Home Surface features on aged 238Pu-doped Eu-monazite
Article
Licensed
Unlicensed Requires Authentication

Surface features on aged 238Pu-doped Eu-monazite

  • Andrey A. Shiryaev EMAIL logo , Boris E. Burakov , Maximillian S. Nickolsky , Vasily O. Yapaskurt , Anton D. Pavlushin , Mikhail S. Grigoriev and Irina E. Vlasova
Published/Copyright: September 19, 2019

Abstract

Several 238Pu-doped Eu monazite single crystals stored at ambient conditions are monitored for 15 years using Scanning and Transmission electron microscopy, spectroscopy, diffraction and optical microscopy. Despite preservation of high crystalline quality, mechanical cracking and formation of small flakes is observed. After several month of aging, a new phase appeared on surfaces of the crystals, which later formed a continuous shell of most crystallographic faces. Electron diffraction indicated that the shell consists of submicron Pu-containing rhabdophanes. Its formation likely occurs due to combined action of atmospheric moisture and recrystallisation of radiation damage in monazite domains adjacent to external and internal surfaces. Extent of the rhabdophane formation appears to be influenced by crystallography and Pu content of corresponding growth sectors of the parent monazite. Whereas macroscopic rhabdophanes and monazites are relatively stable against irradiation, formation of sub-microscopic particles is a point of concern for development of monazite-based ceramic forms for actinide immobilization.

Acknowledgements

The work was partly supported by RFBR grant 18-29-12032 and by CKP FMI IPCE RAS. We appreciate assistance of A. Averin, P. Mikhailova in analytical work and useful discussions with Drs. P. Kartashov and S. Britvin. Comments of two anonymous reviewers were helpful for clarification of some statements.

References

1. Shiryaev, A. A., Zubavichus, Y. V., Stefanovsky, S. V., Ptashkin, A. G., Marra, J. C.: EXAFS of Pu and Hf LIII edge in lanthanide-borosilicate glass. In: B. E. Burakov, A. S. Aloy (Eds.), Scientific Basis for Nuclear Waste Management XXXIII. Mater. Res. Soc. Symp. Proc. 1193 (2010), Sankt-Petersburg, Russia, p. 259.10.1557/PROC-1193-259Search in Google Scholar

2. Stefanovsky, S. V., Shiryaev, A. A., Vlasova, I. E., Yapaskurt, V. O., Marra, J. C.: Plutonium environment in lanthanide borosilicate glass. In: D. Andersson, C. Booth, P. C. Burns, R. Caciuffo, R. Devanathan, T. Durakiewicz, M. Stan, V. Tikare, S. W. Yu (Eds.), Actinides and Nuclear Energy Materials, Mater. Res. Soc. Symp. Proc., Vol. 1444, (2012). doi:10.1557/opl.2012.950.10.1557/opl.2012.950Search in Google Scholar

3. Burakov, B. E., Ojovan, M. I., Lee W. E. Crystalline Materials for Actinide Immobilisation, Materials for Engineering, Vol. 1, Imperial College Press, London (2010), p. 197.10.1142/p652Search in Google Scholar

4. Boatner, L. A., Beall, G. W., Abraham, M. M., Finch, C. B., Huray, P. C., Rapaz, M.: Monazite and other lanthanide orthophosphates as alternative actinide waste forms. In: C. J. M. Northrup Jr. (Ed.), Scientific Basis for Nuclear Waste Management (1980), Vol. 2, Plenum Press, New York, p. 289.10.1007/978-1-4684-3839-0_35Search in Google Scholar

5. McCarthy, G. L., White, W. B., Pfoertsch, D. E.: Synthesis of nuclear waste monazites, ideal actinide hosts for geological disposal. Mater. Res. Bull. 13, 1239 (1978).10.1016/0025-5408(78)90215-5Search in Google Scholar

6. Bregiroux, D., Terra, O., Audubert, F., Dacheux, N., Serin, V., Podor, R., Bernache-Assollant, D.: Solid-State synthesis of monazite-type compounds containing tetravalent elements. Inorg. Chem. 46, 10372 (2007).10.1021/ic7012123Search in Google Scholar PubMed

7. Bregiroux, D., Belin, R., Valenza, P., Audubert, F., Bernache-Assollant, D.: Plutonium and americium monazite materials: solid state synthesis and X-ray diffraction study. J. Nucl. Mater. 366, 52 (2007).10.1016/j.jnucmat.2006.12.042Search in Google Scholar

8. Dacheux, N., Clavier, N., Podor, R.: Monazite as a promising long-term radioactive waste matrix: benefits of high-structural flexibility and chemical durability. Am. Miner. 98, 833 (2013).10.2138/am.2013.4307Search in Google Scholar

9. Arinicheva, Y., Popa, K., Scheinost, A. C., Rossberg, A., Dieste-Blanco, O., Raison, P., Cambriani, A., Somers, J., Bosbach, D., Neumeier, S.: Structural investigations of (La,Pu)PO4 monazite solid solutions: XRD and XAFS study. J. Nucl. Mater. 493, 404 (2017).10.1016/j.jnucmat.2017.06.034Search in Google Scholar

10. Popa, K., Raison, P. E., Martel, L., Martin, P. M., Prieur, D., Solari, P. L., Bouëxière, D., Konings, R. J. M., Somers, J.: Structural investigations of PuIII phosphate by X-ray diffraction, MAS-NMR and XANES spectroscopy. J. Solid State Chem. 230, 169 (2015).10.1016/j.jssc.2015.07.002Search in Google Scholar

11. Meldrum, A., Boatner, L. A., Ewing, R. C.: Displacive irradiation effects in the monazite- and zircon-structure orthophosphates. Phys. Rev. B56, 13805 (1997).10.1103/PhysRevB.56.13805Search in Google Scholar

12. Picot, V., Deschanels, X., Peuget, S., Glorieux, B., Seydoux-Guillaume, A. M., Wirth, R.: Ion beam radiation effects in monazite. J. Nucl. Mater. 381, 290 (2008).10.1016/j.jnucmat.2008.09.001Search in Google Scholar

13. Burakov, B. E., Yagovkina, M. A., Garbuzov, V. M., Kitsay, A. A., Zirlin, V. A.: Self-irradiation of monazite ceramics: contrasting behavior of PuPO4 and (La,Pu)PO4 doped with Pu-238. In: J. M. Hanchar, S. Stroes-Gascoyne, L. Browning (Eds.), Mater. Res. Symp. Proc. 824 (2004), p. CC4.1. doi:10.1557/PROC-824-CC4.1.10.1557/PROC-824-CC4.1Search in Google Scholar

14. Shiryaev, A. A., Nickolsky, M. S., Averin, A. A., Grigoriev, M. S., Zubavichus, Y. V., Vlasova, I. E., Petrov, V. G., Burakov, B. E.: Structural peculiarities of aged 238Pu-doped monazite. MRS Adv. 1(63–64), 4275 (2016).10.1557/adv.2017.220Search in Google Scholar

15. Goldschmidt, V. M.: Atlas der Krystallformen, Carl Winters Universitatsbuchhandlung, Heidelberg (1913).Search in Google Scholar

16. Begun, G. M., Beall, G. W., Boatner, L. A., Gregor, W. J.: Raman spectra of the rare earth orthophosphates. J. Raman Spectrosc. 11(4), 273 (1981).10.1002/jrs.1250110411Search in Google Scholar

17. Kijkowska, R., Cholewka, E., Duszak, B.: X-Ray diffraction and IR-absorption characteristics of lanthanide orthophosphates obtained by crystallisation from phosphoric acid solution. J. Mater. Sci. 38, 223 (2003).10.1023/A:1021188810349Search in Google Scholar

18. Clavier, N., Mesbah, A., Szenknect, S., Dacheux, N.: Monazite, rhabdophane, xenotime & churchite: Vibrational spectroscopy of gadolinium phosphate polymorphs. Spectrochim. Acta Part A 205, 85 (2018).10.1016/j.saa.2018.07.016Search in Google Scholar

19. Silva, E. N., Ayala, A. P., Guedes, I., Paschoal, C. W. A., Moreira, R. L., Loong, C. K., Boatner, L. A.: Vibrational spectra of monazite-type rare-earth orthophosphates. Opt. Mater. 29, 224 (2006).10.1016/j.optmat.2005.09.001Search in Google Scholar

20. Assaaoudi, H., Ennaciri, A., Rulmont, A.: Vibrational spectra of hydrated rare earth orthophosphates. Vib. Spectrosc. 25, 81 (2001).10.1016/S0924-2031(00)00109-0Search in Google Scholar

21. Mesbah, A., Clavier, N., Elkaim, E., Szenknect, S., Dacheux, N.: In pursuit of the rhabdophane crystal structure: from the hydrated monoclinic LnPO4·0.667H2O to the hexagonal LnPO4 (Ln=Nd, Sm, Gd, Eu and Dy). J. Solid State Chem. 249, 221 (2017).10.1016/j.jssc.2017.03.004Search in Google Scholar

22. Campbell, I, Fauchet, P. M.: The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun. 58(10), 739 (1986).10.1016/0038-1098(86)90513-2Search in Google Scholar

23. Rondinella, V. V., Wiss, T., Hiernaut, J.-P., Staicu, D.: Dose rate effects on the accumulation of radiation damage. In: Proc. ASME; In: Proc. 11th International Conference on Environmental Remediation and Radioactive Waste Management, Parts A and B, (2007) 1071. doi: 10.1115/ICEM2007–7322.10.1115/ICEM2007–7322Search in Google Scholar

24. Seydoux-Guillaume, A. M., Wirth, R., Nasdala, L., Gottschalk, M., Montel, J. M., Heinrich, W.: An XRD, TEM and Raman study of experimentally annealed natural monazite. Phys. Chem. Miner. 29(4), 240 (2002).10.1007/s00269-001-0232-4Search in Google Scholar

25. Du Fou de Kerdaniel, E., Clavier, N., Dacheux, N., Terra, O., Podor, R.: Actinide solubility-controlling phases during the dissolution of phosphate ceramics. J. Nucl. Mater. 362, 451 (2007).10.1016/j.jnucmat.2007.01.132Search in Google Scholar

26. Ochiai, A., Utsunomiya, S.: Crystal chemistry and stability of hydrated rare-earth phosphates formed at room temperature. Minerals 7, 84 (2017).10.3390/min7050084Search in Google Scholar

27. Popova, V. I., Churin, E. I.: Zoning and sectoriality of monazite-(Ce) from granite pegmatites of the central and South Urals. Geol Ore Deposit. 52(7), 646 (2010).10.1134/S1075701510070172Search in Google Scholar

28. Cressey, G., Wall, I. F., Cressey, B. A.: Differential REE uptake by sector growth of monazite. Mineral. Mag. 63, 813 (1999).10.1180/002646199548952Search in Google Scholar

29. Catlos, E. J.: Generalizations about monazite: implications for geochronologic studies. Am. Miner. 98, 819 (2013).10.2138/am.2013.4336Search in Google Scholar

30. Shelyug, A., Mesbah, A., Szenknect, S., Clavier, N., Dacheux, N., Navrotsky, A.: Thermodynamics and stability of rhabdophanes, hydrated rare earth phosphates REPO4 n H2O. Front. Chem. 6, Article 604. doi: 10.3389/fchem.2018.00604 (2018).10.3389/fchem.2018.00604Search in Google Scholar PubMed PubMed Central

31. Patsahan, T., Taleb, A., Stafiej, J., Holovko, M., Badiali, J. P.: Stochastic simulation of destruction processes in self-irradiated materials. Condens. Matter Phys. 20(3), 33003 (2017).10.5488/CMP.20.33003Search in Google Scholar

32. Ojovan, M. I., Burakov, B. E., Lee, W. E.: Radiation-induced microcrystal shape change as a mechanism of wasteform degradation. J. Nucl. Mater. 501, 162 (2018).10.1016/j.jnucmat.2018.01.030Search in Google Scholar

33. Baryakhtar, V., Gonchar, V., Zhidkov, A., Zhydkov, V.: Radiation damages and self-sputtering of high-radioactive dielectrics: spontaneous emission of submicronic dust particles, Condens. Matter Phys. 5, 449 (2002).10.5488/CMP.5.3.449Search in Google Scholar

34. Shiryaev, A. A., Vlasova, I. E., Burakov, B. E., Ogorodnikov, B. I., Yapaskurt, V. O., Averin, A. A., Pakhnevich, A. V., Zubavichus, Y. V.: Physico-chemical properties of Chernobyl lava and their destruction products. Prog. Nucl. Energ. 92, 104 (2016).10.1016/j.pnucene.2016.07.001Search in Google Scholar

35. Nasdala, L., Grotzschel, R., Probst, S., Bleisteiner, B.: Irradiation damage in monazite–(Ce): an example to establish the limits of Raman confocality and depth resolution. Can. Mineral. 48, 351 (2010).10.3749/canmin.48.2.351Search in Google Scholar

36. Lu, F., Shen, Y., Sun, X., Dong, Z., Ewing, R. C., Lian, J.: Size dependence of radiation-induced amorphization and recrystallization of synthetic nanostructured CePO4 monazite. Acta Mater. 61, 2984 (2013).10.1016/j.actamat.2013.01.058Search in Google Scholar

37. Shiryaev, A. A., Hinks, J. A., Marks, N. A., Greaves, G., Valencia, F. J., Donnelly, S. E., González, R. I., Kiwi, M., Trigub, A. L., Bringa, E. M., Fogg, J. L., Vlasov, I. I.: Ion implantation in nanodiamonds: size effect and energy dependence. Sci. Rep. 8, 2 (2018).10.1038/s41598-018-23434-ySearch in Google Scholar PubMed PubMed Central

Received: 2019-07-13
Accepted: 2019-08-28
Published Online: 2019-09-19
Published in Print: 2020-04-28

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2019-3185/html
Scroll to top button