Plutonium complexes in water: new approach to ab initio modeling
-
Mikhail V. Ryzhkov
Abstract
Geometry optimization and the electronic structure calculations of PuZ+ complexes (Z = 3–6) in water solution have been performed, within the framework of the DMol3 and Relativistic Discrete-Variational (RDV) methods. For the simulation of PuZ+ molecular environment in aqueous solution we used 22 and 32 water molecules randomly distributed around cation. To model the effect of bulk solvent environment we used COSMO (Conductor-like Screening Model) potential for water (ε = 78.54). The obtained results showed that this approach allows the modeling of water dissociation and the formation of hydrolysis products. Our previously suggested scheme for the calculation of interaction energies between selected fragments of multi-molecular systems provides the quantitative estimation of the interaction strengths between plutonium in various oxidation states and each ligand in the first and second coordination shells in water solution.
Funding source: Российский Фонд Фундаментальных Исследований (РФФИ)
Award Identifier / Grant number: Mikhail Ryzhkov
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: This work was funded by RFBR according to the research project N 19-03-00735.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Langmuir, D. Techniques of estimating thermodynamic properties for some aqueous complexes of geochemical interest. In Chemical Modeling in Aqueous Systems; ACS Symposium Series; Jenne, E. A., Ed. American Chemical Society: Washington, Vol. 93, 1979; pp. 353–387.10.1021/bk-1979-0093.ch018Search in Google Scholar
2. Cleveland, J. M. Critical review of plutonium equilibria of environmental concern. In Chemical Modeling in Aqueous Systems; ACS Symposium Series; Jenne, E. A., Ed. American Chemical Society: Washington, Vol. 93, 1979; pp. 321–338.10.1021/bk-1979-0093.ch016Search in Google Scholar
3. Clark, D. L., Hobart, D. E., Neu, M. P. Actinide carbonate complexes and their importance in actinide environmental chemistry. Chem. Rev. 1995, 95, 25–48. https://doi.org/10.1021/cr00033a002.Search in Google Scholar
4. Clark, D. L., Hecker, S. S., Jarvinen, G. D., Neu, M. P. Plutonium. In The Chemistry of the Actinide and Transactinide Elements; Morss, L. R., Edelstein, N. M., Fuger, J., Eds. 4th ed.; Springer: Dordrecht, Vol. 2, 2010; pp. 813–1264.10.1007/978-94-007-0211-0_7Search in Google Scholar
5. Dolg, M., Ed. Computational Methods in Lanthanide and Actinide Chemistry; Wiley: Chichester, 2015, p. 458.10.1002/9781118688304Search in Google Scholar
6. Blaudeau, J. P., Zygmunt, S. A., Curtiss, L. A., Reed, D. T., Bursten, B. E. Relativistic density functional investigation of Pu(H2O)n3+ clusters. Chem. Phys. Lett. 1999, 310, 347–354. https://doi.org/10.1016/s0009-2614(99)00784-8.Search in Google Scholar
7. Wiebke, J., Moritz, A., Cao, X., Dolg, M. Approaching actinide (+III) hydration from first principles. Phys. Chem. Chem. Phys. 2007, 9, 459–465. https://doi.org/10.1039/b614092k.Search in Google Scholar
8. Horowitz, S. E., Marston, J. B. Strong correlations in actinide redox reactions. J. Chem. Phys. 2011, 134, 064510-11. https://doi.org/10.1063/1.3549571.Search in Google Scholar
9. Ankudinov, A. L., Conradson, S. D., De Leon, J. M., Rehr, J. J. Relativistic XANES calculations of Pu hydrates. Phys. Rev. B 1998, 57, 7518–7525. https://doi.org/10.1103/physrevb.57.7518.Search in Google Scholar
10. Allen, P. G., Bucher, J. J., Shuh, D. K., Edelstein, N. M., Craig, I. Coordination chemistry of trivalent lanthanide and actinide ions in dilute and concentrated chloride solutions. Inorg. Chem. 2000, 39, 595–601. https://doi.org/10.1021/ic9905953.Search in Google Scholar
11. Allen, P. G., Bucher, J. J., Shuh, D. K., Edelstein, N. M., Reich, T. Investigation of aquo and chloro complexes of UO22+, NpO2+, Np4+, and Pu3+ by X-ray absorption fine structure spectroscopy. Inorg. Chem. 1997, 36, 4676–4683. https://doi.org/10.1021/ic970502m.Search in Google Scholar
12. Brendebach, B., Banik, N. L., Marquardt, C. M., Rothe, J., Deneke, M. A., Geckeis, H. X-ray absorption spectroscopic study of trivalent and tetravalent actinides in solution at varying pH values. Radiochim. Acta 2009, 97, 701–708. https://doi.org/10.1524/ract.2009.1674.Search in Google Scholar
13. Odoh, S. O., Bylaska, E. J., De Jong, W. A. Coordination and hydrolysis of plutonium ions in aqueous solution using Car – Parrinello molecular dynamics free energy simulations. J. Phys. Chem. A 2013, 117, 12256–12267. https://doi.org/10.1021/jp4096248.Search in Google Scholar
14. Rothe, J., Walther, C., Denecke, M. A., Fanghanel, T. XAFS and LIBD investigation of the formation and structure of colloidal Pu(IV) hydrolysis. Inorg. Chem. 2004, 43, 4708–4718. https://doi.org/10.1021/ic049861p.Search in Google Scholar
15. Odoh, S. O., Schreckenbach, G. Theoretical study of the structural properties of plutonium (IV) and (VI) complexes. J. Phys. Chem. A 2011, 115, 14110–14119. https://doi.org/10.1021/jp207556b.Search in Google Scholar
16. Banik, N. L., Vallet, V., Real, F., Belmecheri, R. M., Schimmelpfennig, B., Rothe, J., Marsac, R., Lindqvist-Reis, P., Walther, C., Denecke, M. A., Marquardt, C. M. First structural characteri-zation of Pa(IV) in aqueous solution and quantum chemical investigations of the tetravalent actinides up to Bk(IV): the evidence of a curium break. Dalton Trans. 2016, 45, 453–457. https://doi.org/10.1039/c5dt03560k.Search in Google Scholar
17. Acher, E., Masella, M., Vallet, V., Real, F. Properties of the tetravalent actinide series in aqueous phase from a microscopic simulation self-consistent engine. Phys. Chem. Chem. Phys. 2020, 22, 2343–2350. https://doi.org/10.1039/c9cp04912f.Search in Google Scholar
18. Wang, C.-Z., Lian, J. H., Feng, Y.-X., Wei, Y.-Z., Zhao, Y.-L., Chai, Z.-F., Shi, W.-Q. Extraction complexes of Pu(IV) with carbamoylmethylphosphine oxide liganda: a relativistic density functional study. Radiochim. Acta 2014, 102, 77–86. https://doi.org/10.1515/ract-2014-2094.Search in Google Scholar
19. Xiao, C.-L., Wu, Q.-Y., Wang, C.-Z., Zhao, Y.-L., Chai, Z.-F., Shi, W.-Q. Quantum chemistry study of uranium (VI), neptunium (V), and plutonium (IV, VI) complexes with preorganized tetradentate phenanthrolineamide ligands. Inorg. Chem. 2014, 53, 10846–10853. https://doi.org/10.1021/ic500816z.Search in Google Scholar
20. Wu, Q.-Y., Lan, J.-H., Wang, C.-Z., Zhao, Y.-L., Chai, Z.-F., Shi, W.-Q. Understanding the interactions of neptunium and plutonium ions with graphene oxide: scalar-relativistic DFT investigations. J. Phys. Chem. A 2014, 118, 10273–10280. https://doi.org/10.1021/jp5069945.Search in Google Scholar
21. Di Giandomenico, M. V., Le Naour, C., Simoni, E., Guillaumont, D., Moisy, P., Henning, C., Conradson, S. D., Den Auwer, C. Structure of early actinides (V) in acidic solutions. Radiochim. Acta 2009, 97, 347–353. https://doi.org/10.1524/ract.2009.1620.Search in Google Scholar
22. Madic, C., Begun, G. M., Hobart, D. E., Hahn, R. L. Raman-spectroscopy of neptunyl and plutonyl ions in aqueous-solution – hydrolysis of Np(VI) and Pu(VI) and disproportionation of Pu(V). Inorg. Chem. 1984, 23, 1914–1921. https://doi.org/10.1021/ic00181a025.Search in Google Scholar
23. Panak, P. J., Booth, C. H., Caulder, D. L., Bucher, J. J., Shuh, D. K., Nitsche, H. X-ray absorption fine structure spectroscopy of plutonium complexes with bacillus sphaericus. Radiochim. Acta 2002, 90, 315–321. https://doi.org/10.1524/ract.2002.90.6.315.Search in Google Scholar
24. Hay, P., Martin, R. L., Schreckenbach, G. Theoretical studies of the properties and solution chemistry of AnO22+ and AnO2+ aqua complexes for An = U, Np and Pu. J. Phys. Chem. A 2000, 104, 6259–6270. https://doi.org/10.1021/jp000519h.Search in Google Scholar
25. Austin, J. P., Sundararajan, M., Vincent, M. A., Hillier, I. H. The geometric structures, vibrational frequencies and redox properties of the actinyl coordination complexes ([AnO2Ln]m; An = U, Pu, Np; L = H2O, Cl−, CO32−, CH3CO2−, OH−) in aqueous solution, studied by density functional theory methods. Dalton Trans. 2009, 30, 5902–5909. https://doi.org/10.1039/b901724k.Search in Google Scholar
26. Antonio, M. R., Williams, C. W., Sullivan, J. A., Skanthakumar, S., Hu, Y. J., Soderholm, L. Preparation, stability, and structural characterization of plutonium (VII) in alkaline aqueous solution. Inorg. Chem. 2012, 51, 5274–5281. https://doi.org/10.1021/ic300205h.Search in Google Scholar
27. Danilo, C., Vallet, V., Flament, J. P., Wahlgren, U. Effects of the first hydration sphere and the bulk solvent on the spectra of the f2 isoelectronic compounds: U4+, NpO2+ and PuO22+. Phys. Chem. Chem. Phys. 2010, 12, 1116–1130. https://doi.org/10.1039/b914222c.Search in Google Scholar
28. Spencer, S., Gagliardi, L., Handy, N. C., Ioannou, A. G., Skylaris, C.-K., Willetts, A., Simper, A. M. Hydration of UO22+ and PuO22+. J. Phys. Chem. A 1999, 103, 1831–1837. https://doi.org/10.1021/jp983543s.Search in Google Scholar
29. Clark, A. E., Samuels, A., Wisuri, K., Landstrom, S., Saul, T. Sensitivity of salvation environment to oxidation state and position in the early actinide period. Inorg. Chem. 2015, 54, 6216–6225. https://doi.org/10.1021/acs.inorgchem.5b00365.Search in Google Scholar
30. Parmar, P., Samuels, A., Clark, A. E. Applications of polarizable continuu, models to determine accurate solution-phase thermochemical values across a broad range of cation charge – the case of U(III-VI). J. Chem. Theor. Comput. 2015, 11, 55–63. https://doi.org/10.1021/ct500530q.Search in Google Scholar
31. Bennett, D. A., Hoffman, D., Nitsche, H., Russo, R. E., Torres, R. A., Baisden, P. A., Andrews, J. E., Palmer, C. E. A., Silva, R. J. Hydrolysis and carbonate complexation of dioxoplutonium (V). Radiochim. Acta 1992, 56, 15–19. https://doi.org/10.1524/ract.1992.56.1.15.Search in Google Scholar
32. Rao, L. F., Tian, G. X., Di Bernardo, P., Zanonato, P. Hydrolysis of plutonium (VI) at variable temperatures (283–343 K). Chem. Eur. J. 2011, 17, 10985–10993. https://doi.org/10.1002/chem.201100120.Search in Google Scholar
33. Yun, J. I., Cho, H. R., Neck, V., Altmaier, M., Seibert, A., Marquardt, C. M., Fanghanel, T. Investigation of the hydrolysis of plutonium (IV) be a combination of spectroscopy and redox potential measurements. Radiochim. Acta 2007, 95, 89–95. https://doi.org/10.1524/ract.2007.95.2.89.Search in Google Scholar
34. Guillaumont, R., Fanghanel, T., Fuger, J., Grenthe, I., Neck, V., Palmer, D. A., Rand, M. H. Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, 3rd ed.; Elsevier: Amsterdam, Vol. 5, 2003; p. 918.Search in Google Scholar
35. Yusov, A. B., Fedosseev, A. M., Delegard, C. H. Hydrolysis of Np (IV) and Pu(IV) and their complexation by aqueous Si(OH)4. Radiochim. Acta 2004, 92, 869–881. https://doi.org/10.1524/ract.92.12.869.55104.Search in Google Scholar
36. Boguslawski, K., Real, F., Tecmer, P., Duperrouzel, C., Gomes, A. S. P., Legeza, O., Ayers, P. W., Vallet, V. On the multi-reference nature of plutonium oxides: PuO22+, PuO2, PuO3 and PuO2(OH)2. Phys. Chem. Chem. Phys. 2017, 19, 4317–4329. https://doi.org/10.1039/c6cp05429c.Search in Google Scholar
37. Ryzhkov, M. V., Gubanov, V. A., Teterin, Y. A., Baev, A. S. Actinyl compounds of Np and Pu – X-ray photoelectron-spectra and quantum-chemical calculations. Sov. Radiochem. 1992, 34, 69–74.Search in Google Scholar
38. Ryzhkov, M. V., Delley, B. Calculations of interaction energy between certain components of large multimolecular complexes. Russ. Chem. Bull. 2017, 66, 1419–1427. https://doi.org/10.1007/s11172-017-1902-9.Search in Google Scholar
39. Delley, B. The conductor-like screening model for polymers and surfaces. Mol. Simulat. 2006, 32, 117–123. https://doi.org/10.1080/08927020600589684.Search in Google Scholar
40. Todorova, T., Delley, B. Wetting of paracetamol surfaces studied by DMol3-COSMO calculations. Mol. Simulat. 2008, 34, 1013–1017. https://doi.org/10.1080/08927020802235672.Search in Google Scholar
41. Nichols, P., Bylaska, E. J., Schenter, G. K., De Jong, W. Equatorial and apical solvent shells of the UO22+ ion. J. Chem. Phys. 2008, 128, 124507-8. https://doi.org/10.1063/1.2884861.Search in Google Scholar
42. Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517. https://doi.org/10.1063/1.458452.Search in Google Scholar
43. Koelling, D. D., Harmon, B. N. A technique for relativistic spin-polarized calculations. J. Phys. C Solid State Phys. 1977, 10, 3107–3114. https://doi.org/10.1088/0022-3719/10/16/019.Search in Google Scholar
44. Perdew, J. P., Burke, K., Ernzerhof, M. General gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. https://doi.org/10.1103/physrevlett.77.3865.Search in Google Scholar
45. Hirshfeld, F. L. Accurate electron-densities in molecules. J. Mol. Struct. 1985, 130, 125–141. https://doi.org/10.1016/0022-2860(85)85028-6.Search in Google Scholar
46. Rosen, A., Ellis, D. E. Relativistic molecular calculations in the Dirac-Slater model. J. Chem. Phys. 1975, 62, 3039–3049. https://doi.org/10.1063/1.430892.Search in Google Scholar
47. Adachi, H. Relativistic molecular orbital theory in the Dirac-Slater model. Technol. Rep. Osaka Univ. 1977, 27, 569–576.Search in Google Scholar
48. Ryzhkov, M. V. New method for calculating effective charges on atoms in molecules, clusters and solids. J. Struct. Chem. 1988, 39, 933–937.10.1007/BF02903608Search in Google Scholar
49. Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A.III, Skiff, W. M. UFF, a full periodic-table force-field for molecular mechanics and molecular-dynamics simulations. J. Am. Chem. Soc. 1992, 114, 10024–10035. https://doi.org/10.1021/ja00051a040.Search in Google Scholar
50. Zhechkov, L., Heine, T., Patchkovskii, S., Seifert, G., Duarte, H. A. An efficient a posteriori treatment for dispersion interaction in density-functional-based tight binding. J. Chem. Theor. Comput. 2005, 1, 841–847. https://doi.org/10.1021/ct050065y.Search in Google Scholar
51. Ryzhkov, M. V., Ivanovskii, A. L., Delley, B. Electronic structure and stabilization of C60 fullerenes encapsulating actinide atom. Nanosyst. Phys. Chem. Math. 2014, 5, 1–15.Search in Google Scholar
52. Zundel, G., Metzger, H. Energiebänder der tunnelnden Überschuß-Protonen in flüssigen Säuren. Eine IR-spectroskopische Untersuchung der Natur der Gruppierungen H5O2+. Z. Phys. Chem. 1968, 58, 225–245. https://doi.org/10.1524/zpch.1968.58.5_6.225.Search in Google Scholar
53. Marx, D., Tuckerman, M. E., Hutter, J., Parrinello, M. The nature of the hydrated excess proton in water. Nature 1999, 397, 601–604. https://doi.org/10.1038/17579.Search in Google Scholar
54. David, H. F., Vokhmin, V. Thermodynamic properties of some tri- and tetravalent actinide aquo ions. New J. Chem. 2003, 27, 1627–1632. https://doi.org/10.1039/b301272g.Search in Google Scholar
55. Heinz, N., Zhang, J., Dolg, M. Actinoid(III) hydration – first principle Gibbs energies of hydration using high level correlation methods. J. Chem. Theor. Comput. 2014, 10, 5593–5598. https://doi.org/10.1021/ct5007339.Search in Google Scholar
56. Choppin, G. R., Rizkalla, E. N. Solution chemistry of actinides and lanthanides. In Handbook on the Physics and Chemistry of Rare Earths, Vol. 18, Chapter 128; Gschneidner, K. A., Eyring, L., Eds. North Holland: Amsterdam, 1994; p. 542.10.1016/S0168-1273(05)80051-0Search in Google Scholar
57. Marcus, Y. A simple empirical model describing the thermodynamics of hydration of ions of widely varying charges, sizes, and shapes. Biophys. Chem. 1994, 51, 111–127. https://doi.org/10.1016/0301-4622(94)00051-4.Search in Google Scholar
58. Bader, R. F. W. Atoms in molecules: a quantum theory. In International Series of Monographs on Chemistry; Oxford University Press: Oxford, Vol. 22, 1994; p. 438.Search in Google Scholar
59. Sulka, M., Cantrel, L., Vallet, V. Theoretical study of Plutonium (IV) complexes formed within the PUREX process: a proposal of a Plutonium surrogate in fire conditions. J. Phys. Chem. A 2014, 118, 10073–10080.10.1021/jp507684fSearch in Google Scholar PubMed
60. Berthon, C., Boubals, N., Charushnikova, I. A., Collison, D., Cornet, S. M., Den Auwer, C., Gaunt, A. J., Kaltsoyannis, N., May, I., Petit, S., Redmond, M. P., Reilly, S. D., Scott, B. L. The reaction chemistry of plutonyl (VI) chloride complexes with triphenyl phosphineoxide and triphenyl phisphinimine. Inorg. Chem. 2010, 49, 9554–9562. https://doi.org/10.1021/ic101251a.Search in Google Scholar
61. Ryzhkov, M. V., Kupryazhkin, A. Y. First-principles study of electronic structure and insulating properties of uranium and plutonium dioxides. J. Nucl. Mater. 2009, 384, 226–230. https://doi.org/10.1016/j.jnucmat.2008.11.011.Search in Google Scholar
62. Mulliken, R. S. Chemical bonding. Annu. Rev. Phys. Chem. 1978, 29, 1–30. https://doi.org/10.1146/annurev.pc.29.100178.000245.Search in Google Scholar
63. Ryzhkov, M. V., Gubanov, V. A. Uranyl compounds and complexes – electronic structure, chemical bonding and spectral properties. J. Radioanal. Nucl. Chemistry 1990, 143, 85–92. https://doi.org/10.1007/bf02117550.Search in Google Scholar
64. Ryzhkov, M. V., Ivanovskii, A. L., Delley, B. Electronic structure of endohedral fullerenes An@C28 (An = Th–Md). Comp. Theor. Chem. 2012, 985, 46–52. https://doi.org/10.1016/j.comptc.2012.01.037.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Plutonium complexes in water: new approach to ab initio modeling
- Synthesis of selective biodegradable amidoxime chitosan for absorption of Th(IV) and U(VI) ions in solution
- A new method for monitoring the redox potential of fuel salt based on the deposition of 95Nb on Hastelloy C276
- Adsorption and separation behavior of palladium(II) from simulated high-level liquid waste using a novel silica-based adsorbents
- Investigation on the efficient separation and recovery of Se(IV) and Se(VI) from wastewater using Fe–OOH–bent
- Separation of no-carrier-added 71,72As from 46 MeV alpha particle irradiated gallium oxide target
- Efficient trace-scale extraction method of reactor produced 199Au adequate for nuclear medicine applications
- The influence of gamma radiation on organic compounds having carbon ring and its application in dosimetry
Articles in the same Issue
- Frontmatter
- Original Papers
- Plutonium complexes in water: new approach to ab initio modeling
- Synthesis of selective biodegradable amidoxime chitosan for absorption of Th(IV) and U(VI) ions in solution
- A new method for monitoring the redox potential of fuel salt based on the deposition of 95Nb on Hastelloy C276
- Adsorption and separation behavior of palladium(II) from simulated high-level liquid waste using a novel silica-based adsorbents
- Investigation on the efficient separation and recovery of Se(IV) and Se(VI) from wastewater using Fe–OOH–bent
- Separation of no-carrier-added 71,72As from 46 MeV alpha particle irradiated gallium oxide target
- Efficient trace-scale extraction method of reactor produced 199Au adequate for nuclear medicine applications
- The influence of gamma radiation on organic compounds having carbon ring and its application in dosimetry