Properties of the high burnup structure in nuclear light water reactor fuel
-
Thierry Wiss
, Vincenzo V. Rondinella
Abstract
The formation of the high burnup structure (HBS) is possibly the most significant example of the restructuring processes affecting commercial nuclear fuel in-pile. The HBS forms at the relatively cold outer rim of the fuel pellet, where the local burnup is 2–3 times higher than the average pellet burnup, under the combined effects of irradiation and thermo-mechanical conditions determined by the power regime and the fuel rod configuration. The main features of the transformation are the subdivision of the original fuel grains into new sub-micron grains, the relocation of the fission gas into newly formed intergranular pores, and the absence of large concentrations of extended defects in the fuel matrix inside the subdivided grains. The characterization of the newly formed structure and its impact on thermo-physical or mechanical properties is a key requirement to ensure that high burnup fuel operates within the safety margins. This paper presents a synthesis of the main findings from extensive studies performed at JRC-Karlsruhe during the last 25 years to determine properties and behaviour of the HBS. In particular, microstructural features, thermal transport, fission gas behaviour, and thermo-mechanical properties of the HBS will be discussed. The main conclusion of the experimental studies is that the HBS does not compromise the safety of nuclear fuel during normal operations.
Acknowledgements
The authors are indebted with many colleagues at JRC Karlsruhe (former JRC-ITU) for all the work performed over almost 3 decades to study the high burnup structure; it is impossible to mention all of them! Most of them will appear in the citations. The authors acknowledge in particular the contribution by AREVA for supplying irradiated LWR fuel samples was essential, as well as the important role played by the HBRP special irradiation and post-irradiation examination programmes.
References
1. Belle, J.: Uranium dioxide: properties and nuclear applications. In: N.R. Handbooks (Ed.), Washington: Naval Reactors, Division of Reactor Development, U.S. Atomic Energy Commission (1961).Search in Google Scholar
2. Rondinella, V. V., Wiss, T.: The high burn-up structure in nuclear fuel. Mat. Today 13, 24 (2010).10.1016/S1369-7021(10)70221-2Search in Google Scholar
3. Kinoshita, M., Sonoda, T., Kitajima, S., Sasahara, A., Kameyama, T., Matsumura, T., Kolstad, E., Rondinella, V. V., Ronchi, C., Hiernaut, J. P., Wiss, T., Kinnart, F., Ejton, J., Papaioannou, D., Matzke, H.: In 2004 International Meeting on LWR Fuel Performance; ANS: Orlando, Fl, USA, 2004; Vol. paper 1102, p. 207.Search in Google Scholar
4. Spino, J., Baron, D., Coquerelle, M., Stalios, A. D.: High burn-up rim structure: evidences that xenon-depletion, pore formation and grain subdivision start at different local burn-ups. J. Nucl. Mater. 256, 189 (1998).10.1016/S0022-3115(98)00060-9Search in Google Scholar
5. Sonoda, T., Kameyama, T., Sasahara, A., Kitajima, S., Nauchi, Y., Kinoshita, M., Rondinella, V. V., Wiss, T., Hiernaut, J. P., Papaioannou, D., Sheindlin, M., Staicu, D.: In American Nuclear Society – 2007 LWR Fuel Performance/Top Fuel 2007, p. 340.Search in Google Scholar
6. Sonoda, T., Kinoshita, M., Ray, I. L. F., Wiss, T., Thiele, H., Pellottiero, D., Rondinella, V. V., Matzke, H.: Transmission electron microscopy observation on irradiation-induced microstructural evolution in high burn-up UO2 disk fuel. Nucl. Instrum. Methods Phys. Res. B 191, 622 (2002).10.1016/S0168-583X(02)00622-5Search in Google Scholar
7. Walker, C. T., Staicu, D., Sheindlin, M., Papaioannou, D., Goll, W., Sontheimer, F.: On the thermal conductivity of UO2 nuclear fuel at a high burn-up of around 100MWd/kgHM. J. Nucl. Mater. 350, 19 (2006).10.1016/j.jnucmat.2005.11.007Search in Google Scholar
8. Ray, I. L. F., Thiele, H., Matzke, H.: Transmission electron microscopy study of fission product behaviour in high burnup UO2. J. Nucl. Mater. 188, 90 (1992).10.1016/0022-3115(92)90458-WSearch in Google Scholar
9. Noirot, J., Desgranges, L., Lamontagne, J.: Detailed characterisations of high burn-up structures in oxide fuels. J. Nucl. Mater. 372, 318 (2008).10.1016/j.jnucmat.2007.04.037Search in Google Scholar
10. Hiernaut, J. P., Wiss, T., Colle, J. Y., Thiele, H., Walker, C. T., Goll, W., Konings, R. J. M.: Fission product release and microstructure changes during laboratory annealing of a very high burn-up fuel specimen. J. Nucl. Mater. 377, 313 (2008).10.1016/j.jnucmat.2008.03.006Search in Google Scholar
11. Konings, R. J. M., Wiss, T., Guéneau, C.: Nuclear fuels. In: L. R. Morss, N. M. Edelstein, J. Fuger (Eds.), The Chemistry of the Actinides and Transactinides Elements (2010), 4th ed. Springer, Dordrecht, Vol. 6, p. 3665.10.1007/978-94-007-0211-0_34Search in Google Scholar
12. Ozawa, T., Ikusawa, Y., Abe, T., Maeda, K.: In ANS LWR Fuel Performance Orlando, Florida, 2004.Search in Google Scholar
13. Matzke, H., Blank, H., Coquerelle, M., Lassmann, K., Ray, I. L. F., Ronchi, C., Walker, C. T.: Oxide fuel transients. J. Nucl. Mater. 166, 165 (1989).10.1016/0022-3115(89)90187-6Search in Google Scholar
14. Matzke, H. Radiation damage in crystalline insulators, oxides and ceramic nuclear fuels. Radiat. Eff. 64, 3 (1982).10.1080/00337578208222984Search in Google Scholar
15. Spino, J., Stalios, A. D., Santa Cruz, H., Baron, D.: Stereological evolution of the rim structure in PWR-fuels at prolonged irradiation: dependencies with burn-up and temperature. J. Nucl. Mater. 354, 66 (2006).10.1016/j.jnucmat.2006.02.095Search in Google Scholar
16. Koo, Y.-H.; Lee, B.-H.; Oh, J.-Y.; Sohn, D.-S. In: A. N. Society (Ed.), International LWR Fuel Performance Meeting (2007), San Fransisco, CA, USA.Search in Google Scholar
17. Cappia, F.: Technische Universität München, Munich 2017.Search in Google Scholar
18. Rondinella, V. V., Cappia, F., Wiss, T., Marchetti, M., Papaioannou, D., Bremier, S., Nasyrow, R.: In: TOPFUEL Boise, ID, 2016, p. 1593.Search in Google Scholar
19. Lozano, N., Desgranges, L., Aymes, D., Niepce, J. C.: High magnification SEM observations for two types of granularity in a high burnup PWR fuel rim. J. Nucl. Mater. 257, 78 (1998).10.1016/S0022-3115(98)00056-7Search in Google Scholar
20. Une, K., Nogita, K., Kashibe, S., Imamura, M.: Microstructural change and its influence on fission gas release in high burnup UO2 fuel. J. Nucl. Mater. 188, 65 (1992).10.1016/0022-3115(92)90455-TSearch in Google Scholar
21. Une, K., Nogita, K., Shiratori, T., Hayashi, K.: Rim structure formation of isothermally irradiated UO2 fuel discs. J. Nucl. Mater. 288, 20 (2001).10.1016/S0022-3115(00)00712-1Search in Google Scholar
22. Ray, I. L. F., Matzke, H., Thiele, H., Kinoshita, M.: An electron microscopy study of the RIM structure of a UO2 fuel with a high burnup of 7.9% FIMA. J. Nucl. Mater. 245, 115 (1997).10.1016/S0022-3115(97)00015-9Search in Google Scholar
23. Wiss, T., Thiele, H., Janssen, A., Papaioannou, D., Rondinella, V. V., Konings, R. J. M.: Recent results of microstructural characterization of irradiated light water reactor fuels using scanning and transmission electron microscopy. J. Oral. Microbiol. 64, 1390 (2013).10.1007/s11837-012-0483-1Search in Google Scholar
24. Nogita, K., Une, K.: Radiation-induced microstructural change in high burnup UO2 fuel pellets. Nucl. Instrum. Meth. B B91, 301 (1994).10.1016/0168-583X(94)96235-9Search in Google Scholar
25. Holt, L., Schubert, A., Van Uffelen, P., Walker, C. T., Fridman, E., Sonoda, T.: Sensitivity study on Xe depletion in the high burn-up structure of UO2. J. Nucl. Mater. 452, 166 (2014).10.1016/j.jnucmat.2014.05.009Search in Google Scholar
26. Mogensen, M., Pearce, J., Walker, C. T.: Behaviour of fission gas in the rim region of high burn-up UO2 fuel pellets with particular reference to results from an XRF investigation. J. Nucl. Mater. 264, 99 (1999).10.1016/S0022-3115(98)00474-7Search in Google Scholar
27. Spino, J., Peerani, P.: Oxygen stoichiometry shift of irradiated LWR-fuels at high burn-ups: review of data and alternative interpretation of recently published results. J. Nucl. Mater. 375, 8 (2008).10.1016/j.jnucmat.2007.10.007Search in Google Scholar
28. Spino, J., Papaioannou, D., Glatz, J. P.: Comments on the threshold porosity for fission gas release in high burn-up fuels. J. Nucl. Mater. 328, 67 (2004).10.1016/j.jnucmat.2004.03.009Search in Google Scholar
29. Spino, J., Rest, J., Goll, W., Walker, C. T.: Matrix swelling rate and cavity volume balance of UO2 fuels at high burn-up. J. Nucl. Mater. 346, 131 (2005).10.1016/j.jnucmat.2005.06.015Search in Google Scholar
30. Walker, C. T., Bremier, S., Portier, S., Hasnaoui, R., Goll, W.: SIMS analysis of an UO2 fuel irradiated at low temperature to 65MWd/kgHM. J. Nucl. Mater. 393, 212 (2009).10.1016/j.jnucmat.2009.06.017Search in Google Scholar
31. Turnbull, J. A., Yagnik, S. K., Hirai, M., Staicu, D. M., Walker, C. T.: An assessment of the fuel pulverization threshold during LOCA-type temperature transients. Nucl. Sci. Eng. 179, 477 (2015).10.13182/NSE14-20Search in Google Scholar
32. Kleykamp, H.: The chemical state of LWR high-power rods under irradiation. J. Nucl. Mater. 84, 109 (1979).10.1016/0022-3115(79)90154-5Search in Google Scholar
33. Walker, C. T., Rondinella, V. V., Papaioannou, D., Winckel, S. V., Goll, W., Manzel, R.: On the oxidation state of UO2 nuclear fuel at a burn-up of around 100MWd/kgHM. J. Nucl. Mater. 345, 192 (2005).10.1016/j.jnucmat.2005.05.010Search in Google Scholar
34. Manzel, R., Walker, C. T.: EPMA and SEM of fuel samples from PWR rods with an average burn-up of around 100 MWd/kgHM. J. Nucl. Mater. 301, 170 (2002).10.1016/S0022-3115(01)00753-XSearch in Google Scholar
35. Van Uffelen, P., Konings, R. J. M., Vitanza, C., Tulenko, J.: Analysis of reactor fuel rod behavior. In: D. G. Cacuci, (Ed.), Handbook of Nuclear Engineering (2010), Springer Science+BusinessMedia, New York, NY, USA, p. 1519.10.1007/978-0-387-98149-9_13Search in Google Scholar
36. Colle, J. Y., Maugeri, E., Thiriet, C., Talip, Z., Capone, F., Hiernaut, J. P., Konings, R. J. M., Wiss, T.: A mass spectrometry method for quantitative and kinetic analysis of gas release from nuclear materials and its application to helium desorption from UO2 and fission gas release from irradiated fuel. J. Nucl. Sci. Tech. 51, 700 (2014).10.1080/00223131.2014.889583Search in Google Scholar
37. Ronchi, C., Sheindlin, M., Staicu, D., Kinoshita, M.: Effect of burn-up on the thermal conductivity of uranium dioxide up to 100.000 MWd/t. J. Nucl. Mater. 327, 58 (2004).10.1016/j.jnucmat.2004.01.018Search in Google Scholar
38. Baron, D.: In: Seminar on Thermal Perf. of High Burn-up LWR Fuel (1998), OECD/NEA, Cadarache, France, p. 129.Search in Google Scholar
39. Spino, J., Cobos-Sabate, J., Rousseau, F.: Room-temperature microindentation behaviour of LWR-fuels, part 1: fuel microhardness. J. Nucl. Mater. 322, 204 (2003).10.1016/S0022-3115(03)00328-3Search in Google Scholar
40. Laux, D., de Weerd, W., Papaioannou, D., Kitajima, S., Rondinella, V. V., Despaux, G.: Scanning acoustic microscope for mechanical characterization and density estimation of irradiated nuclear fuel. Prog. Nucl. Energy 72, 63 (2014).10.1016/j.pnucene.2013.07.018Search in Google Scholar
41. Lucuta, P. G., Verrall, R. A., Matzke, H., Balmer, B. J.: Microstructural features of SIMFUEL – simulated high-burnup UO2-based nuclear fuel. J. Nucl. Mater. 178, 48 (1991).10.1016/0022-3115(91)90455-GSearch in Google Scholar
42. Marchetti, M.; Laux, D.; Cappia, F.; Laurie, M.; Van Uffelen, P.; Rondinella, V. V.; Wiss, T.; Despaux, G. High frequency acoustic microscopy for the determination of porosity and Young’s modulus in high burnup uranium dioxide nuclear fuel. IEEE Trans. Nucl. Sci. 63, 1520 (2016).10.1109/TNS.2016.2552241Search in Google Scholar
43. Spino, J., Papaioannou, D.: Lattice parameter changes associated with the rim-structure formation in high burn-up UO2 fuels by micro X-ray diffraction. J. Nucl. Mater. 281, 146 (2000).10.1016/S0022-3115(00)00236-1Search in Google Scholar
44. Lassmann, K. In: H. M. Schumacher, (Ed.), Nuclear Materials for Fission Reactors (1992), Elsevier, Oxford, p. 295.10.1016/B978-0-444-89571-4.50046-3Search in Google Scholar
45. Khvostov, G., Mikityuk, K., Zimmermann, M. A.: A model for fission gas release and gaseous swelling of the uranium dioxide fuel coupled with the FALCON code. Nucl. Eng. Des. 241, 2983 (2011).10.1016/j.nucengdes.2011.06.020Search in Google Scholar
46. Pizzocri, D., Cappia, F., Luzzi, L., Pastore, G., Rondinella, V. V., Van Uffelen, P.: A semi-empirical model for the formation and depletion of the high burnup structure in UO2 . J. Nucl. Mater. 487, 23 (2017).10.1016/j.jnucmat.2017.01.053Search in Google Scholar
47. Walker, C.T.: Assessment of the radial extent and completion of recrystallization in high burn-up UO2 nuclear fuel by EPMA. J. Nucl. Mater. 275, 56 (1999).10.1016/S0022-3115(99)00108-7Search in Google Scholar
48. Lassmann, K., Walker, C. T., van de Laar, J., Lindström, F.: Modelling the high burnup UO2 structure in LWR fuel. J. Nucl. Mater. 226, 1 (1995).10.1016/0022-3115(95)00116-6Search in Google Scholar
49. Noirot, J., Pontillon, Y., Yagnik, S., Turnbull, J. A.: Post-irradiation examinations and high-temperature tests on undoped large-grain UO2 discs. J. Nucl. Mater. 462, 77 (2015).10.1016/j.jnucmat.2015.03.008Search in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Preface
- Novel approaches for the in situ study of the sintering of nuclear oxide fuel materials and their surrogates
- Properties of the high burnup structure in nuclear light water reactor fuel
- Synroc tailored waste forms for actinide immobilization
- Radionuclides containment in nuclear glasses: an overview
- New insights into phosphate based materials for the immobilisation of actinides
Articles in the same Issue
- Frontmatter
- Preface
- Novel approaches for the in situ study of the sintering of nuclear oxide fuel materials and their surrogates
- Properties of the high burnup structure in nuclear light water reactor fuel
- Synroc tailored waste forms for actinide immobilization
- Radionuclides containment in nuclear glasses: an overview
- New insights into phosphate based materials for the immobilisation of actinides