Home Sorption of Th(IV) onto ZnO nanoparticles and diatomite-supported ZnO nanocomposite: kinetics, mechanism and activation parameters
Article
Licensed
Unlicensed Requires Authentication

Sorption of Th(IV) onto ZnO nanoparticles and diatomite-supported ZnO nanocomposite: kinetics, mechanism and activation parameters

  • Sabriye Yusan EMAIL logo , Anastasia Bampaiti , Sema Erenturk , Fotini Noli , Mahmut A. A. Aslani and Sule Aytas
Published/Copyright: June 8, 2016

Abstract

In this study, for the first time ZnO nanoparticles and diatomite-supported ZnO nanocomposite have been utilized as adsorbent for the removal of Th(IV) ions from aqueous solutions under different experimental conditions. The Langmuir, Freundlich, Temkin and Dubinin– Radushkevich (D–R) isotherms were used to analyze the equilibrium data. The sorption equilibrium data were fitted well to the Langmuir isotherm with maximum sorption capacities values was found to be 1.105 mmol/g and 0.320 mmol/g for ZnO nanoparticles and diatomite supported ZnO nanocomposite, respectively. Pseudo-first and pseudo-second order equations, Intraparticle diffusion and Bangham’s models were considered to evaluate the rate parameters and sorption mechanism. Sorption kinetics were better reproduced by the pseudo-second order model (R2 > 0.999), with an activation energy (Ea) of +99.74 kJ/mol and +62.95 kJ/mol for ZnO nanoparticles and diatomite-supported ZnO nanocomposite, respectively. In order to specify the type of sorption reaction, thermodynamic parameters were also determined. The evaluated ΔG* and ΔH* indicate the non-spontaneous and endothermic nature of the reactions. The results of this work suggest that both of the used materials are fast and effective adsorbents for removing Th(IV) from aqueous solutions and chemical sorption plays a role in controlling the sorption rate.

Acknowledgement

This project was supported by Ege University Scientific Research Project Unit Project No. 2012 NBE 015. The research for this paper was carried out at the Institute of Nuclear Sciences, Ege University, Bornova-Izmir, within the frame of ERASMUS Program.

References

References

1. L. Y. Yuan, Z.Q. Bai, R. Zhao, Y. L. Liu, Z. J. Li, S. Q. Chu, L. R. Zheng, J. Zhang, Y. L. Zhao, Z. F. Chai, W. Q. Shi, ACS Appl. Mater. Interfaces. 6 (2014) 4786.10.1021/am405584hSearch in Google Scholar PubMed

2. H. Heshmati, H. G. Gilani, M. Torab-Mostaedi, A. Haidary, J. Dispers. Sci. Technol. 35 (2014) 501.10.1080/01932691.2013.796886Search in Google Scholar

3. D. Humelnicu, C. Blegescu, D. Ganju, J. Radioanal. Nucl. Chem. 299 (2013) 1183.10.1007/s10967-013-2873-4Search in Google Scholar

4. N. M. Mubarak, J. N. Sahu, E. C. Abdullah, N. S. Jayakumar, Sep. Purif. Rev. 43 (2014) 311.10.1080/15422119.2013.821996Search in Google Scholar

5. W. Liu, W. Sun, Y. Han, M. Ahmad, J. Ni, Colloids Surfaces A: Physicochem. Eng. Asp. 452 (2014) 138.10.1016/j.colsurfa.2014.03.093Search in Google Scholar

6. S. D. Yusan, S. Akyil, J. Hazard. Mater. 160 (2008) 388.10.1016/j.jhazmat.2008.03.009Search in Google Scholar PubMed

7. S. (Doyurum) Yusan, S. (Akyil) Erenturk, Desalination 269 (2011) 58.10.1016/j.desal.2010.10.042Search in Google Scholar

8. Ü.H. Kaynar, M. Ayvacıklı, S.Ç. Kaynar, Ü. Hiçsönmez, J. Radioanal. Nucl. Chem. 299 (2014) 1469.10.1007/s10967-014-2919-2Search in Google Scholar

9. R. A. Crane, M. Dickinson, I. C. Popescu, T. B. Scott, Water Res. 45 (2011) 2931.10.1016/j.watres.2011.03.012Search in Google Scholar PubMed

10. Y. Li, C. Wang, Z. Guo, C. Liu, W. Wu, J. Radioanal. Nucl. Chem. 299 (2014) 1683.10.1007/s10967-014-2956-xSearch in Google Scholar

11. I. Ghiloufi, Proceeding of the International Conference, 12th, Electronics, hardware, wireless and optical communications; Recent advances in circuits, communications and signal processing, (EHAC’13), (ISPRA’13), (NANOTECHNOLOGY’13) Cambridge (2013) 321.Search in Google Scholar

12. Z. Camtakan, S. Akyil Erenturk, S. Doyurum Yusan, Environ. Prog. Sustain. Energy 31 (2012) 536.10.1002/ep.10575Search in Google Scholar

13. S. Mahdavi, M. Jalali, A. Afkhami, J. Nanoparticle Res. 14 (2012) 846.10.1007/s11051-012-0846-0Search in Google Scholar

14. L. Chen, H. Xin, Y. Fang, C. Zhang, F. Zhang, X. Cao, C. Zhang, X. Li, J. Nanomater. 2014 (2014) 1.10.1155/2014/793610Search in Google Scholar

15. H. Zeng, W. Cai, P. Liu, X. Xu, H. Zhou, C. Klingshirn, H. Kalt, ACS Nano. 2 (2008) 1661.10.1021/nn800353qSearch in Google Scholar PubMed

16. Z. Jing, J. Zhan, Adv. Mater. 20 (2008) 4547.10.1002/adma.200800243Search in Google Scholar

17. T. P. Chou, Q. Zhang, G. E. Fryxell, G. Z. Cao, Adv. Mater. 19 (2007) 2588.10.1002/adma.200602927Search in Google Scholar

18. H. Tajizadegan, M. Jafari, M. Rashidzadeh, A. Saffar-Teluri, Appl. Surf. Sci. 276 (2013) 317.10.1016/j.apsusc.2013.03.089Search in Google Scholar

19. S. Yusan, A. Bampaiti, S. Aytas, S. Erenturk, M. A. A. Aslani, Ceramics International 42 (2016) 2158.10.1016/j.ceramint.2015.09.169Search in Google Scholar

20. T. S. Anirudhan, S. Rijith, A. R. Tharun, Colloids and Surfaces A: Physicochem. Eng. Aspects 368 (2010) 13.10.1016/j.colsurfa.2010.07.005Search in Google Scholar

21. Q. Deng, Y. Jin, Q. Wang, R. Zhao, N. Pan, F. Zhai, M. Luo, C. Xia, J. Radioanal. Nucl. Chem. 295 (2013) 125.10.1007/s10967-012-1879-7Search in Google Scholar

22. D. L. Guerra, R. R. Viana, C. Airoldi, J. Hazard. Mater. 168 (2009) 1504.10.1016/j.jhazmat.2009.03.034Search in Google Scholar PubMed

23. C. Kütahyalı, M. Eral, J. Nucl. Mater. 396 (2010) 251.10.1016/j.jnucmat.2009.11.018Search in Google Scholar

24. P. Sharma, R. Tomar, Micropor. Mesopor. Mater. 116 (2008) 641.10.1016/j.micromeso.2008.05.036Search in Google Scholar

25. T. Akar, Z. Kaynak, S. Ulusoy, D. Yuvaci, G. Ozsari, S. T. Akar, J. Hazard. Mater. 163 (2009) 1134.10.1016/j.jhazmat.2008.07.084Search in Google Scholar

26. S. Al-Asheh, F. Banat, R. Al-Omari, Z. Duvnjak, Chemosphere. 41 (2000) 659.10.1016/S0045-6535(99)00497-XSearch in Google Scholar

27. T.W. Weber, R. K. Chakravorti, AIChE J. 20 (1974) 228.10.1002/aic.690200204Search in Google Scholar

28. H. F. Walton, Ion Exchange. F.G. Helfferich, McGraw-Hill, New York (1962).Search in Google Scholar

29. F. Boudrahem, F. Aissani-Benissad, A. Soualah, J. Chem. Eng. Data. 56 (2011) 1804.10.1021/je100770jSearch in Google Scholar

30. S. Yusan, C. Gok, S. Erenturk, S. Aytas, Appl. Clay Sci. 67–68 (2012) 106.10.1016/j.clay.2012.05.012Search in Google Scholar

31. H. Yuh-Shan, Scientometrics 59 (2004) 171.10.1023/B:SCIE.0000013305.99473.cfSearch in Google Scholar

32. Y. Ho, G. McKay, Process Biochem. 34 (1999) 451.10.1016/S0032-9592(98)00112-5Search in Google Scholar

33. Y. Ho, Water Res. 34 (2000) 735.10.1016/S0043-1354(99)00232-8Search in Google Scholar

34. C. O. Ijagbemi, M.H. Baek, D. S. Kim, J. Hazard. Mater. 166 (2009) 538.10.1016/j.jhazmat.2008.11.085Search in Google Scholar

35. M. Doğan, H. Abak, M. Alkan, J. Hazard. Mater. 164 (2009) 172.10.1016/j.jhazmat.2008.07.155Search in Google Scholar

36. N. Y. Mezenner, A. Bensmaili, Chem. Eng. J. 147 (2009) 87.10.1016/j.cej.2008.06.024Search in Google Scholar

37. H. Tahermansouri, M. Beheshti, Bull. Korean Chem. Soc. 34 (2013) 3391.10.5012/bkcs.2013.34.11.3391Search in Google Scholar

38. C. Chakrapani, C. S. Babu, K. N. K. Vani, K. S. Rao, E-Journal Chem. 7 (2010) S419.10.1155/2010/582150Search in Google Scholar

39. A. A. M. Daifullah, S. M. Yakout, S. A. Elreefy, J. Hazard. Mater. 147 (2007) 633.10.1016/j.jhazmat.2007.01.062Search in Google Scholar

40. E. Kumar, A. Bhatnagar, M. Ji, W. Jung, S. H. Lee, S. J. Kim, G. Lee, H. Song, J. Y. Choi, J. S. Yang, B.H. Jeon, Water Res. 43 (2009) 490.10.1016/j.watres.2008.10.031Search in Google Scholar

41. C. Aharoni, S. Sideman, E. Hoffer, J. Chem. Technol. Biotechnol. 29 (2007) 404.10.1002/jctb.503290703Search in Google Scholar

42. M. Sathishkumar, A. R. Binupriya, D. Kavitha, R. Selvakumar, R. Jayabalan, J. G. Choi, S. E. Yun, Chem. Eng. J. 147 (2009) 265.10.1016/j.cej.2008.07.020Search in Google Scholar

43. N. A. Oladoja, I. A. Ololade, J. A. Idiaghe, E. E. Egbon, Cent. Eur. J. Chem. 7 (2009) 760.10.2478/s11532-009-0098-8Search in Google Scholar

44. H. Nollet, M. Roels, P. Lutgen, P. Van der Meeren, W. Verstraete, Chemosphere. 53 (2003) 655.10.1016/S0045-6535(03)00517-4Search in Google Scholar

45. M. R. Mafra, L. Igarashi-Mafra, D. R. Zuim, É.C. Vasques, M. A. Ferreira, Brazilian J. Chem. Eng. 30 (2013) 657.10.1590/S0104-66322013000300022Search in Google Scholar

46. X. S. Wang, Y. P. Tang, S. R. Tao, Chem. Eng. J. 148 (2009) 217.10.1016/j.cej.2008.08.020Search in Google Scholar

47. A. Nilchi, T. Shariati Dehaghan, S. Rasouli Garmarodi, Desalination 321 (2013) 67.10.1016/j.desal.2012.06.022Search in Google Scholar

48. A. K. Kaygun, S. Akyil, J. Hazard. Mater. 147 (2007) 357.10.1016/j.jhazmat.2007.01.020Search in Google Scholar PubMed

49. C. S. Kesava Raju, M. S. Subramanian, J. Hazard. Mater. 145 (2007) 315.10.1016/j.jhazmat.2006.11.024Search in Google Scholar PubMed

50. D. Zhao, Appl. Clay Sci. 41 (2008) 17.10.1016/j.clay.2007.09.012Search in Google Scholar

51. Z. Talip, M. Eral, U. Hiçsönmez, J. Environ. Radioact. 100 (2009) 139.10.1016/j.jenvrad.2008.09.004Search in Google Scholar PubMed

52. A. K. S. Deb, B. N. Mohanty, P. Ilaiyaraja, K. Sivasubramanian, B. Venkatraman, J. Radioanal. Nucl. Chem. 295 (2012) 1161.10.1007/s10967-012-1899-3Search in Google Scholar

53. T. S. Anirudhan, S. S. Sreekumari, S. Jalajamony, J. Environ. Radioact. 116 (2013) 141.10.1016/j.jenvrad.2012.10.001Search in Google Scholar PubMed

54. X. Tan, X. Wang, M. Fang, Colloids Surf. A: Physicochem. Eng. Asp. 296 (2007) 109.10.1016/j.colsurfa.2006.09.032Search in Google Scholar

Received: 2016-1-25
Accepted: 2016-4-15
Published Online: 2016-6-8
Published in Print: 2016-9-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2016-2581/html
Scroll to top button