Home Accurate determination of production data of the non-standard positron emitter 86Y via the 86Sr(p,n)-reaction
Article
Licensed
Unlicensed Requires Authentication

Accurate determination of production data of the non-standard positron emitter 86Y via the 86Sr(p,n)-reaction

  • M. Shuza Uddin , Bernhard Scholten , M. Shamsuzzhoha Basunia , Sandor Sudár , Stefan Spellerberg , Andrew S. Voyles , Jonathan T. Morrell , Haleema Zaneb , Jesus A. Rios , Ingo Spahn , Lee A. Bernstein , Bernd Neumaier and Syed M. Qaim EMAIL logo
Published/Copyright: July 13, 2020

Abstract

In view of several significant discrepancies in the excitation function of the 86Sr(p,n)86g+xmY reaction which is the method of choice for the production of the non-standard positron emitter 86Y for theranostic application, we carried out a careful measurement of the cross sections of this reaction from its threshold up to 16.2 MeV at Forschungszentrum Jülich (FZJ) and from 14.3 to 24.5 MeV at LBNL. Thin samples of 96.4% enriched 86SrCO3 were prepared by sedimentation and, after irradiation with protons in a stacked-form, the induced radioactivity was measured by high-resolution γ-ray spectrometry. The projectile flux was determined by using the monitor reactions natCu(p,xn)62,63,65Zn and natTi(p,x)48V, and the calculated proton energy for each sample was verified by considering the ratios of two reaction products of different thresholds. The experimental cross section data obtained agreed well with the results of a nuclear model calculation based on the code TALYS. From the cross section data, the integral yield of 86Y was calculated. Over the optimum production energy range Ep = 14 → 7 MeV the yield of 86Y amounts to 291 MBq/μA for 1 h irradiation time. This value is appreciably lower than the previous literature values calculated from measured and evaluated excitation functions. It is, however, more compatible with the experimental yields of 86Y obtained in clinical scale production runs. The levels of the isotopic impurities 87mY, 87gY, and 88Y were also estimated and found to be <2% in sum.


Corresponding author: Syed M. Qaim, Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich, 52425Jülich, Germany, E-mail:

Acknowledgments

M. S. Uddin thanks the Alexander von Humboldt (AvH) Foundation in Germany and Lawrence Berkeley National Laboratory, USA, for financial support. He would also like to acknowledge the authorities of Bangladesh Atomic Energy Commission and Ministry of Science and Technology, Dhaka, Bangladesh, for granting leave of absence to conduct these experiments abroad. H. Zaneb thanks the LBNL and the Higher Education Commission (HEC) of Pakistan for the opportunity and support to conduct a piece of research abroad while doing her Ph.D. work at the Physics Department of Government College University Lahore, Pakistan. We all thank the operation crews of the cyclotron BC1710 at FZJ and 88-inch cyclotron at LBNL for their help in irradiation of samples. The work at LBNL was performed under the auspices of the U.S. Department of Energy under contract No. DE-AC02-05CH11231. This research is supported by the U.S. Department of Energy Isotope Program, managed by the Office of Science for Nuclear Physics.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: M. S. Uddin thanks the Alexander von Humboldt (AvH) Foundation in Germany and Lawrence Berkeley National Laboratory, USA, for financial support.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Appendix Formation cross sections and integral yields of the isotopic impurities 87mY, 87gY and 88Y

During the measurements on the 86Sr(p,n)86g+xmY reaction described above, cross sections of three subsidiary reactions, namely 87Sr(p,n)87mY, 87Sr(p,n)87gY and 88Sr(p,n)88Y, leading to the isotopic impurities 87mY, 87gY and 88Y, respectively, were also measured. The data obtained for only 1.33% abundant 87Sr and 2.26% abundant 88Sr in the enriched 86Sr were extrapolated to 100% abundance each, and the results are given in Appendix Table 1. The extrapolation of results for the 88Sr(p,n)88Y reaction was straightforward because no other reaction contributes to the formation of 88Y. In the case of the 87Sr(p,n)87mY and 87Sr(p,n)87gY reactions, however, extrapolation was appropriate only up to 14 MeV. Beyond that energy range, corrections for the contributions of the 88Sr(p,2n)87m,gY processes were necessary. We applied those corrections by using the evaluated data reported by Zaneb et al. [7]. The extrapolated data for 88Y agreed with the results of two previous careful measurements [10], [24] in which natSrCO3 samples (with 88Sr abundance of 82.58%) were used as targets. This added confidence to our present measurement.

For constructing the excitation function of the 88Sr(p,n)88Y reaction, we adopted the basic diagram by Zaneb et al. [7] and added the new data [24 and this work] to it. A polynomial function was then fitted to all the concordant points and the curve thus obtained was used for the yield calculation. For the 87Sr(p,n)87mY reaction, three sets of data exist in the literature [10], [24], [26]. Our data agree very well with the values by Kettern et al. [10] and Elbinawi et al. [24] but not with Levkovskii [26] (cf. Appendix Figure 1). A polynomial fit through the three concordant datasets [10], [24], and [this work] gave the required curve for the yield calculation. The data for the 87Sr(p,n)87gY reaction are shown in Appendix Figure 2. They describe the independent formation of 87gY, i. e., without any contribution from the decay of 87mY. In this case a polynomial fit through own data points was carried out.

From the fitted excitation functions of the above mentioned three reactions, the integral yields of 87mY, 87gY and 88Y were calculated for 100% abundance of the target isotope, assuming a 1 h irradiation with a proton beam current of 1 μA. The result is given in Appendix Figure 3. Those data should allow calculation of the three radionuclidic impurities under consideration while using an enriched 86Sr target of any isotopic composition.

Appendix Figure 1: Excitation function of the 87Sr(p,n)87mY reaction.
Appendix Figure 1:

Excitation function of the 87Sr(p,n)87mY reaction.

Appendix Figure 2: Excitation function of the 87Sr(p,n)87gY reaction. The data describe the independent formation cross sections of 87gY.
Appendix Figure 2:

Excitation function of the 87Sr(p,n)87gY reaction. The data describe the independent formation cross sections of 87gY.

Appendix Figure 3: Integral yields of the radionuclides 87mY, 87gY and 88Y, calculated from the measured excitation functions of the 87Sr(p,n)87mY, 87Sr(p,n)87gY and 88Sr(p,n)88Y processes, assuming 100% abundance of the target isotope and an irradiation time of 1 h. The curves are shown as a function of the proton energy.
Appendix Figure 3:

Integral yields of the radionuclides 87mY, 87gY and 88Y, calculated from the measured excitation functions of the 87Sr(p,n)87mY, 87Sr(p,n)87gY and 88Sr(p,n)88Y processes, assuming 100% abundance of the target isotope and an irradiation time of 1 h. The curves are shown as a function of the proton energy.

Appendix Table 1:

Cross sections for the formation of isotopic impurities 87mY, 87gY and 88Y.

Proton energy (MeV)CyclotronMeasured cross sections (mb)
87Sr(p,n)87mY87Sr(p,n)87gYa88Sr(p,n)88Y
24.5 ± 0.488-inch12 ± 1.620 ± 347 ± 7
22.5 ± 0.415 ± 226 ± 451 ± 7
20.5 ± 0.444 ± 624 ± 396 ± 14
18.4 ± 0.585 ± 1257 ± 8221 ± 31
17.0 ± 0.5165 ± 2385 ± 12376 ± 53
15.7 ± 0.5296 ± 41144 ± 20606 ± 86
14.3 ± 0.5433 ± 56168 ± 24656 ± 86
16.2 ± 0.2BC1710225 ± 32147 ± 21472 ± 62
16.0 ± 0.2203 ± 28133 ± 19456 ± 60
14.7 ± 0.2368 ± 52182 ± 26716 ± 94
14.3 ± 0.2394 ± 51178 ± 25720 ± 94
13.4 ± 0.3436 ± 57186 ± 26859 ± 113
13.0 ± 0.3382 ± 50190 ± 27884 ± 116
12.0 ± 0.3435 ± 57181 ± 25835 ± 110
11.0 ± 0.3457 ± 59157 ± 22753 ± 99
10.5 ± 0.3362 ± 47158 ± 22657 ± 86
9.6 ± 0.4348 ± 45132 ± 18605 ± 79
8.8 ± 0.4336 ± 44104 ± 15505 ± 66
8.3 ± 0.4316 ± 41109 ± 15456 ± 60
7.9 ± 0.4302 ± 3998 ± 14404 ± 53
6.9 ± 0.4243 ± 3287 ± 12249 ± 33
6.5 ± 0.4162 ± 2167 ± 9169 ± 22
  1. aThese cross sections are for independent formation of 87gY, i. e., without the contribution via the decay of 87mY.

References

1. Herzog, H., Rösch, F., Stöcklin, G., Lueders, C., Qaim, S. M., Feinendegen, L. E. Measurement of pharmacokinetics of 86Y radiopharmaceuticals with PET and radiation dose calculation of analogous 90Y radiotherapeutics. J. Nucl. Med. 1993, 34, 2222–2226.Search in Google Scholar

2. Rösch, F., Herzog, H., Plag, C., Neumaier, B., Braun, U., Müller-Gärtner, H. W., Stöcklin, G. Radiation doses of yttrium-90 citrate and yttrium-90 EDTMP as determined via analogous yttrium-86 complexes and positron emission tomography. Eur. J. Nucl. Med. 1996, 23, 958–966.10.1007/BF01084371Search in Google Scholar

3. Rösch, F., Herzog, H., Stolz, B., Brockmann, J., Köhle, M., Mühlensiepen, H., Marbach, P., Müller-Gärtner, H. W. Uptake kinetics of the somatostatin receptor ligand [86Y]DOTA-DPhe1-Tyr3-octreotide ([86Y]SMT487) using positron emission tomography in non-human primates and calculation of radiation doses of the 90Y-labelled analogue. Eur. J. Nucl. Med. 1999, 26, 358–366; https://doi.org/10.1007/s002590050398.Search in Google Scholar

4. Rösch, F., Herzog, H., Qaim, S. M. The beginning and development of the theranostic approach in nuclear medicine, as exemplified by the radionuclide pair 86Y and 90Y. Pharmaceuticals 2017, 10, 1–28; https://doi.org/10.3390/ph10020056.Search in Google Scholar

5. Qaim, S. M., Scholten, B., Neumaier, B. New developments in the production of theranostic pairs of radionuclides. J. Radioanal. Nucl. Chem. 2018, 318, 1493–1509; https://doi.org/10.1007/s10967-018-6238-x.Search in Google Scholar

6. Qaim, S. M. Theranostic radionuclides; recent advances in production methodologies. J. Radioanal. Nucl. Chem. 2019, 322, 1257–1266; https://doi.org/10.1007/s10967-019-06797-y.Search in Google Scholar

7. Zaneb, H., Hussain, M., Amjed, N., Qaim, S. M. Nuclear model analysis of excitation functions of proton induced reactions on 86Sr, 88Sr and natZr: Evaluation of production routes of 86Y. Appl. Radiat. Isot. 2015, 104, 232–241; https://doi.org/10.1016/j.apradiso.2015.07.004.Search in Google Scholar

8. Rösch, F., Qaim, S. M., Stöcklin, G. Nuclear data relevant to the production of the positron emitting radioisotope 86Y via the 86Sr(p,n)- and natRb(3He,xn)-processes. Radiochim. Acta 1993, 61, 1–8; https://doi.org/10.1524/ract.1993.61.1.1.Search in Google Scholar

9. Rösch, F., Qaim, S. M., Stöcklin, G. Production of the positron emitting radioisotope 86Y for nuclear medical application. Appl. Radiat. Isot. 1993, 44, 677–681; https://doi.org/10.1016/0969-8043(93)90131-s.Search in Google Scholar

10. Kettern, K., Linse, K. H., Spellerberg, S., Coenen, H. H., Qaim, S. M. Radiochemical studies relevant to the production of 86Y and 88Y at a small-sized cyclotron. Radiochim. Acta 2002, 90, 845–849; https://doi.org/10.1524/ract.2002.90.12_2002.845.Search in Google Scholar

11. Reischl, G., Rösch, F., Machulla, H. J. Electrochemical separation and purification of yttrium-86. Radiochim. Acta 2002, 90, 225–228; https://doi.org/10.1524/ract.2002.90.4_2002.225.Search in Google Scholar

12. Garmestani, K., Milenic, D. E., Plascjak, P. S., Brechbiel, W. W. A new and convenient method for purification of 86Y using a Sr(II) selective resin and comparison of biodistribution of 86Y and 111In labelled HerceptinTM. Nucl. Med. Biol. 2002, 29, 599–606; https://doi.org/10.1016/s0969-8051(02)00322-0.Search in Google Scholar

13. Park, L. S., Szajek, L. P., Wong, K. J., Plascjak, P. S., Garmestani, K., Googins, S., Eckelman, W. C., Carrasquillo, J. A., Paik, C. H. Semi-automated 86Y purification using a three column system. Nucl. Med. Biol. 2004, 31, 297–301; https://doi.org/10.1016/j.nucmedbio.2003.07.002.Search in Google Scholar PubMed

14. Yoo, J., Tang, L., Perkins, T. A., Rowland, D. J., Laforest, R., Lewis, J. S., Welch, M. J. Preparation of high specific activity 86Y using a small biomedical cyclotron. Nucl. Med. Biol. 2005, 32, 891–897; https://doi.org/10.1016/j.nucmedbio.2005.06.007.Search in Google Scholar PubMed

15. Avila-Rodriguez, M. A., Nye, J. A., Nickles, R. J. Production and separation of non-carrier-added 86Y from enriched 86Sr targets. Appl. Radiat. Isot. 2008, 66, 9–13; https://doi.org/10.1016/j.apradiso.2007.07.027.Search in Google Scholar PubMed

16. Lukic, D., Tamburella, C., Buchegger, F., Beyer, G. J., Comor, J. J., Seimbille, Y. High efficient production and purification of 86Y based on electrochemical separation. Appl. Radiat. Isot. 2009, 67, 523–529; https://doi.org/10.1016/j.apradiso.2008.12.008.Search in Google Scholar PubMed

17. Kandil, S. A., Scholten, B., Hassan, K. F., Hanafi, H. A., Qaim, S. M. A comparative study on the separation of radioyttrium from Sr- and Rb-targets via ion-exchange and solvent extraction techniques, with special reference to the production of no-carrier-added 86Y, 87Y and 88Y using a cyclotron. J. Radioanal. Nucl. Chem. 2009, 279, 823–832; https://doi.org/10.1007/s10967-008-7407-0.Search in Google Scholar

18. Sadeghi, M., Aboudzadeh, M., Zali, A., Boulourinovin, F. Radiochemical studies relevant to 86Y production via 86Sr(p,n)86Y for PET imaging. Appl. Radiat. Isot. 2009, 67, 7–10; https://doi.org/10.1016/j.apradiso.2008.08.017.Search in Google Scholar PubMed

19. Oehlke, E., Hoehr, C., Hou, X. C., Hanemaayer, V., Zeisler, S., Adam, M. J., Ruth, T. J., Celler, A., Buckley, K., Benard, F., et al. Production of 86Y and other radiometals for research purposes using a solution target system. Nucl. Med. Biol. 2015, 42, 842–849; https://doi.org/10.1016/j.nucmedbio.2015.06.005.Search in Google Scholar PubMed

20. Aluicio-Sarduy, E., Hernandez, R., Valdovinos, H. F., Kutyreff, C. J., Ellison, P. A., Barnhart, T. D., Nickles, R. J., Engle, J. W. Simplified and automatable radiochemical separation strategy for the production of radiopharmaceutical quality 86Y using single column extraction chromatography. Appl. Radiat. Isot. 2018, 142, 28–31; https://doi.org/10.1016/j.apradiso.2018.09.016.Search in Google Scholar PubMed

21. Qaim, S. M., Tárkányi, F., Capote, R., Eds. Nuclear Data for the Production of the Therapeutic Radionuclides. Technical Reports Series No. 473; International Atomic Energy Agency: Vienna, 2011; pp. 1–377.Search in Google Scholar

22. Tárkányi, F., Ignatyuk, A. V., Hermanne, A., Capote, R., Carlson, B. V., Engle, J.W., Kellett, M. A., Kibédi, T., Kim, G. N., Kondev, F. G., et al. Recommended nuclear data for medical radioisotope production: diagnostic positron emitters. J. Radioanal. Nucl. Chem. 2019, 319, 533–666; https://doi.org/10.1007/s10967-018-6380-5.Search in Google Scholar

23. Michel, R., Bodemann, R., Busemann, H., Daunke, R., Gloris, M., Lange, H. J., Klug, B., Krins, A., Leya, I., Luepke, M., et al. Cross sections for the production of residual nuclides by low and medium energy protons from the target elements C, N, O, Mg, Al, Si, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Nb, Ba and Au. Nucl. Instr. Methods B 1997, 129, 153–193; https://doi.org/10.1016/s0168-583x(97)00213-9.Search in Google Scholar

24. Elbinawi, A., Al-Abyad, M., Bashter, I., Seddik, U., Ditroi, F. Excitation function of proton induced nuclear reaction on strontium: Special relevance to the production of 88Y. Appl. Radiat. Isot. 2018, 140, 272–277; https://doi.org/10.1016/j.apradiso.2018.07.031.Search in Google Scholar

25. Delaunay-Olkowsky, J., Strohal, P., Cindro, N. Total reaction cross section of proton induced reactions. Nucl. Phys. 1963, 47, 266–272; https://doi.org/10.1016/0029-5582(63)90872-1.Search in Google Scholar

26. Levkovskii, V. N. Activation Cross Sections for Nuclides of Average Masses (A=40–100) by Protons and Alpha-particles with Average Energies (E=10–50 MeV). Experiment and Systematics; Inter-Vesy: Moscow, 1992, ISBN, 5-265-02732-7.Search in Google Scholar

27. Qaim, S. M. Nuclear data for production and medical application of radionuclides: present status and future needs. Nucl. Med. Biol. 2017, 44, 31–49; https://doi.org/10.1016/j.nucmedbio.2016.08.016.Search in Google Scholar

28. Spellerberg, S., Scholten, B., Spahn, I., Bolten, W., Holzgreve, M., Coenen, H. H., Qaim, S. M. Target development for diversified irradiations at a medical cyclotron. Appl. Radiat. Isot. 2015, 104, 106–112; https://doi.org/10.1016/j.apradiso.2015.06.010.Search in Google Scholar

29. Piel, H., Qaim, S. M., Stöcklin, G. Excitation functions of (p,xn)-reactions on natNi and highly enriched 62Ni: Possibility of production of medically important radioisotope 62Cu at a small cyclotron. Radiochim. Acta 1992, 57, 1–5; https://doi.org/10.1524/ract.1992.57.1.1.Search in Google Scholar

30. Uddin, M. S., Chakraborty, A. K., Spellerberg, S., Shariff, M. A., Das, S., Rashid, M. A., Spahn, I., Qaim, S. M. Experimental determination of proton induced reaction cross sections on natNi near threshold energy. Radiochim. Acta. 2016, 104, 305–314; https://doi.org/10.1515/ract-2015-2527.Search in Google Scholar

31. Hermanne, A., Ignatyuk, A. V., Capote, R., Carlson, B. V., Engle, J. W., Kellett, M. A., Kibédi, T., Kim, G., Kondev, F. G., Hussain, M., et al. Reference cross sections for charged-particle monitor reactions. Nucl. Data Sheets 2018, 148, 338–382; https://doi.org/10.1016/j.nds.2018.02.009.Search in Google Scholar

32. Williamson, C. F., Boujot, J. P., Picard, J. Tables of Range and Stopping Power of Chemical Elements for Charged Particles of Energies from 0.5 to 500 MeV. Report CEA-R 3042, 1966.Search in Google Scholar

33. Fitzgerald, J. JF Computing Services, 17 Chapel Road, Stanford in the Vale, Oxfordshire, SN7 8LE. Copyright © Jim Fitzgerald 1991-2016, Last updated 8th October 2016; https://jimfitz.co.uk.Search in Google Scholar

34. Sudár, S. “TrueCoinc”, a Software Utility for Calculation of the True Coincidence Correction. “Specialized Software Utilities for Gamma Ray Spectrometry”, 1996–2000. IAEA-TECDOC-1275; p. 37.Search in Google Scholar

35. Chu, S. Y. F., Ekström, L.P., Firestone, R.B. The Lund/LBNL Nuclear Data Search, Version 2.0, February, 1999. https://nucleardata.nuclear.lu.se/toi/.Search in Google Scholar

36. Koning, A. J., Hilaire, S., Duijvestijn, M. C. Proceedings of the International Conference on Nuclear Data for Science and Technology, April 22–27, 2007: Nice, France, 2007; pp. 211–214.Search in Google Scholar

37. Raynal, J. Notes on ECIS94, CEA Saclay Reports, vol. No. CEA-N-2772, 1994.Search in Google Scholar

38. Koning, A. J., Delaroche, I. P. Local and global nucleon optical models from 1 keV to 200 MeV. Nucl. Phys. A 2003, 713, 231–310; https://doi.org/10.1016/s0375-9474(02)01321-0.Search in Google Scholar

39. Kopecky, J., Uhl, M. Test of gamma-ray strength functions in nuclear reaction model calculations. Phys. Rev. C 1990, 41, 1941–1955; https://doi.org/10.1103/physrevc.41.1941.Search in Google Scholar PubMed

40. Brink, D. M. Individual particle and collective aspects of the nuclear photoeffect. Nucl. Phys. 1957, 4, 215–220; https://doi.org/10.1016/0029-5582(87)90021-6.Search in Google Scholar

41. Axel, P. Electric dipole ground-state transition width strength function and 7-MeV photon interactions. Phys. Rev. 1962, 126, 671–683; https://doi.org/10.1103/physrev.126.671.Search in Google Scholar

42. Capote, R., Herman, M. , Oblozinsky, P., Young, P., Goriely, S., Belgya, T., Ignatyuk, A., Koning, A. J., Hilaire, S., Plujko, V., et al. RIPL 3 reference input parameter library for calculation of nuclear reactions and nuclear data evaluations. Nucl. Data Sheets 2009, 110, 3107; https://doi.org/10.1016/j.nds.2009.10.004.Search in Google Scholar

43. Negret, A., Singh, B. Nuclear Data Sheets for A = 86. Nuclear Data Sheets 2015, 124-156, From ENSDF database as of 10 27, 2019. The version available at https://www.nndc.bnl.gov/ensarchivals/.10.1016/j.nds.2014.12.045Search in Google Scholar

44. Dilg, W., Schantl, W., Vonach, H., Uhl, M. Level density parameters for the back-shifted Fermi gas model in the mass range 40 < A < 250. Nucl. Phys. A 1973, 217, 269–298; https://doi.org/10.1016/0375-9474(73)90196-6.Search in Google Scholar

45. Koning, A. J., Hilarie, S., Goriely, S. Global and local level density models. Nucl. Phys. A 2008, 810, 13–76; https://doi.org/10.1016/j.nuclphysa.2008.06.005.Search in Google Scholar

46. Sudár, S., Qaim, S. M. Mass number and excitation energy dependence of the Θeff/Θrig parameter of the spin cut-off factor in the formation of an isomeric pair. Nucl. Phys. A 2018, 979, 113–142; https://doi.org/10.1016/j.nuclphysa.2018.09.039.Search in Google Scholar

47. Qaim, S. M., Sudár, S., Scholten, B., Koning, A. J., Coenen, H. H. Evaluation of excitation functions of 100Mo(p,d+pn)99Mo and 100Mo (p,2n)99mTc reactions: Estimation of long-lived Tc-impurity and its implication on the specific activity of cyclotron-produced 99mTc. Appl. Radiat. Isot. 2014, 85, 101–113; https://doi.org/10.1016/j.apradiso.2013.10.004.Search in Google Scholar PubMed

48. Otuka, N., Takács, S. Definitions of radioisotope thick target yields. Radiochim. Acta 2015, 103, 1–6; https://doi.org/10.1515/ract-2013-2234.Search in Google Scholar

Received: 2020-03-16
Accepted: 2020-05-03
Published Online: 2020-07-13
Published in Print: 2020-09-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2020-0021/html?lang=en
Scroll to top button