Home Characterization of Fe(III)-saturated montmorillonite and evaluation its sorption behavior for U(VI)
Article
Licensed
Unlicensed Requires Authentication

Characterization of Fe(III)-saturated montmorillonite and evaluation its sorption behavior for U(VI)

  • Songhua Lu , Xiaoli Tan EMAIL logo , Shujun Yu , Xuemei Ren and Changlun Chen
Published/Copyright: March 9, 2016

Abstract

Radioactive waste is usually sealed in steel canisters surrounded by a layer of compacted clay back-fill, and permanent buried in a deep geological repository. Unavoidably, the radionuclide contaminants can be released from repository and then sorbed onto the waste container corrosion products or the Fe-rich minerals. Herein, we characterized the Fe(III)-saturated montmorillonite (Fe(III)-MMT) by using Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and Brunauer–Emmett–Teller (BET), and found the changes of the surface incorporating Fe(III) and surface micropores. The sorption of U(VI) on Fe(III)-MMT and Na-montmorillonite (Na-MMT) was investigated by batch experiments. The larger surface area and cation exchange capacity, and the existence of Fe(III) (hydr)oxide phases in Fe(III)-MMT contributed greatly to its sorption capacity. In the whole pH range, the sorption of U(VI) on Fe(III)-MMT was higher than on Na-MMT, and the sorption was strongly depended on pH and ionic strength. The sorption isotherms were simulated well by the Langmuir and Freundlich models. The thermodynamic parameters (ΔH, ΔS and ΔG) calculated from the temperature dependent sorption isotherms indicated that the sorption of U(VI) on Fe(III)-MMT was an endothermic and spontaneous process. The observations suggest that the interactions between U(VI) and Fe(III)-MMT are important in controlling U(VI) retention. The phenomena need to be considered in risk assessment and reactive transport modeling.

Acknowledgement

Financial supports from NSFC (21377132, 41273134, 21307135, 21225730, 91326202) and Chinese National Fusion Project for ITER (NO. 2013GB110004) are acknowledged.

Received: 2015-12-18
Accepted: 2016-2-2
Published Online: 2016-3-9
Published in Print: 2016-7-28

©2016 Walter de Gruyter Berlin/Boston

Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2015-2569/html
Scroll to top button