Home Determination of 55Mn(n,γ)56Mn reaction cross-section at the neutron energies of 1.12, 2.12, 3.12 and 4.12 MeV
Article
Licensed
Unlicensed Requires Authentication

Determination of 55Mn(n,γ)56Mn reaction cross-section at the neutron energies of 1.12, 2.12, 3.12 and 4.12 MeV

  • Vibha Vansola , Surjit Mukherjee , Haladhara Naik EMAIL logo , Saraswatula Venkata Suryanarayana , Reetuparna Ghosh , Sylvia Badwar , Bioletty Mary Lawriniang and Yerraguntla Santhi Sheela
Published/Copyright: July 22, 2016

Abstract

The 55Mn(n,γ)56Mn reaction cross-sections at the neutron energies of 1.12, 2.12, 3.12 and 4.12 MeV were determined by using activation and off-line γ-ray spectrometric technique. The neutron energies of 1.12 and 2.12 MeV were generated from the 7Li(p,n) reaction by using the proton energies of 3 and 4 MeV from the folded tandem ion beam accelerator (FOTIA) at BARC. For the neutron energies of 3.12 and 4.12 MeV, the proton energies used were 5 and 6 MeV from the Pelletron facility at TIFR, Mumbai. The 115In(n,γ)116mIn reaction cross-section was used as the neutron flux monitor. The 55Mn(n,γ)56Mn reaction cross-section at the neutron energies of 4.12 MeV are reported for the first time, whereas at 1.12, 2.12 and 3.12 MeV, they are in between the literature data. The 55Mn(n,γ)56Mn reaction cross-section was also calculated theoretically by using the computer code TALYS 1.6 and EMPIRE 3.2.2. The experimental data of present work are found to be in between the theoretical values of TALYS and EMPIRE.

Acknowledgments

One of the authors, Vibha Vansola, is thankful to Dr. J. P. Singh, Head, Department of Physics, M. S. University, Baroda and UGC-BSR for encouraging us to carry out this work and for their valuable suggestions and for the fellowship. The authors also thankful to the staff of the FOTIA at Van-de-Graff, BARC and Pelletron facility, TIFR for their excellent operation of the accelerator and giving the proton beam during the irradiation.

References

1. Sinha, R. K., Kakodkar, A.: Design and development of the AHWR – the Indian thorium fuelled innovative nuclear reactor. Nucl. Eng. Des. 236, 683 (2006).10.1016/j.nucengdes.2005.09.026Search in Google Scholar

2. Allen, T. R., Crawford, D. C.: Lead-cooled fast reactor systems and the fuels and materials challenges. Sci. Technol. Nucl. Install., 2007, 11 (2007).10.1155/2007/97486Search in Google Scholar

3. Nuttin, A., Heuer, D., Billebaud, A., Brissot, R., Le Brun, C., Liatard, E., Loiseaux, J. M., Mathieu, L., Meplan, O., Merle-Lucotte, E., Nifenecker, H., Perdu, F., David, S.: Potential of thorium molten salt reactors detailed calculations and concept evolution with a view to large scale energy production. Prog. Nucl. Energy 46, 77 (2005).10.1016/j.pnucene.2004.11.001Search in Google Scholar

4. Mathieu, L., Heuer, D., Brissot, R., Garzenne, C., Lebrun, C., Liatard, E., Loiseaux, J. M., Meplan, O., Merle-Lucotte, E., Nuttin, A.: Proportion for a very simple thorium molten salt reactor, in Proceedings of the Global International Conference, Paper No. 428, Tsukuba, Japan, 2005.Search in Google Scholar

5. Fast reactors and accelerator driven systems knowledge base, IAEA- TECDOC-1319: thorium fuel utilization: options and trends (Nov. 2002).Search in Google Scholar

6. Carminati, F., Klapisch, R., Revol, J. P., Roche, Ch., Rubia, J. A., Rubia, C.: An energy amplifier for cleaner and inexhaustible nuclear energy production driven by particle beam accelerator. CERN/AT/93-49 (ET) 1993.Search in Google Scholar

7. Arthur, E. D., Schriber, S. A., Rodriguez, A. (Editors): The international conference on accelerator-driven transmutation technologies and applications. Las Vegas, Nevada, USA, 1994, AIP Conf. Proc., Vol. 346 (1995).Search in Google Scholar

8. Rubia, C., Rubio, J. A., Buono, S., Carminati, F., Fietier, N., Galvez, J., Geles, C., Kadi, Y., Klapisch, R., Mandrilion, P., Revol, J. P., Roche, Ch.: Conceptual design of a fast neutron operated high power energy amplifier. CERN/AT/95-44 (ET) 1995.10.1063/1.49069Search in Google Scholar

9. Accelerator driven systems: energy generation and transmutation of nuclear waste. status report, IAEA, Vienna, IAEA-TECDOC-985, 1997.Search in Google Scholar

10. Bowman, C. D.: Accelerator driven systems for nuclear waste transmutation. Ann. Rev. Nucl. Part. Sci. 48, 505 (1998).10.1146/annurev.nucl.48.1.505Search in Google Scholar

11. Kapoor, S. S.: Accelerator-driven sub-critical reactor system (ADS) for nuclear energy generation. Pramana-J. Phys. 59, 941 (2002).10.1007/s12043-002-0143-zSearch in Google Scholar

12. Otuka, N., Dupont, E., Semkova, V., Pritychenko, B., Blokhin, A. I., Aikawa, M., Babykina, S., Bossant, M., Chen, G., Dunaeva, S., Forrest, R. A., Fukahori, T., Furutachi, N., Ganesan, S., Ge, Z., Gritzay, O. O., Herman, M., Hlavač, S., Kato, K., Lalremruata, B., Lee, Y. O., Makinaga, A., Matsumoto, K., Mikhaylyukova, M., Pikulina, G., Pronyaev, V. G., Saxena, A., Schwerer, O., Simakov, S. P., Soppera, N., Suzuki, R., Takács, S., Tao, X., Taova, S., Tárkányi, F., Varlamov, V. V., Wang, J., Yang, S. C., Zerkin, V., Zhuang, Y.: Experimental nuclear reaction data. Nucl. Data Sheets 120, 272 (2014).10.1016/j.nds.2014.07.065Search in Google Scholar

13. Leipunskiy, A. I., Kazachkovskiy, O. D., Artyukhov, G. J., Baryshnikov, A. I., Belanova, T. S., Galkov, V. I., Stavisskiy, Y. J., Stumbur, E. A., Sherman, L. E.: Radiative capture cross-section measurements for fast neutrons. Fiziko-Energeticheskii Inst., Obninsk, Russia, second UN Conf. on the Peaceful Uses of Atomic Energy. Geneva, 1–13 Sep 1958, 15, 50(2219) 1958.Search in Google Scholar

14. Perkin, L., O’Connor, L. P., Coleman, R. F.: Radiative capture cross sections for 14.5 MeV neutrons. Proc. Physical Soc. 72, 505 (1958).10.1088/0370-1328/72/4/304Search in Google Scholar

15. Bostrom, N. A., Morgan I. L., Prud’homme, J. T., Okhuysen, P. L., Hundson Jr, O. M.: Neutron interactions in lithium, carbon, nitrogen, aluminium, argon, manganese, yttrium, zirconium, radiolead and bismuth. Report No. WADC-TN-59-107, 1959.Search in Google Scholar

16. Johnsrud, A. E., Silbert, M. G., Barschall, H. H.: Energy dependence of fast-neutron activation cross section. Phys. Rev. 116, 927 (1959).10.1103/PhysRev.116.927Search in Google Scholar

17. Stavisskiy, J. Y., Tolstikov, V. A.: Radiative neutron cross-section for several isotopes in the energy range 0.03–2.5 MeV. Atomnaya Energiya 10(5), 508 (1961).Search in Google Scholar

18. Csikai, J., Peto, G., Buczko, M., Milligy, Z., Eissa, N.: Radiative capture cross-sections for 14.7 MeV neutrons. Nucl. Phys. A 95, 229 (1967).10.1016/0375-9474(67)90164-9Search in Google Scholar

19. Menlove, H. O., Coop, K. L., Grench, H. A., Sher, R.: Neutron radiative capture cross sections for Na23, Mn55, In115, and Ho165 in the energy range 1.0 to 19.4 MeV. Phys. Rev. 163, 1299 (1967).10.1103/PhysRev.163.1299Search in Google Scholar

20. Peto, G., Milligy, Z., Hunyadi, I.: Radiative capture cross-sections for 3 MeV neutrons. J. Nul. Energ. 21, 797 (1967).10.1016/0022-3107(67)90089-5Search in Google Scholar

21. Dovbenko, A. G., Kolesov, V. E., Koroleva, V. P., Tolstikov, V. A.: A determination of the 2200 M/S absorption cross section and resonance integral of arsenic by pile oscillator technique. Soviet Atomic Energy 26, 82 (1969).10.1007/BF01155419Search in Google Scholar

22. Vuletin, J., Kulisic, P., Cindro, N.: Activation cross-sections of (n, gamma) reactions at 14 MeV. Lettere al Nuovo Cimento 10, 1 (1974).10.1007/BF02762892Search in Google Scholar

23. Schwerer, O., Winklerrohatsch, M., Warhanek, H., Winkler, G.: Measurement of cross-sections for 14 MeV neutron capture. Nucl. Phys. A 264, 105 (1976).10.1016/0375-9474(76)90147-0Search in Google Scholar

24. Manjushree, Majumder, B. Mitra, B.: Capture cross section of 14 MeV neutrons. Trans. Bose Research Inst., Calcutta 40(3), 81 (1977).Search in Google Scholar

25. Budnar, M., Cvelbar, F., Hodgson, E., Hudoklin, A., Ivkovic, V., Likar, A., Mihailovic, M. V., Martincic, R., Najzer, M., Perdan, A., Potokar, M., Ramsak, V.: Prompt gamma-ray spectra and integrated cross sections for the radiative capture of 14 MeV neutrons for 28 natural targets in the mass region from 12 to 208. INDC (YUG)-6, 1979.Search in Google Scholar

26. Magnusson, G., Andersson, P., Berquist, I.: 14.7 MeV neutron capture cross-section Measurements. Physica Scripta 21(1), 21 (1980).10.1088/0031-8949/21/1/004Search in Google Scholar

27. Bahal, B. M., Pepelnik, R.: Cross section measurements of Cr,Mn,Fe,Co,Ni for an accurate determination of these elements in natural and synthetic samples using a 14 MeV neutron generator. Ges. Kernen Verwertung, Schiffbau and Schiffahrt E(85), 11 (1985).Search in Google Scholar

28. Trofimov, Y. N.: Neutron radiation capture cross-sections for nuclei of medium and large masses at the neutron energy 1 MeV. Int. Conf. on Neutron Physics, Kiev, 14–18 Sep 1987, Vol. 3, p. 331 (1987).Search in Google Scholar

29. Trofimov, Y. N.: Activation cross-sections for 31 nuclei at the neutron energy 2 MeV. Vop. At.Nauki i Tekhn., Ser.Yadernye Konstanty, 1987(4), 10 (1987).Search in Google Scholar

30. Gautam, R. P., Singh, R. K., Rizvi, I. A., Afzal Ansari, M., Chaubey, A. K., Kailas, S.: Measurement of radiative capture of fast neutrons in Mn-55 and In-115. Indian J. Pure Appl. Phy. 28, 235 (1990).Search in Google Scholar

31. Koning, A. J., Hilaire, S., Duijvestijn, M. C.: TALYS-1.6, A nuclear reaction Program. NRG-1755 NG Petten, The Netherlands, 2008, http://www.talys.eu.10.1051/ndata:07767Search in Google Scholar

32. Herman, M.: Empire-II statistical model code for nuclear reaction calculations. IAEA, Vienna (2002).Search in Google Scholar

33. Vansola, V., Ghosh, R., Badwar, S., Lawriniang, B. M., Gopalakrishna, A., Naik, H., Naik, Y., Tawade, N. S., Sharma, S. C., Bhatt, J. P., Gupta, S. K., Sarode, S., Mukherjee, S., Singh, N. L., Singh, P., Goswami A.: Measurement of 197Au(n,γ)198gAu reaction cross-section at the neutron energies of 1.12, 2.12, 3.12 and 4.12 MeV. Radiochim. Acta 103, 817 (2015).10.1515/ract-2015-2431Search in Google Scholar

34. Ziegler, J. F.: SRIM-2003. Nucl. Instru. Methods Phys. Res. B 219–220, 1027 (2004). Available at http://www.srim.org/.10.1016/j.nimb.2004.01.208Search in Google Scholar

35. Liskien, H., Paulsen, A.: Neutron production cross-sections and energies for the reactions ‘Li(p,n)7Be and ‘Li(p,n)7Be*. At. Data Nucl. Data Tables 15, 57 (1975).10.1016/0092-640X(75)90004-2Search in Google Scholar

36. Meadows, J. W., Smith, D. L.: Neutrons from proton bombardment of natural Lithium. Argonne National Laboratory Report ANL-7983 (1972).10.2172/4628158Search in Google Scholar

37. Poppe, C. H., Anderson, J. D., Davis, J. C., Grimes, S. M., Wong, C.: Cross sections for the 7Li(p,n)7Be reaction between 4.2 and 26 MeV. Phys. Rev. C 14, 438 (1976).10.1103/PhysRevC.14.438Search in Google Scholar

38. NuDat 2.6, National Nuclear Data Center, Brookhaven National Laboratory. Available at: http://www.nndc.bnl.gov/ (2011).Search in Google Scholar

39. Andersson, P., Zorro, R., Bergqvist, I.: On neutron capture cross- section measurements with the activation technique in the MeV region. Conf. on Nucl. Data for Sci. And Technol, K.H. Bockhoff (editor), Antwerp, Belgium, Sept. 6–10, Page 866, 1982, published by D. Reidel Publishing Company, P. O. Box 17, 3300 AA Dordrecht, Holland.10.1007/978-94-009-7099-1_195Search in Google Scholar

40. Husain, H. A., Hunt, S. E.: Absolute neutron cross section measurements in the energy range between 2 and 5 MeV. Int. J. Appl. Radiat. Isot. 34, 731 (1983).10.1016/0020-708X(83)90252-1Search in Google Scholar

41. Andersson, P., Zorro, R., Berqvist, I., Herman, M., Marcinkowski, A.: Cross Sections for 197Au(n,γ)198Au and 115In(n,γ)116mIn in the Neutron Energy Region 2.0–7.7 MeV. Nucl. Phys. A 443, 404 (1985).10.1016/0375-9474(85)90408-7Search in Google Scholar

42. Zolotarev, K. I., Zolotarev, P. K.: Evaluation of the excitation functions for the 54Fe(n, p)54Mn, 58Ni(n, 2n)57Ni, 67Zn(n, p)67Cu, 92Mo(n, p)92mNb, 93Nb(n,γ)94Nb, 113In(n, n’)113mIn, 115In(n,γ) 116mIn, and 169Tm(n, 3n)167Tm reactions. Progress Report on Research Contract No 16242, INDC (NDS)-0657. Available at https://www-nds.iaea.org/publications/indc/indc-nds-0657.pdf (2013).Search in Google Scholar

43. Lindstrom, R. M., Ronald F., Fleming, R. F.: Neutron self-shielding factors for simple geometries, revisited. Chem. Anal. (Warsaw) 53, 855 (2008).Search in Google Scholar

44. Trkov, A., Zerovnik, G., Snoj, L., Ravnik, M.: On the self-shielding factors in neutron activation analysis. Nucl. Instru. Meth. Phys. Res. A 610, 553 (2009).10.1016/j.nima.2009.08.079Search in Google Scholar

45. Hofmann, H., Richert, J., Tepel, J., Weidenmuller, H.: Cross sections for the 7Li(p,n)7Be reaction between 4.2 and 26 MeV. Ann. Phys. 90, 403 (1975).10.1016/0003-4916(75)90005-6Search in Google Scholar

46. Belgya, T., Bersillon, O., Capote, R., Fukahori, T., Zhigang, G., Goriely, S., Herman, M., Ignatyuk, A. V., Kailas, S., Koning, A., Oblozinsky, P., Plujko, V., Young, P.: RIPL-2 Reference input parameter library, RIPL-2. IAEA- TECDOC-1506, Vienna. Available at: http://www-nds.iaea.org/ripl2/ (2006).Search in Google Scholar

Received: 2016-4-4
Accepted: 2016-6-2
Published Online: 2016-7-22
Published in Print: 2016-11-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2016-2610/html
Scroll to top button