Home Functionalization and performance of hybrid nanocellulose from plant-based/metal oxide nanocomposites for sustainable energy applications
Article
Licensed
Unlicensed Requires Authentication

Functionalization and performance of hybrid nanocellulose from plant-based/metal oxide nanocomposites for sustainable energy applications

  • Mageswari Manimaran , Mohd Nurazzi Norizan EMAIL logo , Mohamad Haafiz Mohamad Kassim , Mohd Sapuan Salit ORCID logo , Mohd Nor Faiz Norrrahim , Mohd Ridhwan Adam and Ahmad Ilyas Rushdan
Published/Copyright: February 4, 2025
Become an author with De Gruyter Brill

Abstract

Growing concerns over our dependence on finite, non-renewable resources like petroleum and metals have driven the development of eco-friendly technologies centered on advanced hybrid nanomaterials. Among these, the use of renewable nanocellulose – ranging in size from 1 to 100 nm – has gained significant attention in nanotechnology research. Derived from sustainable sources, nanocellulose offers notable advantages; however, challenges persist when integrating it with metal oxide nanoparticles (MONPs). These challenges include high reactivity in cellular environments, elevated production costs, and a tendency to aggregate, leading to instability in both liquid and dry states. Aggregation can impair uniform dispersion and result in sediment formation in certain applications. A promising solution to these challenges is hybridizing MONPs with functionalized nanocellulose, a method widely adopted by researchers. This approach is cost-effective, environmentally sustainable, and produces a renewable material with low density, excellent stability, superior mechanical properties, and biocompatibility. However, several questions remain unresolved, such as the most commonly used functionalization techniques for MONPs hybridization, the underlying mechanisms, and the specific benefits of this hybridization. Based on current findings, oxidation and carboxymethylation emerge as the most frequently used functionalization techniques for hybridizing MONPs with nanocellulose. These processes introduce carboxylic acid and carboxymethyl groups, respectively, which act as capping agents that readily bond with MONPs. This results in high degrees of substitution (DS) and improved nanoparticle dispersion. Furthermore, hybridization enhances properties such as thermal stability, UV protection, antibacterial activity, adsorption capacity, and mechanical performance, underscoring its potential for diverse applications.


Corresponding author: Mohd Nurazzi Norizan, Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; and Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia, E-mail:

Funding source: Kementerian Pengajian Tinggi Malaysia

Award Identifier / Grant number: FRGS/1/2023/STG05/USM/02/3

Acknowledgements

The authors would like to thank the editors S.M. Sapuan, Mohd Roshdi Hassan, Eris Elianddy Supeni and Azizan As’arry for their guidance and review of this article before its publication.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: There is no conflict of interest.

  6. Research funding: Fundamental Research Grant Scheme (FRGS) (FRGS/1/2023/STG05/USM/02/3).

  7. Data availability: Not applicable.

References

1. Lam, E, Hemraz, UD. Preparation and surface functionalization of carboxylated cellulose nanocrystals. Nanomaterials 2021;11. https://doi.org/10.3390/nano11071641.Search in Google Scholar PubMed PubMed Central

2. Wu, Q, Meng, Y, Wang, S, Li, Y, Fu, S, Ma, L, et al.. Rheological behavior of cellulose nanocrystal suspension: influence of concentration and aspect ratio. J Appl Polym Sci 2014;131:1–8. https://doi.org/10.1002/app.40525.Search in Google Scholar

3. Islam, MT, Alam, MM, Patrucco, A, Montarsolo, A, Zoccola, M. Preparation of nanocellulose: a review. AATCC J Res 2014;1:17–23. https://doi.org/10.14504/ajr.1.5.3.Search in Google Scholar

4. Sun, B, Zhang, M, Shen, J, He, Z, Fatehi, P, Ni, Y. Applications of cellulose-based materials in sustained drug delivery systems. Curr Med Chem 2017;24. https://doi.org/10.2174/0929867324666170705143308.Search in Google Scholar PubMed

5. Hashemzehi, M, Mesic, B, Sjöstrand, B, Naqvi, M. A comprehensive review of nanocellulose modification and applications in papermaking and packaging: challenges, technical solutions, and perspectives. BioResources 2022;17. https://doi.org/10.15376/biores.17.2.hashemzehi.Search in Google Scholar

6. Jasmania, L. Preparation of nanocellulose and its potential application. Int J Nanomater Nanotechnol Nanomed 2018;4:014–21. https://doi.org/10.17352/2455-3492.000026.Search in Google Scholar

7. Mateo, S, Peinado, S, Morillas-Gutiérrez, F, La Rubia, MD, Moya, AJ. Nanocellulose from agricultural wastes: products and applications–a review. Processes 2021;9. https://doi.org/10.3390/pr9091594.Search in Google Scholar

8. Alhalili, Z. Metal oxides nanoparticles: general structural description, chemical, physical, and biological synthesis methods, role in pesticides and heavy metal removal through wastewater treatment. Molecules 2023;28. https://doi.org/10.3390/molecules28073086.Search in Google Scholar PubMed PubMed Central

9. Negrescu, AM, Killian, MS, Raghu, SNV, Schmuki, P, Mazare, A, Cimpean, A. Metal oxide nanoparticles: review of synthesis, characterization and biological effects. J Funct Biomater 2022;13. https://doi.org/10.3390/jfb13040274.Search in Google Scholar PubMed PubMed Central

10. Zhang, W. Nanoparticle aggregation: principles and modeling. Adv Exp Med Biol 2014;811:20–43. https://doi.org/10.1007/978-94-017-8739-0_2.Search in Google Scholar PubMed

11. Shrestha, S, Wang, B, Dutta, P. Nanoparticle processing: understanding and controlling aggregation. Adv Colloid Interface Sci 2020;279:102162. https://doi.org/10.1016/j.cis.2020.102162.Search in Google Scholar PubMed

12. Prusty, K, Sahu, D, Swain, SK. Nanocellulose as a template for the production of advanced nanostructured material. Sawston, United Kingdom: Woodhead Publishing; 2017.10.1016/B978-0-08-100957-4.00019-XSearch in Google Scholar

13. Morant-Miñana, MC. Surface modification for improving the stability of nanoparticles in liquid media. Encycl Biomed Polym Polym Biomater 2016;27:5569–84. https://doi.org/10.1081/e-ebpp-120049944.Search in Google Scholar

14. Omran, AA, Mohammed, AA, Sapuan, SM, Ilyas, RA, Asyraf, MR, Rahimian Koloor, SS, et al.. Micro-and nanocellulose in polymer composite materials: a review. Polymers. 2021;13:231.10.3390/polym13020231Search in Google Scholar PubMed PubMed Central

15. Worku, LA, Bachheti, A, Bachheti, RK, Rodrigues Reis, CE, Chandel, AK. Agricultural residues as raw materials for pulp and paper production: overview and applications on membrane fabrication. Membr (Basel) 2023;13:1–17. https://doi.org/10.3390/membranes13020228.Search in Google Scholar PubMed PubMed Central

16. Panthapulakkal, S, Sain, M. The use of wheat straw fibres as reinforcements in composites. In: Biofiber reinforcements in composite materials. Sawston, UK: Woodhead Publishing; 2015:423–53 pp.10.1533/9781782421276.4.423Search in Google Scholar

17. Santos, RF, Ribeiro, JCL, Franco de Carvalho, JM, Magalhães, WLE, Pedroti, LG, Nalon, GH, et al.. Nanofibrillated cellulose and its applications in cement-based composites: a review. Constr Build Mater 2021;288:123122. https://doi.org/10.1016/j.conbuildmat.2021.123122.Search in Google Scholar

18. Oyohwose, UA, Omoko, VI. Synthesis , characterization and application of nanocrystalline cellulose : a review; 2023:0–9 p.Search in Google Scholar

19. Lahiri, D, Nag, M, Dutta, B, Dey, A, Sarkar, T, Pati, S, et al.. Bacterial cellulose: production, characterization and application as antimicrobial agent. Int J Mol Sci 2021;22:1–18. https://doi.org/10.3390/ijms222312984.Search in Google Scholar PubMed PubMed Central

20. Aswini, K, Gopal, NO, Uthandi, S. Optimized culture conditions for bacterial cellulose production by Acetobacter senegalensis MA1. BMC Biotechnol 2020;20:1–16. https://doi.org/10.1186/s12896-020-00639-6.Search in Google Scholar PubMed PubMed Central

21. Fornari, A, Rossi, M, Rocco, D, Mattiello, L. A review of applications of nanocellulose to preserve and protect cultural heritage wood, paintings, and historical papers. Appl Sci 2022;12. https://doi.org/10.3390/app122412846.Search in Google Scholar

22. Solhi, L, Guccini, V, Heise, K, Solala, I, Niinivaara, E, Xu, W, et al.. Understanding nanocellulose-water interactions: turning a detriment into an asset. Chem. Rev. 2023;123:1925–2015. https://doi.org/10.1021/acs.chemrev.2c00611.Search in Google Scholar PubMed PubMed Central

23. Musino, D, Rivard, C, Landrot, G, Novales, B, Rabilloud, T, Capron, I. Hydroxyl groups on cellulose nanocrystal surfaces form nucleation points for silver nanoparticles of varying shapes and sizes. J Colloid Interface Sci 2021;584:360–71. https://doi.org/10.1016/j.jcis.2020.09.082.Search in Google Scholar PubMed

24. Kaur, D, Bhardwaj, NK, Lohchab, RK. Prospects of rice straw as a raw material for paper making. Waste Manag 2017;60:127–39. https://doi.org/10.1016/j.wasman.2016.08.001.Search in Google Scholar PubMed

25. Yao, F, Wu, Q, Lei, Y, Xu, Y. Rice straw fiber-reinforced high-density polyethylene composite: effect of fiber type and loading. Ind Crops Prod 2008;28:63–72. https://doi.org/10.1016/j.indcrop.2008.01.007.Search in Google Scholar

26. Bassyouni, M, Waheed Ul Hasan, S. The use of rice straw and husk fibers as reinforcements in composites. In: Biofiber reinforcements in composite materials. Amsterdam, Netherlands: Elsevier; 2015;385–422 pp.10.1533/9781782421276.4.385Search in Google Scholar

27. Xu, H, Dun, M, Zhang, Z, Zhang, L, Shan, W, Wang, W. A new process of preparing rice straw-reinforced LLDPE composite. Polym (Basel) 2022;14. https://doi.org/10.3390/polym14112243.Search in Google Scholar PubMed PubMed Central

28. Rosa, MF, Medeiros, E, Malmonge, J, Gregorski, K, Wood, D, Mattoso, L, et al.. Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 2010;81:83–92. https://doi.org/10.1016/j.carbpol.2010.01.059.Search in Google Scholar

29. Ede, A, Agbede, J. Use of coconut husk fiber for improved compressive and flexural strength of con-crete. Int J Sci Eng Res 2015;6:968–74.Search in Google Scholar

30. Pinho da Costa Castro, CD, de Assis Fonseca Faria, J, Bassani Hellmeister Dantas, T. Testing the use of coconut fiber as a cushioning material for transport packaging. Mater Sci Appl 2012;03:151–6. https://doi.org/10.4236/msa.2012.33023.Search in Google Scholar

31. Lay Ting, T, Putra Jaya, R, Abdul Hassan, N, Yaacob, H, Sri Jayanti, D. A review of utilization of coconut shell and coconut fiber in road construction. J. Teknol. 2015;76:121–5. https://doi.org/10.11113/jt.v76.5851.Search in Google Scholar

32. Ilyas, RA, Sapuan, S, Ibrahim, R, Abral, H, Ishak, M, Zainudin, E, et al.. Effect of sugar palm nanofibrillated cellulose concentrations on morphological, mechanical and physical properties of biodegradable films based on agro-waste sugar palm (Arenga pinnata (Wurmb.) Merr) starch. J Mater Res Technol 2019;8:4819–30. https://doi.org/10.1016/j.jmrt.2019.08.028.Search in Google Scholar

33. Atiqah, A, Jawaid, M, Sapuan, SM, Ishak, MR, Ansari, MNM, Ilyas, RA. Physical and thermal properties of treated sugar palm/glass fibre reinforced thermoplastic polyurethane hybrid composites. J Mater Res Technol 2019;8:3726–32. https://doi.org/10.1016/j.jmrt.2019.06.032.Search in Google Scholar

34. Ilyas, RA. Properties of sugar palm nanocellulose fibre-reinforced biopolymer composite [Doctoral thesis]. Malaysia: Universiti Putra Malaysia; 2019.Search in Google Scholar

35. Mahmud, MA, Anannya, FR. Sugarcane bagasse – a source of cellulosic fiber for diverse applications. Heliyon 2021;7:e07771. https://doi.org/10.1016/j.heliyon.2021.e07771.Search in Google Scholar PubMed PubMed Central

36. Amin, MN, Ashraf, M, Kumar, R, Khan, K, Saqib, D, Ali, SS, et al.. Role of sugarcane bagasse ash in developing sustainable engineered cementitious composites. Front. Mater. 2020;7:1–12. https://doi.org/10.3389/fmats.2020.00065.Search in Google Scholar

37. Pereira, L, Mafalda, R, Marconcini, JM, Mantovani, GL. The use of sugarcane bagasse-based green materials for sustainable packaging design. Smart Innov Syst Technol 2015;35:113–23. https://doi.org/10.1007/978-81-322-2229-3_10.Search in Google Scholar

38. Wang, D, Tian, J, Guan, J, Ding, Y, Wang, ML, Tonnis, B, et al.. Valorization of sugarcane bagasse for sugar extraction and residue as an adsorbent for pollutant removal. Front Bioeng Biotechnol 2022;10:1–12. https://doi.org/10.3389/fbioe.2022.893941.Search in Google Scholar PubMed PubMed Central

39. Faizi, MK, Shahriman, A, Abdul Majid, M, Shamsul, B, Ng, Y, Basah, S, et al.. An overview of the Oil Palm Empty Fruit Bunch (OPEFB) potential as reinforcing fibre in polymer composite for energy absorption applications. MATEC Web Conf 2016;90. https://doi.org/10.1051/matecconf/20179001064.Search in Google Scholar

40. Windiastuti, E, Suprihatin, Y, Bindar, Hasanudin, U. Identification of potential application of oil palm empty fruit bunches (EFB): a review. IOP Conf Ser Earth Environ Sci 2022;1063. https://doi.org/10.1088/1755-1315/1063/1/012024.Search in Google Scholar

41. Nayak, L, Mishra, SP. Prospect of bamboo as a renewable textile fiber, historical overview, labeling, controversies and regulation. Fash Text 2016;3. https://doi.org/10.1186/s40691-015-0054-5.Search in Google Scholar

42. Kaur, N, Saxena, S, Gaur, H, Goyal, P. A review on bamboo fiber composites and its applications. 2017 Int Conf Infocom Technol Unmanned Syst Trends Futur Dir ICTUS 2017 2018:843–9. https://doi.org/10.1109/ICTUS.2017.8286123.Search in Google Scholar

43. Ismail, NF, Mohd Radzuan, NA, Sulong, AB, Muhamad, N, Che Haron, CH. The effect of alkali treatment on physical, mechanical and thermal properties of kenaf fiber and polymer epoxy composites. Polym (Basel) 2021;13. https://doi.org/10.3390/polym13122005.Search in Google Scholar PubMed PubMed Central

44. Chu, CC, Chew, SC, Nyam, KL. Recent advances in encapsulation technologies of kenaf (Hibiscus cannabinus) leaves and seeds for cosmeceutical application. Food Bioprod Process 2021;127:99–113. https://doi.org/10.1016/j.fbp.2021.02.009.Search in Google Scholar

45. Csiszár, E, Kun, D, Fekete, E. The role of structure and interactions in thermoplastic starch–nanocellulose composites. Polym (Basel) 2021;13:1–14. https://doi.org/10.3390/polym13183186.Search in Google Scholar PubMed PubMed Central

46. Othman, SH, Nordin, N, Azman, NAA, Tawakkal, ISMA, Basha, RK. Effects of nanocellulose fiber and thymol on mechanical, thermal, and barrier properties of corn starch films. Int J Biol Macromol 2021;183:1352–61. https://doi.org/10.1016/j.ijbiomac.2021.05.082.Search in Google Scholar PubMed

47. Iwamoto, S, Lee, SH, Endo, T. Relationship between aspect ratio and suspension viscosity of wood cellulose nanofibers. Polym J 2014;46:73–6. https://doi.org/10.1038/pj.2013.64.Search in Google Scholar

48. Li, A, Xu, D, Luo, L, Zhou, Y, Yan, W, Leng, X, et al.. Overview of nanocellulose as additives in paper processing and paper products. Nanotechnol Rev 2021;10:264–81. https://doi.org/10.1515/ntrev-2021-0023.Search in Google Scholar

49. Dhali, K, Ghasemlou, M, Daver, F, Cass, P, Adhikari, B. A review of nanocellulose as a new material towards environmental sustainability. Sci Total Environ 2021;775:145871. https://doi.org/10.1016/j.scitotenv.2021.145871.Search in Google Scholar PubMed

50. Heise, K, Koso, T, King, AW, Nypelö, T, Penttilä, P, Tardy, BL, et al.. Spatioselective surface chemistry for the production of functional and chemically anisotropic nanocellulose colloids. J Mater Chem A 2022;10. https://doi.org/10.1039/d2ta05277f.Search in Google Scholar PubMed PubMed Central

51. Sinquefield, S, Ciesielski, PN, Li, K, Gardner, DJ, Ozcan, S. Nanocellulose dewatering and drying: current state and future perspectives. ACS Sustain Chem Eng 2020;8:9601–15. https://doi.org/10.1021/acssuschemeng.0c01797.Search in Google Scholar

52. Chin, KM, Sung Ting, S, Ong, HL, Omar, M. Surface functionalized nanocellulose as a veritable inclusionary material in contemporary bioinspired applications: a review. J Appl Polym Sci 2018;135. https://doi.org/10.1002/app.46065.Search in Google Scholar

53. Horvat, A, A study of the uncertainty associated with tar measurement and an investigation of tar evolution and composition during the air-blown fluidised bed gasification of torrefied and non- torrefied grassy biomass A thesis submitted for the Degree of Doctorate; 2016:1–193 pp.Search in Google Scholar

54. Trache, D, Hussin, MH, Hui Chuin, CT, Sabar, S, Fazita, MN, Taiwo, OF, et al.. Microcrystalline cellulose: isolation, characterization and bio-composites application—a review. Int J Biol Macromol 2016;93:789–804. https://doi.org/10.1016/j.ijbiomac.2016.09.056.Search in Google Scholar PubMed

55. Wang, X, Lei, Q, Luo, J, Wang, P, Xiao, P, Ye, Y, et al.. Application of nanocellulose in oilfield chemistry. ACS Omega 2021;6:20833–45. https://doi.org/10.1021/acsomega.1c02095.Search in Google Scholar PubMed PubMed Central

56. Viel, M, Collet, F, Lanos, C. Development and characterization of thermal insulation materials from renewable resources. Constr Build Mater 2019;214:685–97. https://doi.org/10.1016/j.conbuildmat.2019.04.139.Search in Google Scholar

57. Mihalca, V, Kerezsi, AD, Weber, A, Gruber-Traub, C, Schmucker, J, Vodnar, DC, et al.. Protein-based films and coatings for food industry applications. Polymers 2021;13. https://doi.org/10.3390/polym13050769.Search in Google Scholar PubMed PubMed Central

58. Thakur, V, Guleria, A, Kumar, S, Sharma, S, Singh, K. Recent advances in nanocellulose processing, functionalization and applications: a review. Mater. Adv. 2021;2:1872–95. https://doi.org/10.1039/d1ma00049g.Search in Google Scholar

59. Phanthong, P, Reubroycharoen, P, Hao, X, Xu, G, Abudula, A, Guan, G. Nanocellulose: extraction and application. Carbon Resour Convers 2018;1:32–43. https://doi.org/10.1016/j.crcon.2018.05.004.Search in Google Scholar

60. Michelin, M, Gomes, DG, Romaní, A, Polizeli, MLTM, Teixeira, JA. Nanocellulose production: exploring the enzymatic route and residues of pulp and paper industry. Molecules 2020;25:1–36. https://doi.org/10.3390/molecules25153411.Search in Google Scholar PubMed PubMed Central

61. Yu, H, Qin, Z, Liang, B, Liu, N, Zhou, Z, Chen, L. Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A 2013;1:3938–44. https://doi.org/10.1039/c3ta01150j.Search in Google Scholar

62. Vanderfleet, OM, Reid, MS, Bras, J, Heux, L, Godoy-Vargas, J, Panga, MKR, et al.. Insight into thermal stability of cellulose nanocrystals from new hydrolysis methods with acid blends. Cellulose 2019;26:507–28. https://doi.org/10.1007/s10570-018-2175-7.Search in Google Scholar

63. Ilyas, RA, Sapuan, S, Ibrahim, R, Atikah, M, Atiqah, A, Ansari, M, et al.. Production, processes and modification of nanocrystalline cellulose from agro-waste: a review. Nanocrystalline Mater 2020;3–32. https://doi.org/10.5772/intechopen.87001.Search in Google Scholar

64. Voronova, MI, Surov, OV, Rubleva, NV, Kochkina, NE, Zakharov, AG. Dispersibility of nanocrystalline cellulose in organic solvents. Khimiya Rastit Syr’ya 2019:39–50. https://doi.org/10.14258/jcprm.2019014240.Search in Google Scholar

65. Islam, MT, Alam, MM, Zoccola, M. Review on modification of nanocellulose for application in composites. Int. J. Innov. Res. Sci. Eng. Technol. 2013;2:5444–51.Search in Google Scholar

66. Dawwam, GE, Al-Shemy, MT, El-Demerdash, AS. Green synthesis of cellulose nanocrystal/ZnO bio-nanocomposites exerting antibacterial activity and downregulating virulence toxigenic genes of food-poisoning bacteria. Sci Rep 2022;12:1–18. https://doi.org/10.1038/s41598-022-21087-6.Search in Google Scholar PubMed PubMed Central

67. Patil, TV, Patel, DK, Dutta, SD, Ganguly, K, Santra, TS, Lim, KT. Nanocellulose, a versatile platform: from the delivery of active molecules to tissue engineering applications. Bioact Mater 2022;9:566–89, https://doi.org/10.1016/j.bioactmat.2021.07.006.Search in Google Scholar PubMed PubMed Central

68. Oun, AA, Shankar, S, Rhim, JW. Multifunctional nanocellulose/metal and metal oxide nanoparticle hybrid nanomaterials. Crit Rev Food Sci Nutr 2020;60:435–60. https://doi.org/10.1080/10408398.2018.1536966.Search in Google Scholar PubMed

69. Kalia, S, Dufresne, A, Cherian, BM, Kaith, BS, Avérous, L, Njuguna, J, et al.. Cellulose-based bio- and nanocomposites: a review. Int. J. Polym. Sci. 2011;2011. https://doi.org/10.1155/2011/837875.Search in Google Scholar

70. Ferreira, FV, Pinheiro, IF, Gouveia, RF, Thim, GP, Lona, LMF. Functionalized cellulose nanocrystals as reinforcement in biodegradable polymer nanocomposites. Polym Compos 2018;39:E9–29. https://doi.org/10.1002/pc.24583.Search in Google Scholar

71. MC Li, C Mei, X Xu, S Lee, Q Wu. Cationic surface modification of cellulose nanocrystals: toward tailoring dispersion and interface in carboxymethyl cellulose films 2016;107. https://doi.org/10.1016/j.polymer.2016.11.022.Search in Google Scholar

72. Ghasemlou, M, Daver, F, Ivanova, EP, Habibi, Y, Adhikari, B. Surface modifications of nanocellulose: from synthesis to high-performance nanocomposites. Prog Polym Sci 2021;119:101418. https://doi.org/10.1016/j.progpolymsci.2021.101418.Search in Google Scholar

73. Kamiya, H, Iijima, M. Surface modification and characterization for dispersion stability of inorganic nanometer-scaled particles in liquid media. Sci Technol Adv Mater 2010;11. https://doi.org/10.1088/1468-6996/11/4/044304.Search in Google Scholar PubMed PubMed Central

74. Thomas, B, Raj, MC, B, AK, H, RM, Joy, J, Moores, A, et al.. Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem. Rev. 2018;118:11575–625. https://doi.org/10.1021/acs.chemrev.7b00627.Search in Google Scholar PubMed

75. Bezerra, RDS, Silva, M, Morais, A, Osajima, J, Santos, M, Airoldi, C, et al.. Phosphated cellulose as an efficient biomaterial for aqueous drug ranitidine removal. Mater (Basel) 2014;7:7907–24. https://doi.org/10.3390/ma7127907.Search in Google Scholar PubMed PubMed Central

76. Bezerra, RDS, Teixeira, PRS, Teixeira, ASNM, Eiras, C, Osajima, JA, Filho, ECS. Chemical functionalization of cellulosic materials – main reactions and applications in the contaminants removal of aqueous medium. Cellul – Fundam Asp Curr Trends 2015. https://doi.org/10.5772/61431.Search in Google Scholar

77. Rol, F, Sillard, C, Bardet, M, Yarava, JR, Emsley, L, Gablin, C, et al.. Cellulose phosphorylation comparison and analysis of phosphorate position on cellulose fibers. Carbohydr Polym 2020;229. https://doi.org/10.1016/j.carbpol.2019.115294.Search in Google Scholar PubMed

78. Ghanadpour, M, Carosio, F, Larsson, PT, Wågberg, L. Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials. Biomacromolecules 2015;16:3399–410. https://doi.org/10.1021/acs.biomac.5b01117.Search in Google Scholar PubMed

79. Zhang, S, Li, SN, Wu, Q, Li, Q, Huang, J, Li, W, et al.. Phosphorus containing group and lignin toward intrinsically flame retardant cellulose nanofibril-based film with enhanced mechanical properties. Compos. Part B Eng. 2021;212:108699. https://doi.org/10.1016/j.compositesb.2021.108699.Search in Google Scholar

80. Tzanov, T, Stamenova, M, Cavaco-Paulo, A. Phosphorylation of cotton cellulose with baker’s yeast hexokinase. Macromol Rapid Commun 2002;23:962–4. https://doi.org/10.1002/1521-3927(200211)23:16<962::AID-MARC962>3.0.CO;2-B.10.1002/1521-3927(200211)23:16<962::AID-MARC962>3.0.CO;2-BSearch in Google Scholar

81. Noguchi, Y, Homma, I, Matsubara, Y. Complete nanofibrillation of cellulose prepared by phosphorylation. Cellulose 2017;24:1295–305. https://doi.org/10.1007/s10570-017-1191-3.Search in Google Scholar

82. Liu, P, Borrell, PF, Božič, M, Kokol, V, Oksman, K, Mathew, AP. Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag+, Cu2+ and Fe3+ from industrial effluents. J Hazard Mater 2015;294:177–85. https://doi.org/10.1016/j.jhazmat.2015.04.001.Search in Google Scholar

83. Kono, H, Tsukamoto, E, Tajima, K. Facile post-carboxymethylation of cellulose nanofiber surfaces for enhanced water dispersibility. ACS Omega 2021;6:34107–14. https://doi.org/10.1021/acsomega.1c05603.Search in Google Scholar

84. Rahman, MS, Hasan, MS, Nitai, AS, Nam, S, Karmakar, AK, Ahsan, MS, et al.. Recent developments of carboxymethyl cellulose. Polym (Basel) 2021;13. https://doi.org/10.3390/polym13081345.Search in Google Scholar

85. Salmi, T, Valtakari, D, Paatero, E, Holmbom, B, Sjöholm, R. Kinetic study of the carboxymethylation of cellulose. Ind Eng Chem Res 1994;33:1454–9. https://doi.org/10.1021/ie00030a004.Search in Google Scholar

86. Bhandari, PN, Jones, DD, Hanna, MA. Carboxymethylation of cellulose using reactive extrusion. Carbohydr Polym 2012;87:2246–54. https://doi.org/10.1016/j.carbpol.2011.10.056.Search in Google Scholar

87. Wang, J, Han, X, Zhang, C, Liu, K, Duan, G. Source of nanocellulose and its application in nanocomposite packaging material: a review. Nanomaterials 2022;12. https://doi.org/10.3390/nano12183158.Search in Google Scholar PubMed PubMed Central

88. Mbakop, S, Nthunya, LN, Onyango, MS. Recent advances in the synthesis of nanocellulose functionalized-hybrid membranes and application in water quality improvement. Processes 2021;9. https://doi.org/10.3390/pr9040611.Search in Google Scholar

89. Isogai, A, Saito, T, Fukuzumi, H. TEMPO-oxidized cellulose nanofibers. Nanoscale 2011;3:71–85. https://doi.org/10.1039/c0nr00583e.Search in Google Scholar PubMed

90. Bhat, AH, Dasan, YK, Khan, I, Soleimani, H, Usmani, A. Application of nanocrystalline cellulose: processing and biomedical applications. Cellul Nanofibre Compos Prod Prop Appl 2017:215–40. https://doi.org/10.1016/B978-0-08-100957-4.00009-7.Search in Google Scholar

91. Oun, AA, Rhim, JW. Characterization of carboxymethyl cellulose-based nanocomposite films reinforced with oxidized nanocellulose isolated using ammonium persulfate method. Carbohydr Polym 2017;174:484–92. https://doi.org/10.1016/j.carbpol.2017.06.121.Search in Google Scholar PubMed

92. Leung, ACW, Hrapovic, S, Lam, E, Liu, Y, Male, KB, Mahmoud, KA, et al.. Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 2011;7:302–5. https://doi.org/10.1002/smll.201001715.Search in Google Scholar PubMed

93. Tang, Z, Li, W, Lin, X, Xiao, H, Miao, Q, Huang, L, et al.. TEMPO-Oxidized cellulose with high degree of oxidation. Polym (Basel) 2017;9:3–4. https://doi.org/10.3390/polym9090421.Search in Google Scholar PubMed PubMed Central

94. Hastuti, N, Kanomata, K, Kitaoka, T. Characteristics of TEMPO-oxidized cellulose nanofibers from oil palm empty fruit bunches produced by different amounts of oxidant. IOP Conf Ser Earth Environ Sci 2019;359. https://doi.org/10.1088/1755-1315/359/1/012008.Search in Google Scholar

95. Liimatainen, H, Visanko, M, Sirviö, J, Hormi, O, Niinimäki, J. Sulfonated cellulose nanofibrils obtained from wood pulp through regioselective oxidative bisulfite pre-treatment. Cellulose 2013;20:741–9. https://doi.org/10.1007/s10570-013-9865-y.Search in Google Scholar

96. Norizan, MN, Shazleen, SS, Alias, AH, Sabaruddin, FA, Asyraf, MRM, Zainudin, ES, et al.. Nanocellulose-based nanocomposites for sustainable applications: a review. Nanomaterials 2022;12:1–51. https://doi.org/10.3390/nano12193483.Search in Google Scholar PubMed PubMed Central

97. Zhang, J, Jiang, N, Dang, Z, Elder, TJ, Ragauskas, AJ. Oxidation and sulfonation of cellulosics. Cellulose 2008;15:489–96. https://doi.org/10.1007/s10570-007-9193-1.Search in Google Scholar

98. Braun, B, Dorgan, JR. Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers. Biomacromolecules 2009;10:334–41. https://doi.org/10.1021/bm8011117.Search in Google Scholar PubMed

99. Fahma, F, Takemura, A, Saito, Y. Acetylation and stepwise solvent-exchange to modify hydrophilic cellulose whiskers to polychloroprene-compatible nanofiller. Cellulose 2014;21:2519–27. https://doi.org/10.1007/s10570-014-0294-3.Search in Google Scholar

100. Wang, X, Wang, N, Xu, B, Wang, Y, Lang, J, Lu, J, et al.. Comparative study on different modified preparation methods of cellulose nanocrystalline. Polym (Basel) 2021;13. https://doi.org/10.3390/polym13193417.Search in Google Scholar PubMed PubMed Central

101. Eyley, S, Thielemans, W. Surface modification of cellulose nanocrystals. Nanoscale 2014;6:7764–79. https://doi.org/10.1039/c4nr01756k.Search in Google Scholar PubMed

102. Hemraz, UD, Boluk, Y, Sunasee, R. Amine-decorated nanocrystalline cellulose surfaces: synthesis, characterization, and surface properties. Can J Chem 2013;91:974–81. https://doi.org/10.1139/cjc-2013-0165.Search in Google Scholar

103. Bart, J, Tiggelaar, R, Yang, M, Schlautmann, S, Zuilhof, H, Gardeniers, H. Room-temperature intermediate layer bonding for microfluidic devices. Lab Chip 2009;9:3481–8. https://doi.org/10.1039/b914270c.Search in Google Scholar PubMed

104. Saini, S, Belgacem, MN, Bras, J. Effect of variable aminoalkyl chains on chemical grafting of cellulose nanofiber and their antimicrobial activity. Mater Sci Eng C 2017;75:760–8. https://doi.org/10.1016/j.msec.2017.02.062.Search in Google Scholar PubMed

105. Sharma, A, Thakur, M, Bhattacharya, M, Mandal, T, Goswami, S. Commercial application of cellulose nano-composites – a review. Biotechnol. Reports 2019;21:e00316. https://doi.org/10.1016/j.btre.2019.e00316.Search in Google Scholar PubMed PubMed Central

106. Gadhave, RV, Dhawale, PV, Sorate, CS. Surface modification of cellulose with silanes for adhesive application: review. Open J Polym Chem 2021;11:11–30. https://doi.org/10.4236/ojpchem.2021.112002.Search in Google Scholar

107. Orata, F. Derivatization reactions and reagents for gas chromatography analysis. Adv. Gas Chromatogr – Prog Agric Biomed Ind Appl 2012;91:83–108. https://doi.org/10.5772/33098.Search in Google Scholar

108. Hassan, A. Evaluation of a nanostructured MWCNT based RAM coating applied to a glass fiber composite. Int. J. Technol. Eng. Stud. 2021;7:1–9. https://doi.org/10.20469/ijtes.7.10001-1.Search in Google Scholar

109. Farooq, A, Patoary, MK, Zhang, M, Mussana, H, Li, M, Naeem, MA, et al.. Cellulose from sources to nanocellulose and an overview of synthesis and properties of nanocellulose/zinc oxide nanocomposite materials. Int J Biol Macromol 2020;154:1050–73. https://doi.org/10.1016/j.ijbiomac.2020.03.163.Search in Google Scholar PubMed

110. Corr, SA. Metal oxide nanoparticles. SPR Nanosci. 2016;3:31–56. https://doi.org/10.1039/9781782623717-00031.Search in Google Scholar

111. Khan, I, Saeed, K, Khan, I. Nanoparticles: properties, applications and toxicities. Arab J Chem 2019;12:908–31. https://doi.org/10.1016/j.arabjc.2017.05.011.Search in Google Scholar

112. Abu-dief, AM. Development of metal oxide nanoparticles as semiconductors. J Nanotechnol Nanomater 2020:4–10. https://doi.org/10.33696/nanotechnol.1.002.Search in Google Scholar

113. Asha, AB, Narain, R. Nanomaterials properties. In: Polymer science and nanotechnology. Amsterdam, Netherlands: Elsevier Inc.; 2020:343–59 pp.10.1016/B978-0-12-816806-6.00015-7Search in Google Scholar

114. Albarakati, AJ, Matter, IA. N-type metal oxide semiconductor: materials and their environmental applications. Biointerface Res Appl Chem 2023;13:1–23. https://doi.org/10.33263/BRIAC136.519.Search in Google Scholar

115. Oyewo, OA, Elemike, EE, Onwudiwe, DC, Onyango, MS. Metal oxide-cellulose nanocomposites for the removal of toxic metals and dyes from wastewater. Int J Biol Macromol 2020;164:2477–96. https://doi.org/10.1016/j.ijbiomac.2020.08.074.Search in Google Scholar PubMed

116. Ramalingam, G, Kathirgamanathan, P, Ravi, G, Elangovan, T, Arjun kumar, B, Manivannan, N, et al.. Quantum confinement effect of 2D nanomaterials. Quan Dots – Fundam Appl 2020. https://doi.org/10.5772/intechopen.90140.Search in Google Scholar

117. Bhari, B, Ali, A. Overview of metal contacts technlogy on semiconductor. In: Optical fiber laser technology: series 2. Malaysia: Penerbit UTHM; 2019:77–88 pp.Search in Google Scholar

118. Authors NCERT. Chapter Fourteen: semiconductor electronics: materials, devices and simple circuits. Physicstextb. Cl 2014;12:468–512.Search in Google Scholar

119. Naseem, T, Durrani, T. The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: a review. Environ Chem Ecotoxicol 2021;3:59–75. https://doi.org/10.1016/j.enceco.2020.12.001.Search in Google Scholar

120. Bi, J, Mo, C, Huang, M, Lin, Y, Yuan, P, et al.. Immunotoxicity of metal and metal oxide nanoparticles: from toxic mechanisms to metabolism and outcomes. Biomater Sci 2023;11:4151–83. https://doi.org/10.1039/d3bm00271c.Search in Google Scholar PubMed

121. Shankar, S, Wang, LF, Rhim, JW. Preparation and properties of carbohydrate-based composite films incorporated with CuO nanoparticles. Carbohydr Polym 2017;169:264–71. https://doi.org/10.1016/j.carbpol.2017.04.025.Search in Google Scholar PubMed

122. Chaudhary, RG, Bhusari, GS, Tiple, AD, Rai, AR, Somkuvar, SR, Potbhare, AK, et al.. Metal/metal oxide nanoparticles: toxicity, applications, and future prospects. Curr Pharm Des 2019;25:4013–29. https://doi.org/10.2174/1381612825666191111091326.Search in Google Scholar PubMed

123. Janićijević, A, Pavlović, VP, Kovačević, D, Perić, M, Vlahović, B, Pavlović, VB, et al.. Structural characterization of nanocellulose/Fe3O4 hybrid nanomaterials 2019;55:1164–76, https://doi.org/10.1134/s0424857019100049.Search in Google Scholar

124. Hsu, HH, Zhong, W. Nanocellulose-based conductive membranes for free-standing supercapacitors: a review. Membr (Basel) 2019;9. https://doi.org/10.3390/membranes9060074.Search in Google Scholar PubMed PubMed Central

125. Oh, SI, Kim, JC, Kim, DW. Cellulose-derived tin-oxide-nanoparticle-embedded carbon fibers as binder-free flexible Li-ion battery anodes. Cellulose 2019;26:2557–71. https://doi.org/10.1007/s10570-019-02258-7.Search in Google Scholar

126. Tan, Y, Li, Q, Lu, Z, Yang, C, Qian, W, Yu, F. Porous nanocomposites by cotton-derived carbon/NiO with high performance for lithium-ion storage. J Alloys Compd 2021;874:159788. https://doi.org/10.1016/j.jallcom.2021.159788.Search in Google Scholar

127. Gui, Z, Zhu, H, Gillette, E, Han, X, Rubloff, GW, Hu, L, et al.. Natural cellulose fiber as substrate for supercapacitor. ACS Nano 2013;7:6037–46. https://doi.org/10.1021/nn401818t.Search in Google Scholar PubMed

128. Elfeky, AS, Salem, SS, Elzaref, AS, Owda, ME, Eladawy, HA, Saeed, AM, et al.. Multifunctional cellulose nanocrystal/metal oxide hybrid, photo-degradation, antibacterial and larvicidal activities. Carbohydr Polym 2020;230:115711. https://doi.org/10.1016/j.carbpol.2019.115711.Search in Google Scholar PubMed

129. Ul-Islam, M, Khattak, WA, Ullah, MW, Khan, S, Park, JK. Synthesis of regenerated bacterial cellulose-zinc oxide nanocomposite films for biomedical applications. Cellulose 2014;21:433–47. https://doi.org/10.1007/s10570-013-0109-y.Search in Google Scholar

130. Bakkardouch, FE, Atmani, H, El Khalloufi, M, Jouaiti, A, Laallam, L. Modified cellulose-based hybrid materials: effect of ZnO and CuO nanoparticles on the thermal insulation property. Mater Chem Phys 2021;271:124881. https://doi.org/10.1016/j.matchemphys.2021.124881.Search in Google Scholar

131. Yu, HY, Chen, GY, Wang, YB, Yao, JM. A facile one-pot route for preparing cellulose nanocrystal/zinc oxide nanohybrids with high antibacterial and photocatalytic activity. Cellulose 2015;22:261–73. https://doi.org/10.1007/s10570-014-0491-0.Search in Google Scholar

132. Goikuria, U, Larrañaga, A, Vilas, JL, Lizundia, E. Thermal stability increase in metallic nanoparticles-loaded cellulose nanocrystal nanocomposites. Carbohydr Polym 2017;171:193–201. https://doi.org/10.1016/j.carbpol.2017.05.024.Search in Google Scholar PubMed

133. Pate, K, Safier, P. Chemical metrology methods for CMP quality. Adv Chem Mech Planarizat 2016:1–325. https://doi.org/10.1016/B978-0-08-100165-3.00012-7.Search in Google Scholar

134. Wang, Y, Hua, H, Li, W, Wang, R, Jiang, X, Zhu, M. Strong antibacterial dental resin composites containing cellulose nanocrystal/zinc oxide nanohybrids. J Dent 2019;80:23–9. https://doi.org/10.1016/j.jdent.2018.11.002.Search in Google Scholar PubMed

135. Komatsu, H, Kawamoto, Y, Ikuno, T. Freestanding translucent ZnO–cellulose nanocomposite films for ultraviolet sensor applications. Nanomaterials 2022;12. https://doi.org/10.3390/nano12060940.Search in Google Scholar PubMed PubMed Central

136. Abitbol, T, Ahniyaz, A, Álvarez-Asencio, R, Fall, A, Swerin, A. Nanocellulose-based hybrid materials for UV blocking and mechanically robust barriers. ACS Appl Bio Mater 2020;3:2245–54. https://doi.org/10.1021/acsabm.0c00058.Search in Google Scholar PubMed

137. Azizi, S, Mohamad, R, Rahim, RA, Moghaddam, AB, Moniri, M, Ariff, A, et al.. ZnO-Ag core shell nanocomposite formed by green method using essential oil of wild ginger and their bactericidal and cytotoxic effects. Appl Surf Sci 2016;384:517–24. https://doi.org/10.1016/j.apsusc.2016.05.052.Search in Google Scholar

138. Lefatshe, K, Muiva, CM, Kebaabetswe, LP. Extraction of nanocellulose and in-situ casting of ZnO/cellulose nanocomposite with enhanced photocatalytic and antibacterial activity. Carbohydr Polym 2017;164:301–8. https://doi.org/10.1016/j.carbpol.2017.02.020.Search in Google Scholar PubMed

139. Barua, S, Das, G, Aidew, L, Buragohain, AK, Karak, N. Copper-copper oxide coated nanofibrillar cellulose: a promising biomaterial. RSC Adv 2013;3:14997–5004. https://doi.org/10.1039/c3ra42209g.Search in Google Scholar

140. S Azizi, M Ahmad, M Mahdavi, S Abdolmohammadi. Preparation, characterization, and antimicrobial activities of ZnO nanoparticles/cellulose nanocrystal nanocomposites. 2013;8:1841–51. https://doi.org/10.15376/biores.8.2.1841-1851Search in Google Scholar

141. Xiao, H, Zhang, W, Wei, Y, Chen, L. Carbon/ZnO nanorods composites templated by TEMPO- oxidized cellulose and photocatalytic activity for dye degradation. Cellulose 2018;25:1809–19. https://doi.org/10.1007/s10570-018-1651-4.Search in Google Scholar

142. Yadollahi, M, Gholamali, I, Namazi, H, Aghazadeh, M. Synthesis and characterization of antibacterial carboxymethyl cellulose/ZnO nanocomposite hydrogels. Int J Biol Macromol 2014;74:136–41. https://doi.org/10.1016/j.ijbiomac.2014.11.032.Search in Google Scholar PubMed

143. Ikram, M, Rasheed, F, Haider, A, Naz, S, Ul-Hamid, A, Shahzadi, A, et al.. Photocatalytic and antibacterial activity of graphene oxide/cellulose-doped TiO2 quantum dots: in silico molecular docking studies. Nanoscale Adv 2022;4:3764–76. https://doi.org/10.1039/d2na00383j.Search in Google Scholar PubMed PubMed Central

144. Breijaert, TC, Daniel, G, Hedlund, D, Svedlindh, P, Kessler, V, Granberg, H, et al.. Self-assembly of ferria – nanocellulose composite fibres. Carbohydr Polym 2022;291:119560. https://doi.org/10.1016/j.carbpol.2022.119560.Search in Google Scholar PubMed

145. Valencia, L, Kumar, S, Nomena, EM, Salazar-Alvarez, G, Mathew, AP. In-situ growth of metal oxide nanoparticles on cellulose nanofibrils for dye removal and antimicrobial applications. ACS Appl Nano Mater 2020;3:7172–81. https://doi.org/10.1021/acsanm.0c01511.Search in Google Scholar

146. Luna-Martínez, JF, Reyes-Melo, E, González-González, V, Guerrero-Salazar, C, Torres-Castro, A, Sepúlveda-Guzmán, S. Synthesis and characterization of a magnetic hybrid material consisting of iron oxide in a carboxymethyl cellulose matrix. J Appl Polym Sci 2013;127:2325–31. https://doi.org/10.1002/app.37892.Search in Google Scholar

147. Ko, JW, Il Lee, B, Chung, YJ, Park, CB. Carboxymethyl cellulose-templated synthesis of hierarchically structured metal oxides. Green Chem 2015;17:4167–72. https://doi.org/10.1039/c5gc01348h.Search in Google Scholar

Received: 2024-02-07
Accepted: 2025-01-08
Published Online: 2025-02-04

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/psr-2024-0025/pdf
Scroll to top button