aassy, I. E. E. Investigation of Radiation Shielding Properties for Some Building Materials Reinforced by Basalt Powder. In AIP Conference Proceedings, 2019.10.1063/1.5134187Search in Google Scholar
35. Mahmoud, K. A.; Sayyed, M. I.; Tashlykov, O. L. Comparative Studies Between the Shielding Parameters of Concretes with Different Additive Aggregates Using MCNP-5 Simulation Code. Radiat. Phys. Chem. 2019, 165; https://doi.org/10.1016/j.radphyschem.2019.108426.Search in Google Scholar
36. Alasali, H. J.; Rilwan, U.; Mahmoud, K. A.; Hanafy, T. A.; Sayyed, M. I. Comparative Analysis of TiO2, Fe2O3, CaO and CuO in Borate Based Glasses for Gamma Ray Shielding. Nucl. Eng. Technol. 2024, 56 (10), 4050–4055; https://doi.org/10.1016/j.net.2024.05.006.Search in Google Scholar
37. Wahab, E. A. A.; Koubisy, M. S. I.; Sayyed, M. I.; Mahmoud, K. A.; Zatsepin, A. F.; Makhlouf, S. A.; Shaaban, K. H. S. Novel Borosilicate Glass System: Na2B4O7-SiO2-MnO2: Synthesis, Average Electronics Polarizability, Optical Basicity, and Gamma-Ray Shielding Features. J Non Cryst Solids 2021, 553, 120509.10.1016/j.jnoncrysol.2020.120509Search in Google Scholar
38. Abouhaswa, A. S.; Sayyed, M. I.; Altowyan, A. S.; Al-Hadeethi, Y.; Mahmoud, K. A. Evaluation of Optical and Gamma Ray Shielding Features for Tungsten-Based Bismuth Borate Glasses. Opt Mater (Amst) 2020, 106; https://doi.org/10.1016/j.optmat.2020.109981.Search in Google Scholar
39. Kumar, A.; Jain, A.; Sayyed, M. I.; Laariedh, F.; Mahmoud, K. A.; Nebhen, J.; Khandaker, M. U.; Faruque, M. R. I. Tailoring Bismuth Borate Glasses by Incorporating PbO/GeO2 for Protection against Nuclear Radiation. Sci. Rep. 2021, 11, 7784; https://doi.org/10.1038/s41598-021-87256-1.Search in Google Scholar PubMed PubMed Central
40. Aktas, B.; Yalcin, S.; Albaskara, M.; Aytar, E.; Ceyhan, G.; Turhan, Z. Ş. Effect of Er2O3 on Structural, Mechanical, and Optical Properties of Al2O3-Na2O-B2o3-SiO2 Glass. J. Non. Cryst. Solids 2022, 584, 121516; https://doi.org/10.1016/j.jnoncrysol.2022.121516.Search in Google Scholar
41. Acikgoz, A.; Demircan, G.; Yılmaz, D.; Aktas, B.; Yalcin, S.; Yorulmaz, N. Structural, Mechanical, Radiation Shielding Properties and Albedo Parameters of Alumina Borate Glasses: Role of CeO2 and Er2O3. Mater. Sci. Eng.: B 2022, 276, 115519; https://doi.org/10.1016/j.mseb.2021.115519.Search in Google Scholar
42. Sayyed, M. I.; Yasmin, S.; Almousa, N.; Elsafi, M. Shielding Properties of Epoxy Matrix Composites Reinforced with MgO Micro- and Nanoparticles. Materials 2022, 15, 6201; https://doi.org/10.3390/ma15186201.Search in Google Scholar PubMed PubMed Central
43. Alanazi, S.; Hanfi, M. Y.; Marashdeh, M. W.; Aljaafreh, M. J.; Mahmoud, K. A. Impact of Heavy Metal Waste on Gamma Ray Shielding Performance of Epoxy Resin: an Experimental Investigation. Polym. Bull. 2024, 81, 11729; https://doi.org/10.1007/s00289-024-05273-2.Search in Google Scholar
44. Hanfi, M. Y.; Marashdeh, M. W.; Alanazi, S.; Aljaafreh, M. J.; Mahmoud, K. A. Effect of Bi2O3/WO3 on Improving the Ability of Polyepoxide-Based Composites to Attenuate Gamma Rays. Nucl. Sci. Eng. 2024, 1.Search in Google Scholar
45. Mahmoud, K. A.; Binmujlli, M. M.; Marashdeh, M. W.; Aljaafreh, M. J.; Saleh, A.; Hanfi, M. Y. Gamma-ray Shielding Analysis Using the Experimental Measurements for Copper(ii) Sulfate-Doped Polyepoxide Resins. e-Polymers. 2023, 23; https://doi.org/10.1515/epoly-2023-0142.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston