Home Synroc tailored waste forms for actinide immobilization
Article
Licensed
Unlicensed Requires Authentication

Synroc tailored waste forms for actinide immobilization

  • Daniel J. Gregg EMAIL logo and Eric R. Vance
Published/Copyright: December 19, 2016

Abstract

Since the end of the 1970s, Synroc at the Australian Nuclear Science and Technology Organisation (ANSTO) has evolved from a focus on titanate ceramics directed at PUREX waste to a platform waste treatment technology to fabricate tailored glass–ceramic and ceramic waste forms for different types of actinide, high- and intermediate level wastes. The particular emphasis for Synroc is on wastes which are problematic for glass matrices or existing vitrification process technologies. In particular, nuclear wastes containing actinides, notably plutonium, pose a unique set of requirements for a waste form, which Synroc ceramic and glass-ceramic waste forms can be tailored to meet. Key aspects to waste form design include maximising the waste loading, producing a chemically durable product, maintaining flexibility to accommodate waste variations, a proliferation resistance to prevent theft and diversion, and appropriate process technology to produce waste forms that meet requirements for actinide waste streams. Synroc waste forms incorporate the actinides within mineral phases, producing products which are much more durable in water than baseline borosilicate glasses. Further, Synroc waste forms can incorporate neutron absorbers and 238U which provide criticality control both during processing and whilst within the repository. Synroc waste forms offer proliferation resistance advantages over baseline borosilicate glasses as it is much more difficult to retrieve the actinide and they can reduce the radiation dose to workers compared to borosilicate glasses. Major research and development into Synroc at ANSTO over the past 40 years has included the development of waste forms for excess weapons plutonium immobilization in collaboration with the US and for impure plutonium residues in collaboration with the UK, as examples. With a waste loading of 40–50 wt.%, Synroc would also be considered a strong candidate as an engineered waste form for used nuclear fuel and highly enriched uranium-rich wastes.

Acknowledgments

We wish to thank Bruce Begg and Gerry Triani for their comments on this manuscript and all the many ANSTO, NNL, LLNL and SRS staff who have worked on the various projects.

References

1. Ewing, R. C.: Nuclear waste forms for actinides. Colloquium Paper. Proc. Natl. Acad. Sci. USA 96, 3432 (1999).10.1073/pnas.96.7.3432Search in Google Scholar

2. Ringwood, A. E., Kesson, S. E., Reeve, K. D., Levins, D. M., Ramm, E. J.: Radioactive waste forms for the future. In: W. Lutze, R. C. Ewing (Eds.), North-Holland, Amsterdam (1988), p. 233.Search in Google Scholar

3. International panel on fissile materials report: Nuclear Weapon and Fissile Material Stockpiles and Production, Eighth annual report of the International Panel on Fissile Materials, Global Fissile Material Report 2015.Search in Google Scholar

4. Hatch, L. P.: American Scientist 41, 419 (1953).Search in Google Scholar

5. McCarthy, G.: High-level ceramics: materials considerations, process simulation, and product characterization. J. Nucl. Tech. 32, 92 (1977).10.13182/NT77-A31741Search in Google Scholar

6. Ringwood, A. E., Kesson, S. E., Ware, N. G., Hibberson, W., Major, A.: Immobilisation of high level nuclear reactor wastes in SYNROC. Nature (London), 278, 219 (1979).10.1038/278219a0Search in Google Scholar

7. Godfrey, W. L., Hall, J. C., Townes, G. A.: Nuclear Reactors (Chemical Reprocessing). In: Kirk-Othmer Encyclopaedia of Chemical Technology Volume 17, 4th Ed., John Wiley and Sons, New York (1996), p. 409.Search in Google Scholar

8. Smith, K. L., Ball, C. J., Day, R. A., Fitzgerald, J. D., Lumpkin, G. R., Thorogood G. T., Zaluzec, N. J.: CAT: a new calcium aluminium titanate. J. Computer-Assisted Microscopy 4, 295 (1992).Search in Google Scholar

9. Hambley, M. J., Dumbill, S., Maddrell, E. R., Scales, C. R.: Characterisation of 20 Year Old 238Pu-Doped Synroc C, In: W. E. Lee, J. W. Roberts, N. C. Hyatt, R. W. Grimes (Eds.), Mater. Res. Soc. Symp. Proc. 1107, 373 (2008).10.1557/PROC-1107-373Search in Google Scholar

10. Ewing, R. C., Headley, T. J.: Alpha-recoil damage in natural zirconolite (CaZrTi2O7). J. Nucl. Mater. 119, 102 (1983).10.1016/0022-3115(83)90058-2Search in Google Scholar

11. Blake, G. S., Smith, G. F. H.: Mineral. Mag. 16, 309 (1913).10.1180/minmag.1913.016.77.02Search in Google Scholar

12. Shoup, S. S., Bamberger, C. E., Haverlock, T. J., Peterson, J. R.: Aqueous leachability of lanthanide and plutonium titanates. J. Nucl. Mater. 240, 112 (1997).10.1016/S0022-3115(96)00671-XSearch in Google Scholar

13. Campbell, J., Hoenig, C., Ryerson, F., Bazan, F., Wolery, T., Guinan, M., Rozsa, R., Van Konynenburg, R.: Immobilization of high-level defense wastes in SYNROC: an appraisal of product performance, US LLNL Report, UCRL-85913; CONF-810543-1, Apr 28, 1981.10.1557/PROC-6-49Search in Google Scholar

14. Ringwood, A. E., Kesson S. E., Ware, N. G.: Immobilization of U.S. Defense Nuclear Wastes Using the Synroc Process, in Scientific Basis for Nuclear Waste Management, 2, Northrup, Plenum Press, New York, 265 (1978).10.1007/978-1-4684-3839-0_32Search in Google Scholar

15. Newkirk, H. W., Hoenig, C. L., Ryerson, F. J., Tewhey, J. D., Smith, G. S., Rossington, C. S., Brackmann A. J., Ringwood, A. E.: Synroc technology for immobilizing U. S. defense waste. Ceram. Bull. 61, 559 (1982).Search in Google Scholar

16. Rozsa, R. B., Hoenig, C. L.: Synroc Processing Options, Lawrence Livermore National laboratory, UCRL-53187, Sept. 1, 1981.10.2172/6088646Search in Google Scholar

17. Jostsons, A.: Status of Synroc Development, in Proceedings 9th Pacific Basin Nuclear Conference (PBNC) Ed. N. R. MacDonald, Inst. of Eng. Aust. Sydney, Australia, 865 (1994).Search in Google Scholar

18. Smith, K. L., Blackford, M. G., McGlinn, P. J., Hart, K. P., Robinson, B. J.: Microstructure, Partitioning and Dissolution Behaviour of Synroc Containing Actinides, in Scientific Basis of for Nuclear Waste Management XV. Mater. Res. Soc. Proc. 257, 243 (1992).10.1557/PROC-257-243Search in Google Scholar

19. Smith, K. L., Hart, K. P., Lumpkin, G. R., McGlinn, P. J., Lam P., Blackford, M. G.: A Description of the Kinetics and Mechanisms which Control the Release of HLW Elements from Synroc, in Scientific Basis for Nuclear Waste Management XIV, Mater. Res. Soc. Proc. 212, Pittsburgh, PA (1991), p. 167.10.1557/PROC-212-167Search in Google Scholar

20. Lumpkin, G. R., Geisler, T.: Minerals and natural analogues. In: R. J. M. Konings (Ed.), Comprehensive Nuclear Materials, Volume 5: Material Performance and Corrosion/Waste Materials, Elsevier, The Netherlands, p. 563 (2012) and refs therein.10.1016/B978-0-08-056033-5.00111-7Search in Google Scholar

21. Lumpkin, G. R., Smith, K. L., Blackford, M. G., Hart, K. P., McGlinn, P. J., Gieré, R., Williams, C. T.: Prediction of the Long-Term Performance of Crystalline Nuclear Waste Form Phases from Studies of Mineral Analogues, Ninth Pacific Basin Nuclear Conference, Sydney, Australia, 879–885 (1994).Search in Google Scholar

22. Smith K. L., Lumpkin, G. R.: Structural features of zirconolite, hollandite and perovskite, the major waste-bearing phases in synroc. In: J. N. Boland, J. D. Fitzgerald (Eds.), Defects and Processes in the Solid State: Geoscience Applications, The McLaren Volume, Elsevier, Amsterdam, Netherlands, (1993), p. 401.Search in Google Scholar

23. Perera, D. S., Begg, B. D., Vance E. R., Stewart, M. W. A.: Application of crystal chemistry in the development of radioactive wasteforms. Adv. Tech. Materials Materials Proc. J. (ATM) 6, 214 (2004).Search in Google Scholar

24. Mitamura, H., Matsumoto, S., Stewart, M. W. A., Tsuboi, T., Hashimoto, M., Vance, E. R., Hart, K. P., Togashi, Y., Kanazawa, H., Ball, C. J., White, T. J.: α-Decay damage effects in curium-doped titanate ceramic containing sodium-free high level nuclear waste. J. Am. Ceram. Soc. 77, 2255 (1994).10.1111/j.1151-2916.1994.tb04591.xSearch in Google Scholar

25. Moricca, S., Orcutt, C., Stewart, M. W. A., Bermudez, W., Vance, E. R., Eddowes, T., Persaud R., Taylor, D.: Hot-isostatic Pressing of Synroc for nuclear waste disposal, Advances in Powder Metallurgy & Particulate Materials, Part 4, Proceedings of the 2012 International Conference on Powder Metallurgy & Particulate Materials, Nashville, Tennessee (2012).Search in Google Scholar

26. Vance, E. R., Moricca, S., Begg, B. D., Stewart, M. W. A., Zhang Y., Carter M. L.: Advantages hot isostatically pressed ceramic and glass-ceramic waste forms bring to the immobilization of challenging intermediate- and high-level nuclear wastes, in 5th Forum on New Materials Part B, Trans Tech Publications Ltd. 130 (2010).10.4028/www.scientific.net/AST.73.130Search in Google Scholar

27. Begg B. D.: Titanate ceramic matrices for nuclear waste immobilisation. Res. Adv. Ceramics 1, 49 (2003).10.1557/PROC-807-321Search in Google Scholar

28. Vance, E. R.: ANSTO’s Waste form R&D capabilities. In: J. Vienna, C. C. Herman, S. Marra (Eds.), Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries, American Ceramic Society, Westerville, OH, USA (2004), p. 19.Search in Google Scholar

29. Lumpkin, G. R.: Ceramic waste forms for actinides. Elements 2, 365 (2006).10.2113/gselements.2.6.365Search in Google Scholar

30. Rossell, H. J.: Zirconolite – a fluorite-related superstructure. Nature 283, 282 (1980).10.1038/283282a0Search in Google Scholar

31. Vance, E. R., Lumpkin, G. R., Carter, M. L., Cassidy, D. J., Ball, C. J., Day, R. A., Begg, B. D.: Incorporation of uranium in zirconolite (CaZrTi2O7). J. Am. Ceram. Soc. 85, 1853 (2002).10.1111/j.1151-2916.2002.tb00364.xSearch in Google Scholar

32. Zhang, Y., Vance, E. R., Finnie, K. S., Begg, B. D., Carter, M. L.: Recent advances in actinide science. In: R. Alvarez, N. D. Bryan, I. May (Eds.), The Royal Society of Chemistry, in Actinide Science, 305, 343 (2006).Search in Google Scholar

33. Vance, E. R.: Synroc: a suitable waste form for actinides. MRS Bull. XIX, 28 (1994).10.1557/S0883769400048661Search in Google Scholar

34. Deschanels, X., Picot, V., Glorieux, B., Jorion, F., Peuget, S., Roudil, D., Jégou, C., Broudic, V., Cachia, J. N., Advocat, T., Den Auwer, C., Fillet, C., Coutures, J. P., Henning, C., Scheinost, A.: Plutonium incorporation in phosphate and titanate ceramics for minor actinide containment. J. Nucl. Mater. 352, 233 (2006).10.1016/j.jnucmat.2006.02.059Search in Google Scholar

35. Begg, B. D., Vance, E. R., Conradson, S. D.: The incorporation of plutonium and neptunium in zirconolite and perovskite. J. Alloy Compd. 271, 221 (1998).10.1016/S0925-8388(98)00058-9Search in Google Scholar

36. Vance, E. R., Finnie, K. S., Zhang, Y., Begg, B. D.: Diffuse reflectance spectroscopy of Pu ions in zirconolite and perovskite. Mater. Res. Soc. Symp. Proc. 824, 249 (2004).10.1557/PROC-824-CC4.10Search in Google Scholar

37. Kesson, S. E., Sinclair, W. J., Ringwood, A. E.: Solid solution limits in synroc zirconolite. Nucl. Chem. Waste Manage. 3, 259 (1983).10.1016/0191-815X(83)90019-0Search in Google Scholar

38. Clinard, F. W. Jr., Hobbs, L. W., Land, C.C., Peterson, D. E., Rohr, D. L., Roof, R. B.: Alpha decay self-irradiation damage in 238Pu-substituted zirconolite. J. Nucl. Mater. 105, 248 (1982).10.1016/0022-3115(82)90381-6Search in Google Scholar

39. Clinard, F. W. Jr., Rohr, D. L., Roof, R. B.: Structural damage in a self-irradiated zirconolite-based Ceramic. Nucl. Instrum. Methods B1, 581 (1984).10.1016/0168-583X(84)90127-7Search in Google Scholar

40. Lumpkin, G. R., Hart, K. P., McGlinn, P. J., Payne, T. E.: Retention of actinides in natural pyrochlores and zirconolites. Radiochim. Acta 66/67, 469 (1994).10.1524/ract.1994.6667.special-issue.469Search in Google Scholar

41. Lumpkin, G. R.: Alpha-decay damage and aqueous durability of actinide host phases in natural systems, J. Nucl. Mater. 289, 136 (2001).10.1016/S0022-3115(00)00693-0Search in Google Scholar

42. Vance, E. R.: Ceramic waste forms. In: R. J. M. Konings (Ed.), Comprehensive Nuclear Materials, Volume 5: Material Performance and Corrosion/Waste Materials, and refs therein (2012), Elsevier, The Netherlands, p. 485.10.1016/B978-0-08-056033-5.00108-7Search in Google Scholar

43. Boult, K. A., Dalton, J. T., Evans, J. P., Hall, A. R., Inns, A. J., Marples J. A. C., Paige, E. L.: The Preparation of fully-active Synroc and its radiation stability – Final Report October 1988, UKAEA, Harwell, AERE R 13318, October 1988.Search in Google Scholar

44. Strachan, D. M., Scheele, R. D., Buck, E. C., Icenhower, J. P., Kozelisky, A. E., Sell, R. L., Elovich, R. J., Buchmiller, W. C.: Radiation damage effects in candidate titanates for Pu disposition: Pyrochlore. J. Nucl. Mater. 245, 109 (2005).10.1016/j.jnucmat.2005.04.064Search in Google Scholar

45. Strachan, D. M., Kozelisky, A. E., Scheele, R. D., Sell, R. L., Icenhower, J. P., Elovich, R. J., Buck E. C., Buckmiller, W. C.: Radiation Damage Effects in Candidate Ceramics for Plutonium Immobilization: Final Report, Pacific Northwest National Laboratory, Report PNNL-14588, February 2004.10.2172/15007189Search in Google Scholar

46. Kesson S. E., Ringwood, A. E.: Safe disposal of spent nuclear fuel. Radioactive Waste Mgmt. Nucl. Fuel Cycle, 4, 159 (1983).Search in Google Scholar

47. Solomah, A. G., Richardson, P. G., McIlwain, A. K.: Phase identification, microstructural characterization, phase microanalysis and leaching performance evaluation of synroc-FA crystalline ceramic waste form. J. Nucl. Mater. 148, 157 (1987).10.1016/0022-3115(87)90108-5Search in Google Scholar

48. Solomah, A. G., Sridhar, T. S., Jones, S. C.: Immobilization of uranium-rich high-level radioactive waste in synroc-FA. In: D. E. Clark, W. B. White, A. J. Machiels (Eds.), Nuclear Waste Management II, Adv. in Ceramics 20, 259 (1986).Search in Google Scholar

49. Ebbinghaus, B. B., Van Konynenburg, R. A., Lawson, J. M., Close, W. L., Curtis, P. G., Stewart, M. W. A., Vance, E. R., Carter, M. L.: Progress on Ceramic Immobilized Forms for Pu Disposition, Presented at 20th Actinide Separations Conference, Itasca, IL, USA, June 13 1996.Search in Google Scholar

50. Jostsons, A., Vance, E. R., Day, R. A., Hart, K. P., Stewart, M. W. A.: Surplus Plutonium Disposal via Immobilization in Synroc, in Proceedings of the International Topical Meeting on Nuclear and Hazardous Waste Management Spectrum ‘96, Aug. 18–23, 1996, Seattle, WA, USA, Amer. Nucl. Soc., La Grange Park, IL, USA. 2032-2037 (1997).Search in Google Scholar

51. Hart, K. P., Vance, E. R., Stewart, M. W. A., Weir, J., Carter, M. L., Hambley, M., Brownscombe, A., Day, R. A., Leung, S., Ball, C. J., Ebbinghaus, B., Gray L., Kan, T.: Leaching behaviour of zirconolite-rich synroc used to immobilize “High-fired” plutonium oxide. In: I. G. McKinley and C. McCombie (Eds.), Scientific Basis for Nuclear Waste Management XXI, September 28 to October 3, 1997, Davos, Switzerland, Mater. Sci. Res. Symp. Proc. 506, 161 (1998).10.1557/PROC-506-161Search in Google Scholar

52. Vance, E. R., Jostsons, A., Moricca, S., Stewart, M. W. A., Day, R. A., Begg, B. D., Hambley, M. J., Hart, K. P., Ebbinghaus, B. B.: Synroc Derivatives for Excess Weapons Plutonium, Presented at the 100th Annual Meeting of the Am. Ceram. Soc., Cincinnati, OH, May 4- 6, 1998, in Environmental Issues and Waste Management Technologies IV, Ceramic Transactions Volume 93, Ed. J. C. Marra and G. T. Chandler, American Ceramic Society, Westerville, OH, USA, (1999), p. 323.Search in Google Scholar

53. Stewart, M. W. A., Vance, E. R., Jostsons, A., Ebbinghaus, B. B.: Near-equilibrium processing of ceramics for actinide disposition. J. Aust. Ceram. Soc. 39, 130 (2003).Search in Google Scholar

54. Stewart, M. W. A., Moricca, S. A., Begg, B. D., Day, R. A., Scales, C. R., Maddrell, E. R., Eilbeck, A. B.: Flexible Process Options For The Immobilization Of Residues And Wastes Containing Plutonium, CD-ROM, Paper ICEM07-7246, Proceedings of the 11th International Conference on Environmental Remediation and Radioactive Waste Management ICEM2007, September 2–6, 2007, Oud Sint-Jan Hospital Conference Center, Bruges, Belgium.10.1115/ICEM2007-7246Search in Google Scholar

55. Scales, C. R., Maddrell, E. R., Gawthorpe, N., Begg, B. D., Moricca, S., Day, R. A., Stewart, M. W. A.: Demonstrating a Glass Ceramic route for the Immobilization of Plutonium containing Wastes and Residues on the Sellafield Site, Paper 6232, WM’06, Feb 26- Mar. 2, 2006, Tucson, Az. CD-ROM.Search in Google Scholar

56. The Evolution of HIP – Commemorating the first hot and cold isostatic processing vessels, ASME paper, April 2nd, 1985, www.ASME.com.Search in Google Scholar

57. Boyer, C. B.: Historical review of HIP equipment. In: M. Kozumi (Ed.), Hot-isostatic Pressing – Theory and Applications, Elsevier Applied Science, London, 465 (1992).10.1007/978-94-011-2900-8_68Search in Google Scholar

58. Storhok, V. W., Martin, R. L., Gates, J. E.: Radiation stability of uranium mononitride. In: A. N. Holden (Ed.), Delavan, WI, Oct. 1966, High Temperature Nuclear Materials, Gordon and Breach, New York (1968), p. 255.Search in Google Scholar

59. Holden, R. B.: Ceramic Fuel Elements, Gordon and Breach, New York (1966), p. 46, 125–128 & 165.Search in Google Scholar

60. Holden, A. N.: Dispersion Fuel Elements, Gordon and Breach, New York (1967), p. 43.Search in Google Scholar

61. Pardue, W. M., Storhok V. W., Smith, R. A.: Properties of plutonium mononitride and its alloys. In: Kay, M. B. Waldron (Eds.), Plutonium 1965, Chapman and Hall (Inst. of Metals), London (1967), p. 721.Search in Google Scholar

62. Fulrath, R. M.: Hot forming processes. Am. Ceram. Soc. Bull. 43, 880 (1964).Search in Google Scholar

63. Tegman, R.: Hot isostatic pressing of ceramic waste forms. Interceram. 3, 35 (1985).Search in Google Scholar

64. Goff, K. M., Simpson, M. F., Bateman, K. J., Esh, D. W., Rigg R. H., Yapuncich, F. L.: Unirradiated testing of the demonstration scale ceramic waste form at ANL west. Trans. Am. Nucl. Soc. 77, 79 (1997).Search in Google Scholar

65. Harker, A. B., Morgan, P. E. D., Flintoff, J. F.: Hot isostatic pressing of nuclear waste glasses. J. Am. Ceram. Soc. 67, C-26 (1984).10.1111/j.1151-2916.1984.tb09614.xSearch in Google Scholar

66. Larker, H. T.: Hot isostatic pressing for the consolidation and containment of radioactive waste. In: G. J. McCarthy (Ed.), Scientific Basis for Nuclear Waste Management, Vol. 1, Plenum Press, New York and London (1979), p. 207.10.1007/978-1-4615-9107-8_24Search in Google Scholar

67. Werme, L. O.: In: R. W. Smith, D. W. Shoesmith (Eds.), Scientific Basis for Nuclear Waste Management XXIII, Materials Research Society, Warrendale, PA, USA (2000), p. 77.Search in Google Scholar

68. Bowyer, W. H.: In: P. Van Iseghem (Ed.), Scientific Basis for Nuclear Waste Management XXIX, Materials Research Society, Warrendale, PA, USA, 829 (2006).Search in Google Scholar

69. Stewart, M. W. A., Begg, B. D., Day, R. A., Moricca, S., Vance E. R., Walls, P. A.: Low-risk alternative waste forms for actinide immobilization, Paper 5212, WM’05, Feb. 27-Mar. 3, 2005, Tucson, Az. CD-ROM.Search in Google Scholar

70. U.S. Department of Energy Technical Readiness Assessment Guide, DOE G 413.3-4, US DOE, Washington DC, USA, 12th Oct. 2009.Search in Google Scholar

71. National Academy of Sciences. Committee on International Security and Arms Control, Management and Disposition of Excess Weapons Plutonium, National Academy Press, Washington, DC (1994).Search in Google Scholar

72. U.S. Program for Disposition of Excess Weapons Plutonium, IAEA-SM-346/102, Book Chapter, pages 79–91, 2002, Author: Matthew Bunn, Professor of Practice; Co-Principal Investigator, Project on Managing the Atom, Belfer Center Programs or Projects: Science, Technology, and Public Policy; Managing the Atom.Search in Google Scholar

73. Jostsons, A., Vance, E. R., Mercer, D. J., Oversby, V. M.: Synroc for immobilising excess weapons plutonium. Mater. Sci. Res. Symp. Proc. 353, 775 (1995).10.1557/PROC-353-775Search in Google Scholar

74. Vance, E. R., Begg, B. D., Day, R. A., Ball, C. J.: Zirconolite-rich ceramics for actinide wastes. Mater. Sci. Res. Symp. Proc. 353, 767 (1995).10.1557/PROC-353-767Search in Google Scholar

75. Gieré, R., Willians, C. T., Lumpkin, G. R.: Chemical characteristics of natural zirconolit. Schweiz. Mineral. Petrogr. Mitt. 78, 433 (1998).Search in Google Scholar

76. Ebbinghaus, B. B., Van Konynenburg, R. A., Ryerson, F. J., Vance, E. R., Stewart, M. W. A., Jostsons, A., Allender, J. S., Rankin, T., Congdon, J.: Ceramic Formulation for the Immobilization of Plutonium, WM’98, March 1–5, 1998, Tucson, Az. CD-ROM.Search in Google Scholar

77. Ebbinghaus, B. B., Cicero-Herman, C., Gray, L., Shaw, H.: Plutonium Immobilization Project Baseline Formulation, Lawrence Livermore National Laboratory report UCRL-ID-133089, Feb. 1999.10.2172/792655Search in Google Scholar

78. Zhang, Y., Hart, K. P., Blackford, M. G., Thomas, B. S., Aly, Z., Lumpkin, G. R., Stewart, M. W. A., McGlinn, P. J., Brownscombe, A.: Durabilities of pyrochlore ceramics designed for the immobilisation of surplus plutonium. In: K. P. Hart, G. R. Lumpkin (Eds.), Scientific Basis for Nuclear Waste Management XXIV, Materials Research Society, Warrendale, PA, USA (2001), p. 325.10.1557/PROC-663-325Search in Google Scholar

79. Van Konynenburg, R. A., Ebbinghaus, B. B., Kirkorian, O. H., Martin, S. I., Ryerson F. J., Herman, C. C.: Phase Equilibria and Impurity Incorporation on the Ceramic Plutonium Immobilization Form, WM’00, Feb 27- Mar. 2, 2000, Tucson, Az. CD-ROM.Search in Google Scholar

80. Stewart, M. W. A., Vance, E. R., Day, R. A., Leung, S., Brownscombe, A., Carter, M. L., Ebbinghaus, B. B.: Impurity incorporation in pyrochlore-rich ceramics. In: Chandler, X. Feng (Eds.), Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries V: Ceramic Transactions 107, American Ceramic Society, Westerville, OH (2000), p. 569.Search in Google Scholar

81. Stewart, M. W. A., Vance, E. R., Jostsons, A., Finnie, K., Day, R. A., Ebbinghaus, B. B.: Atmosphere processing effects on titanate ceramics designed for plutonium disposition. In: B. P. McGrail, G. A. Cragnolino (Eds.), Scientific Basis for Nuclear Waste Management XXV, Materials Research Society, Warrendale, PA, USA (2002), p. 381.10.1557/PROC-713-JJ11.22Search in Google Scholar

82. Marra, S. L., Marra, J. C., Strachan, D. M., Shaw, H. F., Chamberlain, D. B.: Qualification and acceptance of the immobilized plutonium waste form. In: D. R. Spearing, G. L. Smith, R. L. Putnam (Eds.), Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries VI, American Ceramic Society, Westerville, OH, USA (2001), p. 191.Search in Google Scholar

83. U.S. Department of Energy, “Record of Decision for the storage and Disposition of Weapons-Useable Fissile Materials, Final Programmatic Environmental Impact Statement”, Jan. 14, 1997.Search in Google Scholar

84. Cochran, S. G., Dunlop, W. H., Edmunds, T. A., MacLean L. M., Gould, T. H.: UCRL-ID-128705 (1997); Record of Decision for the Surplus Plutonium Disposition. Final Environmental Impact Statement. January 4, 2000, US Department of Energy.Search in Google Scholar

85. Loffler, J. V., U.S. Patent 2,150,694 (1932).10.1136/bmj.2.3744.694Search in Google Scholar

86. Macfarlane, A.: Immobilization of excess weapon plutonium: a better alternative to glass. Science Global Security. Sci. Global Secur. 7, 271 (1998).10.1080/08929889808426463Search in Google Scholar

87. OCRWM, Civilian Radioactive Waste Management System Waste Acceptance System Requirements Document, Revision 5, DOE/RW-0351 REV. 5, Jan. 2002.Search in Google Scholar

88. U.S. Department of Energy, Surplus Plutonium Disposition Program, record of decision Federal Register, Vol. 67, No. 76, 19432, April 19, 2002 and amended record of decision. Federal Register, Vol. 68, No. 79, 20134, April 24, 2003.Search in Google Scholar

89. Gregg, D. J., Zhang, Y., Middleburgh, S. C., Conradson, S. D., Lumpkin, G. R., Triani G., Vance, E. R.: The incorporation of plutonium in lanthanum zirconate pyrochlores. J. Nucl. Mater. 443, 444 (2013).10.1016/j.jnucmat.2013.07.030Search in Google Scholar

90. Kulkarni, N. K., Sampath, S., Venugopal, V.: Preparation and characterisation of Pu-pyrochlore: [La1−xPux]2 Zr2O7 (x=0–1). J. Nucl. Mater. 281, 248 (2000).10.1016/S0022-3115(00)00336-6Search in Google Scholar

91. Sickafus, K. E., Minervini, L., Grimes, R. W., Valdez, J. A., Ishimura, M. Li, McClellan, F., Hartmann, T.: Radiation tolerance of complex oxides. Science 289, 748 (2000).10.1126/science.289.5480.748Search in Google Scholar PubMed

92. Ewing, R. C., Weber W. J., Clinard, F. W.: Radiation effects in nuclear waste forms for high-level radioactive waste. Prog. Nucl. Energ. 29, 635 (1995).10.1016/0149-1970(94)00016-YSearch in Google Scholar

93. Stewart, M. W. A., Begg, B. D., Vance, E. R., Finnie, K., Li, H., Lumpkin, G. R., Smith, K. L., Weber W. J., Thevuthasan, S.: The replacement of titanium by zirconium in ceramics for plutonium immobilization. In: B. P. McGrail, G. A. Cragnolino (Eds.), Scientific Basis for Nuclear Waste Management XXV, Materials Research Society, Warrendale, PA (2002), p. 311.10.1557/PROC-713-JJ2.5Search in Google Scholar

94. Stewart, M. W. A., Moricca, S. A., Vance, E. R., Day, R. A., Maddrell, E. R., Scales, C. R., Hobbs, J.: Hot-Isostatic Pressing of Chlorine-Containing Plutonium Residues and Wastes, TMS2013 Supplemental Proceedings (2013).10.1002/9781118663547.ch83Search in Google Scholar

95. Scales, C. R., Maddrell, E. R., Gawthorpe, N., Day, A., Begg, B. D., Moricca, S. A., Stewart, M. W. A.: A Flexible Process for the Immobilisation of Plutonium Containing Wastes, Paper No. 249, Proceedings of GLOBAL 2005, Tsukuba, Japan, Oct 9–13, 2005.Search in Google Scholar

96. Day, R. A., Moricca, S., Stewart, M. W. A., Begg, B. D., Maddrell, E. R., Scales, C. R., Gawthorpe, N.: Technical Demonstration of Zirconolite Glass-Ceramics Processed in a hot Isostatic Press: An option for Immobilisation of Actinide Containing Residues at Sellafield, ICEM’05: the 10th International Conference on Environmental Remediation and Radioactive Waste Management, Paper ICEM05-1136, September 4–8, 2005, Glasgow, Scotland, CD-ROM.Search in Google Scholar

97. Scales, C. R., Maddrell, E. R., Gawthorpe, N., Begg, B. D., Moricca, S., Day, R. A., Stewart, M. W. A.: Development of a Process for the Immobilisation of Actinide Containing Residues at the Sellafield Site, ICEM’05: the 10th International Conference on Environmental Remediation and Radioactive Waste Management, Paper ICEM05-1125, September 4–8, 2005, Glasgow, Scotland, CD-ROM.Search in Google Scholar

98. Zhang, Y., Hart, K. P., Begg, B. D., Keegan, E. A., Day, R. A., Brownscombe, A., Stewart, M. W. A.: Durability of Pu-doped zirconate and titanate ceramics for Pu disposition. In: B. P. McGrail, G. A. Cragnolino (Eds.), Scientific Basis for Nuclear Waste Management XXV, Mater. Res. Soc. Symp. Proc. 713, Materials Research Society, Warrendale, PA (2002), p. 389.10.1557/PROC-713-JJ6.1Search in Google Scholar

99. Hart, K. P., Zhang, Y., Aly, Z., Loi, E., Stewart, M. W. A., Brownscombe, A., Ebbinghaus, B. B., Broucier, B.: Aqueous durability of titanate ceramics designed to immobilise excess Pu. In: R. W. Smith, D. W. Shoesmith (Eds.), Materials Research Society Symposium, Scientific Basis for Nuclear Waste Management XXIII, Mater. Res. Soc. Symp. Proc. 608, Materials Research Society, Warrendale, PA (2000), p. 353.10.1557/PROC-608-353Search in Google Scholar

100. Weber, W. J., Ewing, R. C., Catlow, C. R. A., Diaz de la Rubia, T., Hobbs, L. W., Kinoshita, C., Matzke, Hj., Motta, A. T., Nastasi, M., Salje, E. K. H., Vance, E. R., Zinkle, Z.: Radiation damage in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J. Mater. Res. 13, 1434 (1998).10.1557/JMR.1998.0205Search in Google Scholar

101. Vance, E. R.: Radiation effects in solids designed for the immobilisation of high level nuclear waste. Key Eng. Mater. 252, 263 (2003).10.4028/www.scientific.net/KEM.253.263Search in Google Scholar

102. Zhang, Y., Zhang, Z., Thorogood, G., Vance, E. R.: Pyrochlore based glass-ceramics for the immobilization of actinide-rich nuclear wastes: From concept to reality. J. Nucl. Mater. 432, 545 (2013).10.1016/j.jnucmat.2012.08.035Search in Google Scholar

103. Schrieber, H. D., Balasz, G. B.: The chemistry of uranium in borosilicate glasses. Part 1. Simple base compositions relevant to the immobilisation of nuclear waste. Phys. Chem. Glasses 23, 139 (1982).Search in Google Scholar

104. Carter, M. L., Li, H., Zhang, Y., Vance, E. R., Mitchell, D. R. G.: Titanate Ceramics for immobilization of uranium-rich radioactive wastes. J. Nucl. Mater. 384, 322 (2009).10.1016/j.jnucmat.2008.12.042Search in Google Scholar

105. James, M., Carter, M. L., Zhang, Z., Zhang, Y., Wallwork, K. S., Avdeev, J. M., Vance, E. R.: Crystal chemistry and structures of (Ca,U) titanate pyrochlores. J. Am. Ceram. Soc. 93, 3464 (2010).10.1111/j.1551-2916.2010.03871.xSearch in Google Scholar

106. Maddrell, E. R., Vance, E. R., Gregg, D. J.: Capture of iodine from the vapour phase and immobilisation as sodalite. J. Nucl. Mater. 467, 271 (2015).10.1016/j.jnucmat.2015.09.038Search in Google Scholar

107. Riley, B. J., Vienna, J. D., Strachan, D. M., McCloy, J. S., Jerden, J. L.: Materials and processes for the effective capture and immobilization of radioiodine: a review. J. Nucl. Mater. 470, 307 (2016).10.1016/j.jnucmat.2015.11.038Search in Google Scholar

108. Gregg, D. J., Vance, E. R., Triani, G., Begg, B. D., Veliscek-Carolan, J., Palmer, T., Lu, K., Jovanovic, M., McLeod, T., Zhang, Z., Deen, S., Watson, I. W., Webb, N., Short, K., Olufson, K., Grant, C., Kurlapski, I., Thorogood, K., Zhang, Y., Carstens, C., Meyer, W., Stassen, L., Badenhorst, J., Goede, A., Nelwamondo, M., Barry, J.: Demonstration of Selected Encapsulation Methodologies Recommended in Feasibility Report (Work Order 1) Using Surrogate material, 2016, ANSTO internal report.Search in Google Scholar

109. Kleykamp, H.: Selection of materials as diluents for burning of plutonium fuels in nuclear reactors. J. Nucl. Mater. 275, 1 (1999).10.1016/S0022-3115(99)00144-0Search in Google Scholar

110. Degueldre, C., Paratte, J. M.: Concepts for an inert matrix fuel, an overview. J. Nucl. Mater. 274, 1 (1999).10.1016/S0022-3115(99)00060-4Search in Google Scholar

111. Stewart, M. W. A., Vance, E. R.: J. Aust. Ceram. Soc. 42, 50 (2006).Search in Google Scholar

112. Gregg, D. J., Karatchevtseva, I., Triani, G., Lumpkin, G. R., Vance, E. R.: The thermophysical properties of calcium and barium zirconium phosphate. J. Nucl. Mater. 441, 203 (2013).10.1016/j.jnucmat.2013.05.075Search in Google Scholar

113. Scheetz, B. E., Agrawal, D. K., Breval, E., Roy, R.: Sodium zirconium phosphate (NZP) as a host structure for nuclear waste immobilization: a review. Waste Manage. (Oxford), 14, 489 (1994).10.1016/0956-053X(94)90133-3Search in Google Scholar

Received: 2016-3-16
Accepted: 2016-10-13
Published Online: 2016-12-19
Published in Print: 2017-11-27

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2016-2604/html
Scroll to top button