Sorption of Th(IV) onto ZnO nanoparticles and diatomite-supported ZnO nanocomposite: kinetics, mechanism and activation parameters
-
Sabriye Yusan
, Anastasia Bampaiti
Abstract
In this study, for the first time ZnO nanoparticles and diatomite-supported ZnO nanocomposite have been utilized as adsorbent for the removal of Th(IV) ions from aqueous solutions under different experimental conditions. The Langmuir, Freundlich, Temkin and Dubinin– Radushkevich (D–R) isotherms were used to analyze the equilibrium data. The sorption equilibrium data were fitted well to the Langmuir isotherm with maximum sorption capacities values was found to be 1.105 mmol/g and 0.320 mmol/g for ZnO nanoparticles and diatomite supported ZnO nanocomposite, respectively. Pseudo-first and pseudo-second order equations, Intraparticle diffusion and Bangham’s models were considered to evaluate the rate parameters and sorption mechanism. Sorption kinetics were better reproduced by the pseudo-second order model (R2 > 0.999), with an activation energy (Ea) of +99.74 kJ/mol and +62.95 kJ/mol for ZnO nanoparticles and diatomite-supported ZnO nanocomposite, respectively. In order to specify the type of sorption reaction, thermodynamic parameters were also determined. The evaluated ΔG* and ΔH* indicate the non-spontaneous and endothermic nature of the reactions. The results of this work suggest that both of the used materials are fast and effective adsorbents for removing Th(IV) from aqueous solutions and chemical sorption plays a role in controlling the sorption rate.
Acknowledgement
This project was supported by Ege University Scientific Research Project Unit Project No. 2012 NBE 015. The research for this paper was carried out at the Institute of Nuclear Sciences, Ege University, Bornova-Izmir, within the frame of ERASMUS Program.
References
References
1. L. Y. Yuan, Z.Q. Bai, R. Zhao, Y. L. Liu, Z. J. Li, S. Q. Chu, L. R. Zheng, J. Zhang, Y. L. Zhao, Z. F. Chai, W. Q. Shi, ACS Appl. Mater. Interfaces. 6 (2014) 4786.10.1021/am405584hSearch in Google Scholar PubMed
2. H. Heshmati, H. G. Gilani, M. Torab-Mostaedi, A. Haidary, J. Dispers. Sci. Technol. 35 (2014) 501.10.1080/01932691.2013.796886Search in Google Scholar
3. D. Humelnicu, C. Blegescu, D. Ganju, J. Radioanal. Nucl. Chem. 299 (2013) 1183.10.1007/s10967-013-2873-4Search in Google Scholar
4. N. M. Mubarak, J. N. Sahu, E. C. Abdullah, N. S. Jayakumar, Sep. Purif. Rev. 43 (2014) 311.10.1080/15422119.2013.821996Search in Google Scholar
5. W. Liu, W. Sun, Y. Han, M. Ahmad, J. Ni, Colloids Surfaces A: Physicochem. Eng. Asp. 452 (2014) 138.10.1016/j.colsurfa.2014.03.093Search in Google Scholar
6. S. D. Yusan, S. Akyil, J. Hazard. Mater. 160 (2008) 388.10.1016/j.jhazmat.2008.03.009Search in Google Scholar PubMed
7. S. (Doyurum) Yusan, S. (Akyil) Erenturk, Desalination 269 (2011) 58.10.1016/j.desal.2010.10.042Search in Google Scholar
8. Ü.H. Kaynar, M. Ayvacıklı, S.Ç. Kaynar, Ü. Hiçsönmez, J. Radioanal. Nucl. Chem. 299 (2014) 1469.10.1007/s10967-014-2919-2Search in Google Scholar
9. R. A. Crane, M. Dickinson, I. C. Popescu, T. B. Scott, Water Res. 45 (2011) 2931.10.1016/j.watres.2011.03.012Search in Google Scholar PubMed
10. Y. Li, C. Wang, Z. Guo, C. Liu, W. Wu, J. Radioanal. Nucl. Chem. 299 (2014) 1683.10.1007/s10967-014-2956-xSearch in Google Scholar
11. I. Ghiloufi, Proceeding of the International Conference, 12th, Electronics, hardware, wireless and optical communications; Recent advances in circuits, communications and signal processing, (EHAC’13), (ISPRA’13), (NANOTECHNOLOGY’13) Cambridge (2013) 321.Search in Google Scholar
12. Z. Camtakan, S. Akyil Erenturk, S. Doyurum Yusan, Environ. Prog. Sustain. Energy 31 (2012) 536.10.1002/ep.10575Search in Google Scholar
13. S. Mahdavi, M. Jalali, A. Afkhami, J. Nanoparticle Res. 14 (2012) 846.10.1007/s11051-012-0846-0Search in Google Scholar
14. L. Chen, H. Xin, Y. Fang, C. Zhang, F. Zhang, X. Cao, C. Zhang, X. Li, J. Nanomater. 2014 (2014) 1.10.1155/2014/793610Search in Google Scholar
15. H. Zeng, W. Cai, P. Liu, X. Xu, H. Zhou, C. Klingshirn, H. Kalt, ACS Nano. 2 (2008) 1661.10.1021/nn800353qSearch in Google Scholar PubMed
16. Z. Jing, J. Zhan, Adv. Mater. 20 (2008) 4547.10.1002/adma.200800243Search in Google Scholar
17. T. P. Chou, Q. Zhang, G. E. Fryxell, G. Z. Cao, Adv. Mater. 19 (2007) 2588.10.1002/adma.200602927Search in Google Scholar
18. H. Tajizadegan, M. Jafari, M. Rashidzadeh, A. Saffar-Teluri, Appl. Surf. Sci. 276 (2013) 317.10.1016/j.apsusc.2013.03.089Search in Google Scholar
19. S. Yusan, A. Bampaiti, S. Aytas, S. Erenturk, M. A. A. Aslani, Ceramics International 42 (2016) 2158.10.1016/j.ceramint.2015.09.169Search in Google Scholar
20. T. S. Anirudhan, S. Rijith, A. R. Tharun, Colloids and Surfaces A: Physicochem. Eng. Aspects 368 (2010) 13.10.1016/j.colsurfa.2010.07.005Search in Google Scholar
21. Q. Deng, Y. Jin, Q. Wang, R. Zhao, N. Pan, F. Zhai, M. Luo, C. Xia, J. Radioanal. Nucl. Chem. 295 (2013) 125.10.1007/s10967-012-1879-7Search in Google Scholar
22. D. L. Guerra, R. R. Viana, C. Airoldi, J. Hazard. Mater. 168 (2009) 1504.10.1016/j.jhazmat.2009.03.034Search in Google Scholar PubMed
23. C. Kütahyalı, M. Eral, J. Nucl. Mater. 396 (2010) 251.10.1016/j.jnucmat.2009.11.018Search in Google Scholar
24. P. Sharma, R. Tomar, Micropor. Mesopor. Mater. 116 (2008) 641.10.1016/j.micromeso.2008.05.036Search in Google Scholar
25. T. Akar, Z. Kaynak, S. Ulusoy, D. Yuvaci, G. Ozsari, S. T. Akar, J. Hazard. Mater. 163 (2009) 1134.10.1016/j.jhazmat.2008.07.084Search in Google Scholar
26. S. Al-Asheh, F. Banat, R. Al-Omari, Z. Duvnjak, Chemosphere. 41 (2000) 659.10.1016/S0045-6535(99)00497-XSearch in Google Scholar
27. T.W. Weber, R. K. Chakravorti, AIChE J. 20 (1974) 228.10.1002/aic.690200204Search in Google Scholar
28. H. F. Walton, Ion Exchange. F.G. Helfferich, McGraw-Hill, New York (1962).Search in Google Scholar
29. F. Boudrahem, F. Aissani-Benissad, A. Soualah, J. Chem. Eng. Data. 56 (2011) 1804.10.1021/je100770jSearch in Google Scholar
30. S. Yusan, C. Gok, S. Erenturk, S. Aytas, Appl. Clay Sci. 67–68 (2012) 106.10.1016/j.clay.2012.05.012Search in Google Scholar
31. H. Yuh-Shan, Scientometrics 59 (2004) 171.10.1023/B:SCIE.0000013305.99473.cfSearch in Google Scholar
32. Y. Ho, G. McKay, Process Biochem. 34 (1999) 451.10.1016/S0032-9592(98)00112-5Search in Google Scholar
33. Y. Ho, Water Res. 34 (2000) 735.10.1016/S0043-1354(99)00232-8Search in Google Scholar
34. C. O. Ijagbemi, M.H. Baek, D. S. Kim, J. Hazard. Mater. 166 (2009) 538.10.1016/j.jhazmat.2008.11.085Search in Google Scholar
35. M. Doğan, H. Abak, M. Alkan, J. Hazard. Mater. 164 (2009) 172.10.1016/j.jhazmat.2008.07.155Search in Google Scholar
36. N. Y. Mezenner, A. Bensmaili, Chem. Eng. J. 147 (2009) 87.10.1016/j.cej.2008.06.024Search in Google Scholar
37. H. Tahermansouri, M. Beheshti, Bull. Korean Chem. Soc. 34 (2013) 3391.10.5012/bkcs.2013.34.11.3391Search in Google Scholar
38. C. Chakrapani, C. S. Babu, K. N. K. Vani, K. S. Rao, E-Journal Chem. 7 (2010) S419.10.1155/2010/582150Search in Google Scholar
39. A. A. M. Daifullah, S. M. Yakout, S. A. Elreefy, J. Hazard. Mater. 147 (2007) 633.10.1016/j.jhazmat.2007.01.062Search in Google Scholar
40. E. Kumar, A. Bhatnagar, M. Ji, W. Jung, S. H. Lee, S. J. Kim, G. Lee, H. Song, J. Y. Choi, J. S. Yang, B.H. Jeon, Water Res. 43 (2009) 490.10.1016/j.watres.2008.10.031Search in Google Scholar
41. C. Aharoni, S. Sideman, E. Hoffer, J. Chem. Technol. Biotechnol. 29 (2007) 404.10.1002/jctb.503290703Search in Google Scholar
42. M. Sathishkumar, A. R. Binupriya, D. Kavitha, R. Selvakumar, R. Jayabalan, J. G. Choi, S. E. Yun, Chem. Eng. J. 147 (2009) 265.10.1016/j.cej.2008.07.020Search in Google Scholar
43. N. A. Oladoja, I. A. Ololade, J. A. Idiaghe, E. E. Egbon, Cent. Eur. J. Chem. 7 (2009) 760.10.2478/s11532-009-0098-8Search in Google Scholar
44. H. Nollet, M. Roels, P. Lutgen, P. Van der Meeren, W. Verstraete, Chemosphere. 53 (2003) 655.10.1016/S0045-6535(03)00517-4Search in Google Scholar
45. M. R. Mafra, L. Igarashi-Mafra, D. R. Zuim, É.C. Vasques, M. A. Ferreira, Brazilian J. Chem. Eng. 30 (2013) 657.10.1590/S0104-66322013000300022Search in Google Scholar
46. X. S. Wang, Y. P. Tang, S. R. Tao, Chem. Eng. J. 148 (2009) 217.10.1016/j.cej.2008.08.020Search in Google Scholar
47. A. Nilchi, T. Shariati Dehaghan, S. Rasouli Garmarodi, Desalination 321 (2013) 67.10.1016/j.desal.2012.06.022Search in Google Scholar
48. A. K. Kaygun, S. Akyil, J. Hazard. Mater. 147 (2007) 357.10.1016/j.jhazmat.2007.01.020Search in Google Scholar PubMed
49. C. S. Kesava Raju, M. S. Subramanian, J. Hazard. Mater. 145 (2007) 315.10.1016/j.jhazmat.2006.11.024Search in Google Scholar PubMed
50. D. Zhao, Appl. Clay Sci. 41 (2008) 17.10.1016/j.clay.2007.09.012Search in Google Scholar
51. Z. Talip, M. Eral, U. Hiçsönmez, J. Environ. Radioact. 100 (2009) 139.10.1016/j.jenvrad.2008.09.004Search in Google Scholar PubMed
52. A. K. S. Deb, B. N. Mohanty, P. Ilaiyaraja, K. Sivasubramanian, B. Venkatraman, J. Radioanal. Nucl. Chem. 295 (2012) 1161.10.1007/s10967-012-1899-3Search in Google Scholar
53. T. S. Anirudhan, S. S. Sreekumari, S. Jalajamony, J. Environ. Radioact. 116 (2013) 141.10.1016/j.jenvrad.2012.10.001Search in Google Scholar PubMed
54. X. Tan, X. Wang, M. Fang, Colloids Surf. A: Physicochem. Eng. Asp. 296 (2007) 109.10.1016/j.colsurfa.2006.09.032Search in Google Scholar
©2016 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Uses of alpha particles, especially in nuclear reaction studies and medical radionuclide production
- Direct flow separation strategy, to isolate no-carrier-added 90Nb from irradiated Mo or Zr targets
- Sorption of Th(IV) onto ZnO nanoparticles and diatomite-supported ZnO nanocomposite: kinetics, mechanism and activation parameters
- The influence of pH and reaction time on the formation of FeSe2 upon selenite reduction by nano-sized pyrite-greigite
- Chitosan-ferrocyanide sorbent for Cs-137 removal from mineralized alkaline media
- Rate of radiocarbon retention onto calcite by isotope exchange
- Evaluation of excess life time cancer risk due to natural radioactivity of the Lignite samples of the Nichahoma, lignite belt, North Kashmir, India
Articles in the same Issue
- Frontmatter
- Uses of alpha particles, especially in nuclear reaction studies and medical radionuclide production
- Direct flow separation strategy, to isolate no-carrier-added 90Nb from irradiated Mo or Zr targets
- Sorption of Th(IV) onto ZnO nanoparticles and diatomite-supported ZnO nanocomposite: kinetics, mechanism and activation parameters
- The influence of pH and reaction time on the formation of FeSe2 upon selenite reduction by nano-sized pyrite-greigite
- Chitosan-ferrocyanide sorbent for Cs-137 removal from mineralized alkaline media
- Rate of radiocarbon retention onto calcite by isotope exchange
- Evaluation of excess life time cancer risk due to natural radioactivity of the Lignite samples of the Nichahoma, lignite belt, North Kashmir, India