Home Preparation, quality control, biological evaluation, and human absorbed dose estimation of 188Re-HYNIC-TOC
Article
Licensed
Unlicensed Requires Authentication

Preparation, quality control, biological evaluation, and human absorbed dose estimation of 188Re-HYNIC-TOC

  • Sajjad Shokri , Fariba Johari-Daha , Seyed Mahmoud Reza Aghamiri , Meysam Karamivand , Samaneh Zolghadri and Hassan Yousefnia EMAIL logo
Published/Copyright: June 21, 2022

Abstract

In this study, concerning the advantages of rhenium-188 over other therapeutic radionuclides, such as its stock availability from 188W/188Re generator and radiolabeled peptide therapy in the treatment of patients with widespread disease, preparation and quality control of 188Re-HYNIC-TOC were studied. Optimized conditions for radiolabeling of HYNIC-TOC with 188Re were assessed by several experiments. 188Re-HYNIC-TOC was prepared with radiochemical purity >97%. The radiolabelled compound showed high stability both in PBS buffer and in human serum even after 24 h. Biodistribution of the complex in male Wistar rats was examined up to 24 h after intravenous injection and indicated fast blood clearance and significant accumulation in the kidney. The radiation absorbed dose assessment resource (RADAR) method was used to estimate the equivalent and effective absorbed dose of human organs. Kidney received the absorbed dose of 0.72 mSv/MBq, the highest estimated amount, after injection of the complex. The results showed fast preparation, easy quality control, and relatively similar biodistribution of 188Re-HYNIC-TOC to other peptides. This complex can be considered as an agent for the treatment of patients with medium-sized tumors expressing somatostatin receptors. However, more biological studies are still needed.


Corresponding author: Hassan Yousefnia, Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by Nuclear Science & Technology Research Institute (NSTRI).

  3. Conflict of interest statement: The authors declare that they have no conflict.

References

1. Fischman, A. J., Babich, J. W., Strauss, H. W. A ticket to ride: peptide radiopharmaceuticals. J. Nucl. Med. 1993, 34, 2253.Search in Google Scholar

2. Maecke, H. Radiolabeled peptides in nuclear oncology: influence of peptide structure and labeling strategy on pharmacology. Mol. Imag. 2005, 49, 43. https://doi.org/10.1007/3-540-26809-x_3.Search in Google Scholar

3. Reubi, J. C., Laissue, J., Krenning, E., Lamberts, S. W. Somatostatin receptors in human cancer: incidence, characteristics, functional correlates and clinical implications. J. Steroid Biochem. Mol. Biol. 1992, 43, 27. https://doi.org/10.1016/0960-0760(92)90184-k.Search in Google Scholar

4. Golabi-dezfoli, A., Yousefnia, H., Hosntalab, M., Zolghadri, S. Optimized production, quality control and biodistribution assessment of 166Ho-DOTATOC: a novel radiolabelled somatostatin analog. J. Radioanal. Nucl. Chem. 2017, 312, 329. https://doi.org/10.1007/s10967-017-5225-y.Search in Google Scholar

5. Dash, A., Chakraborty, S., Pillai, M. R., Knapp, F. F. Peptide receptor radionuclide therapy: an overview .Cancer Biother. Radiopharm. 2015, 30, 47. https://doi.org/10.1089/cbr.2014.1741.Search in Google Scholar PubMed

6. Storch, D., Schmitt, J. S., Waldherr, C., Waser, B., Reubi, J. C., Maecke, H. R. Preclinical evaluation of somatostatin analogs bearing two macrocyclic chelators for high specific activity labeling with radiometals. Radiochim. Acta 2007, 95, 359. https://doi.org/10.1524/ract.2007.95.6.359.Search in Google Scholar

7. Weiner, R. E., Thakur, M. L. Radiolabeled Peptides in Oncology: role in diagnosis and treatment. BioDrugs 2005, 19, 145. https://doi.org/10.2165/00063030-200519030-00002.Search in Google Scholar PubMed

8. Stueven, A. K., Kayser, A., Wetz, C., Amthauer, H., Wree, A., Tacke, F., Wiedenmann, B., Roderburg, C., Jann, H. Somatostatin analogues in the treatment of neuroendocrine tumors: past, present and future. Int. J. Mol. Sci. 2019, 20, 3049. https://doi.org/10.3390/ijms20123049.Search in Google Scholar PubMed PubMed Central

9. Yousefnia, H., Mousavi-Daramoroudi, M., Zolghadri, S., Abbasi-Davani, F. Preparation and biodistribution assessment of low specific activity 177Lu-DOTATOC for optimization studies. Iran. J. Nucl. Med. 2016, 24, 85.Search in Google Scholar

10. Table of isotopes decay data. Available at: http://nucleardata.nuclear.lu.se.Search in Google Scholar

11. Kassis, A. I., Adelstein, S. J. Considerations in the selection of radionuclides for cancer therapy. In Handbook of Radiopharmaceuticals: Radiochemistry and Applications, 2002; pp. 767–793.10.1002/0470846380.ch27Search in Google Scholar

12. Azadbakht, B., Afarideh, H., Ghannadi-Maragheh, M., Bahrami-Samani, A., Yousefnia, H. Absorbed doses in humans from 188Re-Rituximab in the free form and bound to superparamagnetic iron oxide nanoparticles: biodistribution study in mice. Appl. Radiat. Isot. 2018, 131, 96. https://doi.org/10.1016/j.apradiso.2017.10.041.Search in Google Scholar PubMed

13. Buchmann, I., Bunjes, D., Kotzerke, J., Martin, H., Glatting, G., Seitz, U., Rattat, D., Buck, A., Döhner, H., Reske, S. N. Myeloablative radioimmunotherapy with Re-188-anti-CD66-antibody for conditioning of high-risk leukemia patients prior to stem cell transplantation: biodistribution, biokinetics and immediate toxicities. Cancer Biother. Radiopharm. 2002, 17, 151. https://doi.org/10.1089/108497802753773775.Search in Google Scholar PubMed

14. Liepe, K., Hliscs, R., Kropp, J., Grüning, T., Runge, R., Koch, R., Knapp, F. F., Franke, W. G. Rhenium-188-HEDP in the palliative treatment of bone metastases. Cancer Biother. Radiopharm. 2000, 15, 261. https://doi.org/10.1089/108497800414356.Search in Google Scholar PubMed

15. Klein, M., Lotem, M., Peretz, T., Zwas, S. T., Mizrachi, S., Liberman, Y., Chisin, R., Schachter, J., Ron, I. G., Iosilevsky, G., Kennedy, J. A., Revskaya, E., de Kater, A. W., Banaga, E., Klutzaritz, V., Friedmann, N., Galun, E., Denardo, G. L., Denardo, S. J., Casadevall, A., Dadachova, E., Thornton, G. B. Safety and efficacy of 188-rhenium-labeled antibody to melanin in patients with metastatic melanoma. J. Skin Cancer 2013, 2013, 828329. https://doi.org/10.1155/2013/828329.Search in Google Scholar PubMed PubMed Central

16. Lepareur, N., Lacœuille, F., Bouvry, C., Hindré, F., Garcion, E., Chérel, M., Noiret, N., Garin, E., Russ Knapp, F. F. Rhenium-188 labeled radiopharmaceuticals: current clinical applications in oncology and promising perspectives. Front. Med. 2019, 6, 132. https://doi.org/10.3389/fmed.2019.00132.Search in Google Scholar PubMed PubMed Central

17. Molina-Trinidad, E. M., de Murphy, C. A., Ferro-Flores, G., Murphy-Stack, E., Jung-Cook, H. Radiopharmacokinetic and dosimetric parameters of 188Re-lanreotide in athymic mice with induced human cancer tumors. Int. J. Pharm. 2006, 310, 125. https://doi.org/10.1016/j.ijpharm.2005.11.043.Search in Google Scholar PubMed

18. Mushtaq, A., Pervez, S., Haider, I. Preparation of 188Re-lanreotide peptide and its quality control. Radiochim. Acta 2000, 88, 4952498. https://doi.org/10.1524/ract.2000.88.8.495.Search in Google Scholar

19. Edelman, M. J., Clamon, G., Kahn, D., Magram, M., Lister-James, J., Line, B. R. Targeted radiopharmaceutical therapy for advanced lung cancer: phase I trial of rhenium Re188 P2045, a somatostatin analog. J. Thorac. Oncol. 2009, 4, 1550. https://doi.org/10.1097/jto.0b013e3181bf1070.Search in Google Scholar

20. Krenning, E. P., Kwekkeboom, D. J., Reubi, J. C., van Hagen, P. M., van Eijck, C. H., Oei, H. Y., Lamberts, S. W. 111In-octreotide scintigraphy in oncology. Digestion 1993, 54, 84. https://doi.org/10.1159/000201083.Search in Google Scholar PubMed

21. Gómez, M., Ferrando, R., Vilar, J., Hitateguy, R., López, B., Moreira, E., Kapitán, M., De Lima, F., Agüero, B., Gabriela Villegas, M., Urdaneta, N., Gutiérrez, E., Battegazzore, A., Bayardo, K., Silveira, A., Lago, G., Páez, A. 99mTc-OCTREOTIDE en pacientes con tumores neuroendócrinos gastroenteropancreáticos [99mTc-OCTREOTIDE in patients with neuroendocrine tumors from the GI tract]. Acta Gastroenterol. Latinoam. 2010, 40, 332.Search in Google Scholar

22. Baum, R. P., Kluge, A. W., Kulkarni, H., Schorr-Neufing, U., Niepsch, K., Bitterlich, N., van Echteld, C. J. [177Lu-DOTA]0-D-Phe1-Tyr3-Octreotide (177Lu-DOTATOC) for peptide receptor radiotherapy in patients with advanced neuroendocrine tumours: a phase-II study. Theranostics 2016, 6, 501. https://doi.org/10.7150/thno.13702.Search in Google Scholar PubMed PubMed Central

23. Liepe, K., Becker, A. 99mTc-Hynic-TOC imaging in the diagnostic of neuroendocrine tumors. World J. Nucl. Med. 2018, 17, 151. https://doi.org/10.4103/wjnm.wjnm_41_17.Search in Google Scholar

24. Behera, A., De, K., Chandra, S., Chattopadhyay, S., Misra, M. Synthesis, radiolabelling and biodistribution of HYNIC-Tyr3 octreotide: a somatostatin receptor positive tumour imaging agent. J. Radioanal. Nucl. Chem. 2011, 290, 123. https://doi.org/10.1007/s10967-011-1156-1.Search in Google Scholar

25. Mikolajczak, R., Markiewicz, A. Hynic-TYR3-octreotide labelling with technetium-99M and rhenium-188 using dry kit formulation. J. Label. Compd. Radiopharm. 2001, 5570, 44. https://doi.org/10.1002/jlcr.25804401202.Search in Google Scholar

26. Shanehsazzadeh, S., Lahooti, A., Yousefnia, H., Geramifar, P., Jalilian, A. R. Comparison of estimated human dose of (68)Ga-MAA with (99m)Tc-MAA based on rat data. Ann. Nucl. Med. 2015, 29, 745. https://doi.org/10.1007/s12149-015-0997-z.Search in Google Scholar PubMed

27. Naderi, M., Zolghadri, S., Yousefnia, H., Ramazani, A., Jalilian, A. R. Preclinical study of 68Ga-DOTATOC: biodistribution assessment in Syrian rats and evaluation of absorbed dose in human organs. Asia Ocean J. Nucl. Med. Biol. 2016, 4, 19. https://doi.org/10.7508/aojnmb.2016.04.004.Search in Google Scholar PubMed PubMed Central

28. Shanehsazzadeh, S., Yousefnia, H., Lahooti, A., Zolghadri, S., Jalilian, A. R., Afarideh, H. Assessment of human effective absorbed dose of 67Ga-ECC based on biodistribution rat data. Ann. Nucl. Med. 2015, 29, 118. https://doi.org/10.1007/s12149-014-0917-7.Search in Google Scholar PubMed

29. Guidelines on the Use of Living Animals in Scientific Investigations, 2nd ed. Biological Council: UK.Search in Google Scholar

30. Karamivand, M., Mohammadpour-Ghazi, F., Zolghadri, S., Kalantari, B., Alirezapour, B., Yousefnia, H. Characterization of 188W/188Re generator and quality control of its eluate. JonSat 2021, 42, 120.Search in Google Scholar

31. Quantifying Uncertainty in Nuclear Analytical Measurements. IAEA-TECDOC-1401, IAEA: Vienna, 2004.Search in Google Scholar

32. Sparks, R. B., Aydogan, B. Comparison of the effectiveness of some common animal data scaling techniques in estimating human radiation dose. In Proceedings of the Sixth International Radiopharmaceutical Dosimetry Symposium, Gatlinburg, Tennessee, 1996; pp. 705–716.Search in Google Scholar

33. Stabin, M. G., Sparks, R. B., Crowe, E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J. Nucl. Med. 2005, 46, 1023.Search in Google Scholar

34. The 2007 recommendations of the international commission on radiological protection, ICRP Publication 103. Ann ICRP 2007, 37, 1–332. https://doi.org/10.1016/j.icrp.2007.10.003.Search in Google Scholar PubMed

35. Gandomkar, M., Najafi, R., Sadatebrahimi, S., Babaei, M. Preparation, formulation and quality control of one step kit 99mTc-EDDA/HYNIC-Tyr3-Octreotide as a peptide radiopharmaceutical for imaging somatostatin receptor positive tumors [Persian]. Iran. J. Nucl. Med. 2004, 12, 21.Search in Google Scholar

36. Xu, L., Meng, Q., Yao, X., Yang, R., Zhang, P., Li, R., Wang, F. Dosimetry of 177Lu-DOTATOC first circle treatment in patients with advanced metastatic neuroendocrine tumors: a pilot study in China. Appl. Radiat. Isot. 2021, 179, 109975. https://doi.org/10.1016/j.apradiso.2021.109975.Search in Google Scholar PubMed

37. Menda, Y., Madsen, M. T., O’Dorisio, T. M., Sunderland, J. J., Watkins, G. L., Dillon, J. S., Mott, S. L., Schultz, M. K., Zamba, G. K. D., Bushnell, D. L., O’Dorisio, M. S. 90Y-DOTATOC dosimetry-based personalized peptide receptor radionuclide therapy. J. Nucl. Med. 2018, 59, 1692. https://doi.org/10.2967/jnumed.117.202903.Search in Google Scholar PubMed PubMed Central

Received: 2021-11-16
Accepted: 2022-05-25
Published Online: 2022-06-21
Published in Print: 2022-10-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2021-1125/html?lang=en
Scroll to top button