Utilities of ionic liquid extraction with astatine ions and its extraction mechanism
-
Akihiko Yokoyama
, Kohei Kawasaki
, Yuta Nagai , Hisanori Tazuru , Yusuke Shimizu , Kohya Ganaha , Kohshin Washiyama , Ichiro Nishinaka , Yang Wang , Xiaojie Yin , Nozomi Sato , Akihiro Nambu , Yudai Shigekawaand Hiromitsu Haba
Abstract
Present study is the first attempt on the application of ionic liquid (IL) for the extraction of 211At with the 7.21-h-half-life in targeted alpha-particle therapy. We produced the nuclide to investigate utilities of several ionic liquids, namely, [C4mim][Tf2N], [C6mim][Tf2N], [C8mim][Tf2N], [C8mim][PF6], and [C8mim][BF4] in solvent extraction and back extraction for the practical application of a 211Rn/211At generator. Astatine extraction with ionic liquids was investigated in detail in this study, and the extraction mechanism was elucidated for the first time.
Funding source: JSPS KAKENHI
Award Identifier / Grant number: 17K05807
Acknowledgments
The authors thank the staff of the Japan Atomic Energy Agency tandem accelerator for the operation in producing the 211Rn nuclide. The At nuclides were provided by the Supply Platform of Short-lived Radioisotopes, supported by a JSPS Grant-in-Aid for Scientific Research in Innovative Areas (grant number 16H06278) and also provided by Fukushima Medical University through Network-type Joint Usage/Research Center for Radiation Disaster Medical Science.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest
-
Research funding: This work was mainly supported by JSPS KAKENHI (grant number 17K05807).
-
Data availability: The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.
References
1. McDevitt, M. R.; Sgouros, G.; Finn, R. D.; Humm, J. L.; Jurcic, J. G.; Larson, S. M.; Scheinberg, D. A. Radioimmunotherapy with Alpha-Emitting Nuclides. Eur. J. Nucl. Med. 1998, 25 (9), 1341–1351; https://doi.org/10.1007/s002590050306.Search in Google Scholar PubMed
2. Guérard, F.; Gestin, J. F.; Brechbiel, M. W. Production of [211At]-Astatinated Radiopharmaceuticals and Applications in Targeted α-particle Therapy. Cancer Biother. Radiopharm. 2013, 28, 1–20; https://doi.org/10.1089/cbr.2012.1292.Search in Google Scholar PubMed PubMed Central
3. Wilbur, D. S. Enigmatic Astatine. Nat. Chem. 2013, 5, 246; https://doi.org/10.1038/nchem.1580.Search in Google Scholar PubMed
4. Zalutsky, M. R.; Pruszyński, M. Astatine-211: Production and Availability. Curr. Radiopharm. 2011, 4, 177–185; https://doi.org/10.2174/1874471011104030177.Search in Google Scholar PubMed PubMed Central
5. Guérard, F.; Maingueneau, C.; Liu, L.; Eychenne, R.; Gestin, J. F.; Montavon, G.; Galland, N. Advances in the Chemistry of Astatine and Implications for the Development of Radiopharmaceuticals. Acc. Chem. Res. 2021, 54, 3264–3275; https://doi.org/10.1021/acs.accounts.1c00327.Search in Google Scholar PubMed
6. Kugler, H. K.; Keller, C. Gmelin Handbook of Inorganic Chemistry: Astatine, 8th ed.; Springer: Berlin, 1985.Search in Google Scholar
7. Champion, J.; Alliot, C.; Renault, E.; Mokili, B. M.; Chérel, M.; Galland, N.; Montavon, G. Astatine Standard Redox Potentials and Speciation in Acidic Medium. J. Phys. Chem. A 2009, 114 (1), 576–582; https://doi.org/10.1021/jp9077008.Search in Google Scholar PubMed
8. Champion, J.; Sabatié-Gogova, A.; Bassal, F.; Ayed, T.; Alliot, C.; Galland, N.; Montavon, G. Investigation of Astatine (III) Hydrolyzed Species: Experiments and Relativistic Calculations. J. Phys. Chem. A 2013, 117 (9), 1983–1990; https://doi.org/10.1021/jp3099413.Search in Google Scholar PubMed
9. Liu, L; Maurice, R.; Galland, N.; Moisy, P.; Champion, J.; Montavon, G. Pourbaix Diagram of Astatine Revisited: Experimental Investigations. Inorg. Chem. 2022, 61, 13462–13470; https://doi.org/10.1021/acs.inorgchem.2c01918.Search in Google Scholar PubMed
10. Nishinaka, I.; Hashimoto, K.; Suzuki, H. Thin Layer Chromatography for Astatine and Iodine in Solutions Prepared by Dry Distillation. J. Radioanal. Nucl. Chem. 2018, 318 (2), 897–905; https://doi.org/10.1007/s10967-018-6088-6.Search in Google Scholar
11. Nishinaka, I.; Hashimoto, K.; Suzuki, H. Speciation of Astatine Reacted with Oxidizing and Reducing Reagents by Thin Layer Chromatography: Formation of Volatile Astatine. J. Radioanal. Nucl. Chem. 2019, 322, 2003–2009; https://doi.org/10.1007/s10967-019-06900-3.Search in Google Scholar
12. Tereshatov, E. E.; Burns, J. D.; Schultz, S. J.; Green, B. D.; Picayo, G. A.; McCann, L. A; McIntosh, L. A.; Tabacaru, G. C.; Abbott, A.; Berko, M.; Engelthaler, E.; Hagel, K.; Hankins, T.; Harvey, B.; Hoekstra, L.; Lofton, K.; Regener, S.; Rider, R.; Sorensen, M.; Tabacaru, A.; Thomas, D.; Tobar, J.; Tobin, Z.; Yennello, S. J. Ion Exchange Behavior of Astatine and Bismuth. New J. Chem. 2023, 47, 12037–12047; https://doi.org/10.1039/d3nj01316b.Search in Google Scholar
13. Ghalei, M.; Khoshouei, P. M.; Vandenborre, J.; Guerard, F.; Blain, G.; Zarei, M.; Haddad, F.; Fattahi, M. How Radiolysis Impacts Astatine Speciation? Radiat. Phys. Chem. 2022, 198, 110224.10.1016/j.radphyschem.2022.110224Search in Google Scholar
14. Wei, G. T.; Yang, Z.; Chen, C. J. Room Temperature Ionic Liquid as a Novel Medium for Liquid/liquid Extraction of Metal Ions. Analy. Chim. Acta 2003, 488, 183–192; https://doi.org/10.1016/s0003-2670(03)00660-3.Search in Google Scholar
15. Visser, A.; Swatloski, R. P.; Reichert, W.; Griffin, S.; Rogers, R. Traditional Extractants in Nontraditional Solvents: Group 1 and 2 Extraction by Crown Ethers in Room-Temperature Ionic Liquids. Ind. Eng. Chem. Res. 2000, 39, 3956–3604.10.1021/ie000426mSearch in Google Scholar
16. Yuan, L.; Peng, J.; Xu, L.; Zhai, M.; Li, J.; Wei, G. Radiation Effects on Hydrophobic Ionic Liquid [C4mim] [NTf2] during Extraction of Strontium Ions. J. Phys. Chem. B 2009, 113 (26), 8948–8952; https://doi.org/10.1021/jp9016079.Search in Google Scholar PubMed
17. Hirayama, N. Ionic Liquids as Extraction Media for Metal Ions. J. Ion. Exch. 2011, 22 (3), 73–80; https://doi.org/10.5182/jaie.22.73.Search in Google Scholar
18. Hirayama, N. Chelate Extraction of Metals into Ionic Liquids. Solvent Extr. Res Dev. 2011, 18, 1–14; https://doi.org/10.15261/serdj.18.1.Search in Google Scholar
19. Tereshatov, E. E.; Burns, J. D.; Haar, A. L. V.; Schultz, S. J.; McIntosh, L. A.; Tabacaru, G. C.; McCann, L. A.; Avila, G.; Hannaman, A.; Hood, A.; Lofton, K. N.; McCarthy, M. A.; Sorensen, M.; Yennello, S. J. Behavior of Astatine and Bismuth in Non-conventional Solvents: Extraction into Imidazolium-Based Ionic Liquid and Methyl Anthranilate with Active Pharmaceuticals Binary Mixtures from Nitric Acid Media. Sep. Purif. Technol. 2023, 326, 124715 1–9.10.1016/j.seppur.2023.124715Search in Google Scholar
20. Maeda, E.; Yokoyama, A.; Taniguchi, T.; Washiyama, K. K.; Nishinaka, I. Extraction of Astatine Isotopes for Development of Radiopharmaceuticals Using a 211Rn–211At Generator. J. Radioanal. Nucl. Chem. 2015, 303, 1465–1468; https://doi.org/10.1007/s10967-014-3586-z.Search in Google Scholar
21. Maeda, E.; Yokoyama, A.; Taniguchi, T.; Washiyama, K.; Nishinaka, I. Measurements of the Excitation Functions of Radon and Astatine Isotopes from 7Li-Induced Reactions with 209Bi for Development of a 211Rn–211At Generator. J. Radioanal. Nucl. Chem. 2020, 323, 921; https://doi.org/10.1007/s10967-019-06990-z.Search in Google Scholar
22. Shin, Y.; Maruyama, S.; Kawasaki, K.; Aoi, K.; Washiyama, K.; Nishinaka, I.; Yano, S.; Haba, H.; Yokoyama, A. Solvent Extraction Following Oxidation of Astatine for the Use of a 211Rn-211At Generator. J. Radioanal. Nucl. Chem. 2024, 333, 403–409; https://doi.org/10.1007/s10967-023-09282-9.Search in Google Scholar
23. Kanda, H.; Nakano, T.; Aoi, N.; Fukuda, M. H.; Yorita, T.; Suzuzki, T. Short-lived Radioisotope Supplying Platform in Japan. Nuclear Energy’s Value: Aligned with Community Expectations 39th Annual CNS Conference and 43rd CNS/CNA Student Conference, Canadian Nuclear Society: Canada, 2019; p. 175Megabytes.Search in Google Scholar
24. Sato, N.; Yano, S.; Toyoshima, A.; Haba, H.; Komori, Y.; Shibata, S.; Watanabe, K.; Kaji, D.; Takahashi, K.; Matsumoto, M. Development of a Production Technology of 211At at the RIKEN AVF Cyclotron: (i) Production of 211At from the 209Bi(α, 2n)211At Reaction. RIKEN Accel. Prog. Rep. 2017, 50, 262.Search in Google Scholar
25. Wang, Y.; Sato, N.; Komori, Y.; Yokokita, T.; Mori, D.; Usuda, S.; Haba, H. Present Status of 211At Production at the RIKEN AVF Cyclotron. RIKEN Accel. Prog. Rep. 2020, 53, 192.Search in Google Scholar
26. Yin, X.; Sato, N.; Nambu, A.; Shigekawa, Y.; Haba, H. Progress of 211At Production at the RIKEN AVF Cyclotron. RIKEN Accel. Prog. Rep. 2023, 56, 151.Search in Google Scholar
27. Taniguchi, T.; Maruyama, S.; Aoi, K.; Nagai, Y.; Washiyama, K.; Nishinaka, I.; Wang, Y.; Haba, H.; Yokoyama, A. Solvent Extraction of Astatine by DIPE and Attempt to Identify the Extracted Species by Thin Layer Chromatography. J. Radioanal. Nucl. Chem. 2024, 333, 3937–3945; https://doi.org/10.1007/s10967-024-09547-x.Search in Google Scholar
28. Zona, C.; Bonardi, M. L.; Groppi, F.; Morzenti, S.; Canella, L.; Persico, E.; Menapace, E.; Alfrassi, Z. B.; Abbas, K.; Holzwarth, U.; Gilbson, N. Wet-chemistry Method for the Separation of No-Carrier-Added 211At/211gPo from 209Bi Target Irradiated by Alpha-Beam in Cyclotron. J. Radioanal. Nucl. Chem. 2008, 276 (3), 819–824; https://doi.org/10.1007/s10967-008-0638-2.Search in Google Scholar
29. del Valle, J. C.; Blanco, F. G.; Catalán, J. Empirical Parameters for Solvent Acidity, Basicity, Dipolarity, and Bolarizability of the Ionic Liquids [BMIM][BF4] and [BMIM][PF6]. J. Phys. Chem. B 2015, 119 (13), 4683–4692.10.1021/jp511154hSearch in Google Scholar PubMed
30. The Japanese Association of Medical Sciences. Draft Manual for the Appropriate Use of Astatinated Sodium ([211At]NaAt) Injection for the Treatment of Differentiated Thyroid Cancer 1st Ed in Japanese. 2021. https://mhlw-grants.niph.go.jp/system/files/report_pdf/202099006A-buntan1_7.pdf.Search in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/ract-2024-0357).
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- An overview of production routes of the non-standard positron emitter 86gY with emphasis on a comparative analysis of the 86Sr(p,n)- and 86Sr(d,2n)-reactions
- Study on empirical formulae for (n,f) reaction cross sections of thorium isotopes between 1 and 20 MeV
- Radiolytic alterations to neptunium extraction and redox in 30 % tri-n-butyl phosphate
- Utilities of ionic liquid extraction with astatine ions and its extraction mechanism
- Gamma irradiation synthesis and characterization of Poly(N-vinyl-2-pyrrolidone/acrylic acid) superabsorbent hydrogels for treatment of ink waste
- Application of XRD, SEM-EDX and FTIR techniques for mineral characterization of geological ores
- Elucidating the effect of CdO–Na2O exchange on structure, mechanical and radiation shielding improvements of B2O3–P2O5–Na2O glass
- Alpha emitters concentration of natural radionuclides and lung cancer cases in blood of smokers and non-smokers using passive detector
Articles in the same Issue
- Frontmatter
- Original Papers
- An overview of production routes of the non-standard positron emitter 86gY with emphasis on a comparative analysis of the 86Sr(p,n)- and 86Sr(d,2n)-reactions
- Study on empirical formulae for (n,f) reaction cross sections of thorium isotopes between 1 and 20 MeV
- Radiolytic alterations to neptunium extraction and redox in 30 % tri-n-butyl phosphate
- Utilities of ionic liquid extraction with astatine ions and its extraction mechanism
- Gamma irradiation synthesis and characterization of Poly(N-vinyl-2-pyrrolidone/acrylic acid) superabsorbent hydrogels for treatment of ink waste
- Application of XRD, SEM-EDX and FTIR techniques for mineral characterization of geological ores
- Elucidating the effect of CdO–Na2O exchange on structure, mechanical and radiation shielding improvements of B2O3–P2O5–Na2O glass
- Alpha emitters concentration of natural radionuclides and lung cancer cases in blood of smokers and non-smokers using passive detector