Home Diarylethene Dyes
Article
Licensed
Unlicensed Requires Authentication

Diarylethene Dyes

  • Andrew Towns ORCID logo EMAIL logo
Published/Copyright: April 17, 2020
Become an author with De Gruyter Brill

Abstract

This article introduces the general characteristics of the diarylethene class of photochromic dye and the structural features that make photochromism possible. It touches on the methodologies employed to synthesize these compounds as well as the influences that typical substitution patterns exert on photocoloration. A demonstration is then given of the great diversity pertaining to the potential applications in which researchers are seeking to exploit them as functional colorants.

References

[1] Irie M. Discovery and development of photochromic diarylethenes. Pure Appl Chem. 2015;87:617–26.10.1515/pac-2015-0208Search in Google Scholar

[2] Towns A. Photochromic Dyes. to be submitted.Search in Google Scholar

[3] Towns A. Naphthopyran dyes. Phys Sci Rev. 2020;5:20190085.10.1515/psr-2019-0085Search in Google Scholar

[4] Takame S, Kobatake S, Kawai T, Irie M. Extraordinarily high thermal stability of the closed-ring isomer of 1,2-Bis(5-methyl-2-phenylthiazol-4-yl)perfluorocyclopentene. Chem Lett. 2003;32:892–3.10.1246/cl.2003.892Search in Google Scholar

[5] Animoto K, Kawato T. Photochromism of organic compounds in the crystal state. J Photochem Photobiol C Photochem Rev. 2005;6:207–26.10.1016/j.jphotochemrev.2005.12.002Search in Google Scholar

[6] Irie M. Photoswitchable Molecular Systems based on Diarylethenes. In: Feringa BL, editor(s). Molecular switches, 1st ed. Weinheim: Wiley-VCH. Chapter 2. 2001:37–62.10.1002/3527600329.ch2Search in Google Scholar

[7] Nakatani K, Piard J, Yu P, Métivier R. Chapter 1 Introduction: organic photochromic molecules. In: Tian H, Zhang J editors, Photochromic materials: preparation, properties and applications, 1–45. Weinheim: Wiley-VCH, 2016.Search in Google Scholar

[8] Irie M. Diarylethenes for memories and switches. Chem Rev. 2000;100:1685–716.10.1021/cr980069dSearch in Google Scholar PubMed

[9] Irie M, Fukaminato T, Matsuda K, Kobatake S. Photochromism of diarylethene molecules and crystals: memories, switches and actuators. Chem Rev. 2014;114:12174–277.10.1021/cr500249pSearch in Google Scholar PubMed

[10] Nakashima T, Kawai T. Chapter 10 Photochromic terarylenes. In: Irie M, Yokoyama Y, Seki T editors, New frontiers in photochromism, 183–204. Tokyo: Springer, 2013.10.1007/978-4-431-54291-9_10Search in Google Scholar

[11] Lvov AG, Khusniyarov MM, Shirinian VZ. Azole-based diarylethenes as the next step towards advanced photochromic materials. J Photochem Photobiol C Photochem Rev. 2018;36:1–23.10.1016/j.jphotochemrev.2018.04.002Search in Google Scholar

[12] Uchida K, Nakayama Y, Irie M. Thermally irreversible photochromic systems. reversible photocyclisation of 1,2-Bis(benzo[b]thiophen-3-yl)ethene derivatives. Bull Chem Soc Jpn. 1990;63:1311–15.10.1246/bcsj.63.1311Search in Google Scholar

[13] Kitagawa D, Sasaki K, Kobatake S. Correlation between steric substituent constants and thermal cycloreversion reactivity of diarylethene closed-ring isomers. Bull Chem Soc Jpn. 2011;84:141–7.10.1246/bcsj.20100274Search in Google Scholar

[14] Kitagawa D, Kobatake S. Strategy for molecular design of photochromic diarylethenes having thermal functionality. Chem Rec. 2016;16:2005–15.10.1002/tcr.201600060Search in Google Scholar

[15] Uchida K, Tsuchida E, Aoi Y, Nakamura S, Irie M. Substitution effect on the coloration quantum yield of a photochromic bisbenzothienylethene. Chem Lett. 1999;28:63–4.10.1246/cl.1999.63Search in Google Scholar

[16] For example, Tokyo Chemical Industry. Photochromic dyes. www.tcichemicals.com/eshop/en/gb/category_index/12989/ Accessed: 25 Feb 2020.Search in Google Scholar

[17] Lucas LN, de Jong JJ, van Esch JH, Kellogg RM, Feringa BL. Syntheses of dithienylcyclopentene optical molecular switches. Eur J Org Chem. 2003;155–66.10.1002/1099-0690(200301)2003:1<155::AID-EJOC155>3.0.CO;2-SSearch in Google Scholar

[18] Szalóki G, Pozzo J-L. Synthesis of symmetrical and non-symmetrical bisthienylcyclopentenes. Chem Eur J. 2013;19:11124–32.10.1002/chem.201301645Search in Google Scholar

[19] Chen S, Li W, Zhu W-H. Chapter 2 Novel ethene-bridged diarylethene photochromic systems: self-assembly, photoswitcher, and molecular logic gates. In: Yokoyama Y, Nakatani K editors, Photon-working switches, 37–62. Tokyo: Springer, 2017.10.1007/978-4-431-56544-4_2Search in Google Scholar

[20] Nakayama Y, Hayashi K, Irie M. Themally irreversible photochromic systems. reversible photocyclisation of non-symmetric diarylethene derivatives. Bull Chem Soc Jpn. 1991;64:789–95.10.1246/bcsj.64.789Search in Google Scholar

[21] Uchida K, Irie M. A photochromic dithienylethene that turns yellow by UV irradiation. Chem Lett. 1995;24:969–70.10.1246/cl.1995.969Search in Google Scholar

[22] Hanazawa M, Sumiya R, Horikawa Y, Irie M. Thermally irreversible photochromic systems. reversible photocyclization of 1,2-bis (2-methylbenzo[b]thiophen-3-yl)perfluorocycloalkene derivatives. J Chem Soc Chem Commun. 1992;206–7.10.1039/c39920000206Search in Google Scholar

[23] Irie M, Sakemura K, Okinaka M, Uchida K. Photochromism of dithienylethenes with electron-donating substituents. J Org Chem. 1995;60:8305–9.10.1021/jo00130a035Search in Google Scholar

[24] Gilat SL, Kawai SH, Lehn J-M. Light-triggered electrical and optical switching devices. J Chem Soc Chem Commun. 1993;1439–42.10.1039/c39930001439Search in Google Scholar

[25] Zhang Z, Wang W, Jin P, Xue J, Sun L, Huang J, et al. A building-block design for enhanced visible-light switching of diarylethenes. Nat Commun. 2019;10:4232.10.1038/s41467-019-12302-6Search in Google Scholar

[26] Jia S, Fong W-K, Graham B, Boyd BJ. Photoswitchable molecules in long-wavelength light-responsive drug delivery: from molecular design to applications. Chem Mater. 2018;30:2873–87.10.1021/acs.chemmater.8b00357Search in Google Scholar

[27] Fredrich S, Goestl R, Herder M, Grubert L, Hecht S. Switching diarylethenes reliably in both directions with visible light. Angew Chem Intl Ed Engl. 2016;55:1208–12.10.1002/anie.201509875Search in Google Scholar

[28] Irie M, Lifka T, Kobatake S, Kato N. Photochromism of 1,2-Bis(2-methyl-5-phenyl-3-thienyl)perfluorocyclopentene in a Single-Crystalline Phase. J Am Chem Soc. 2000;122:4871–6.10.1021/ja993181hSearch in Google Scholar

[29] Takami S, Kawai T, Irie M. Photochromism of dithiazolylethenes having methoxy groups at the reaction centers. Eur J Org Chem. 2002;22:3796–800.10.1002/1099-0690(200211)2002:22<3796::AID-EJOC3796>3.0.CO;2-XSearch in Google Scholar

[30] Yamaguchi T, Irie M. Photochromic and fluorescent properties of bisfurylethene derivatives. J Mater Chem. 2006;16:4690–4.10.1039/b611294cSearch in Google Scholar

[31] Kuroki L, Takami S, Shibata K, Irie M. Photochromism of single crystals composed of dioxazolylethene and dithiazolylethene. Chem Commun. 2005;6005–7.10.1039/b512873kSearch in Google Scholar

[32] Uchida K, Ishikawa T, Takeshita M, Irie M. Thermally irreversible photochromic systems. reversible photocyclization of 1,2-Bis(thiazolyl) perfluorocydopentenes. Tetrahedron. 1998;54:6627–38.10.1016/S0040-4020(98)00330-5Search in Google Scholar

[33] Hohlneicher G, Mueller M, Demmer M, Lex J, Penn JH, Gan L-X, et al. 1,2-diphenylcycloalkenes: electronic and geometric structures in the gas phase, solution, and solid state. J Am Chem Soc. 1988;110:4483–94.10.1021/ja00222a001Search in Google Scholar

[34] Zhu W, Yang Y, Métivier R, Zhang Q, Guillot R, Xie Y, et al. Unprecedented stability of a photochromic bisthienylethene based on benzobisthiadiazole as an ethene bridge. Angew Chem Intl Ed. 2011;50:10986–90.10.1002/anie.201105136Search in Google Scholar

[35] Wu Y, Guo Z, Zhu W-H, Wan W, Zhang J, Li W, et al. Photoswitching between black and colourless spectra exhibits resettable spatiotemporal logic. Mater Horiz. 2016;3:124–9.10.1039/C5MH00223KSearch in Google Scholar

[36] Irie M, Lifka T, Uchida K, Kobatake S, Shindo Y. Fatigue resistant properties of photochromic dithienylethenes: by-product formation. Chem Commun. 1999;747–50.10.1039/a809410aSearch in Google Scholar

[37] Jean-Ruel H, Cooney RR, Gao M, Lu C, Kochman MA, Morrison CA, et al. Femtosecond dynamics of the ring closing process of diarylethene: a case study of electrocyclic reactions in photochromic single crystals. J Phys Chem A. 2011;115:13158–68.10.1021/jp205818hSearch in Google Scholar

[38] Kellogg RM, Groen B, Wynberg H. Photochemically induced cyclization of some furyl- and thienylethenes. J Org Chem. 1967;32:3093–100.10.1021/jo01285a035Search in Google Scholar

[39] Irie M. Chapter 5 Diarylethenes with heterocyclic aryl groups. In: Crano JC, Guglielmetti RJ editors, Organic photochromic and thermochromic compounds volume 1: main photochromic families, 207–22. New York: Plenum, 1999.Search in Google Scholar

[40] Matsuda K, Irie M. Diarylethene as a photoswitching unit. J Photochem Photobiol C Photochem Rev. 2004;5:169–82.10.1016/S1389-5567(04)00023-1Search in Google Scholar

[41] Warford CC, Lemieux V, Branda NR. Chapter 1. Multifunctional diarylethenes. In: Feringa BL, Browne WR, editors. Molecular switches. 2nd ed. Weinheim: Wiley-VCH, 2011:3–35.Search in Google Scholar

[42] Zhang J, Tian H. The endeavor of diarylethenes: new structures, high performance, and bright future. Adv Opt Mater. 2018;6:1701278.10.1002/adom.201701278Search in Google Scholar

[43] Yokoyama Y, Nakatani K, eds. Photon-working switches. Tokyo: Springer, 2017.10.1007/978-4-431-56544-4Search in Google Scholar

[44] Stellacci F, Bertarelli C, Toscano F, Gallazzi MC, Zerbi G. Diarylethene-based photochromic rewritable optical memories: on the possibility of reading in the mid-infrared. Chem Phys Lett. 1999;302:563–70.10.1016/S0009-2614(99)00129-3Search in Google Scholar

[45] Minkin VI. Bistable organic, organometallic, and coordination compounds for molecular electronics and spintronics. Russ Chem Bull Int Ed. 2008;57:687–717.10.1007/s11172-008-0111-ySearch in Google Scholar

[46] Bertarelli C, Bianco A, Castagna R, Pariani G. Photochromism into optics: opportunities to develop light-triggered optical elements. J Photochem Photobiol C Photochem Rev. 2011;12:106–25.10.1016/j.jphotochemrev.2011.05.003Search in Google Scholar

[47] Feringa BL, van Delden RA, Koumura N, Geertsema EM. Chiroptical molecular switches. Chem Rev. 2000;100:1789–816.10.1002/3527600329.ch5Search in Google Scholar

[48] Nakagawa T, Ubukata T, Yokoyama Y. Chirality and stereoselectivity in photochromic reactions. J Photochem Photobiol C Photochem Rev. 2018;34:152–91.10.1016/j.jphotochemrev.2017.12.004Search in Google Scholar

[49] Bisoyi HK, Li Q. Light-driven liquid crystalline materials: from photo-induced phase transitions and property modulations to application. Chem Rev. 2016;116:15089–166.10.1021/acs.chemrev.6b00415Search in Google Scholar PubMed

[50] Göstl R, Senf A, Hecht S. Remote-controlling chemical reactions by light: Towards chemistry with high spatio-temporal resolution. Chem Soc Rev. 2014;43:1982–96.10.1039/c3cs60383kSearch in Google Scholar PubMed

[51] Wang L, Li Q. Photochromism into nanosystems: towards lighting up the future nanoworld. Chem Soc Rev. 2018;47:1044–97.10.1039/C7CS00630FSearch in Google Scholar

[52] Hüll K, Morstein J, Trauner D. In vivo photopharmacology. Chem Rev. 2018;118:10710–47.10.1021/acs.chemrev.8b00037Search in Google Scholar PubMed

[53] Ihrig SP, Eisenreich F, Hecht S. Photoswitchable polymerization catalysis: state of the art, challenges, and perspectives. Chem Commun. 2019;55:4290–8.10.1039/C9CC01431DSearch in Google Scholar PubMed

[54] Mostafavi SH, Tong F, Dugger TW, Kisailus D, Bardeen CJ. Noncovalent photochromic polymer adhesion. Macromol. 2018;51:2388–94.10.1021/acs.macromol.8b00036Search in Google Scholar

[55] Pu S-Z, Sun Q, Fan C-B, Wang R-J, Liu G. Recent advances in diarylethene-based multi-responsive molecular switches. J Mater Chem C. 2016;4:3075–93.10.1039/C6TC00110FSearch in Google Scholar

[56] Nevskyi O, Sysoiev D, Dreier J, Stein SC, Oppermann A, Lemken F, et al. Fluorescent diarylethene photoswitches – A universal tool for super-resolution microscopy in nanostructured materials. Small. 2018;14:1703333.10.1002/smll.201703333Search in Google Scholar

[57] Tsivgoulis GM, Lehn J-M. Photonic molecular devices: reversibly photoswitchable fluorophores for nondestructive readout for optical memory. Angew Chem Int Ed. 1995;34:1119–22.10.1002/anie.199511191Search in Google Scholar

[58] Guo F, Guo Z. Inspired smart materials with external stimuli responsive wettability: a review. RSC Adv. 2016;6:36623–41.10.1039/C6RA04079ASearch in Google Scholar

[59] Dunne A, Francis W, Delaney C, Florea L, Diamond D. Stimuli-controlled fluid control and microvehicle movement in microfluidic channels, reference module in materials science and materials engineering. Elsevier, 2017. http://doi.org/10.1016/B978-0-12-803581-8.04043-1 Accessed: 25 Feb 2020.10.1016/B978-0-12-803581-8.04043-1Search in Google Scholar

[60] Towns A. Colorants: general survey. Phys Sci Rev. 2019;4. DOI: 10.1515/psr-2019-0008.Search in Google Scholar

[61] Norsten TB, Branda NR. Axially coordinated porphyrinic photochromes for non-destructive information processing. Adv Mater. 2001;13:347–9.10.1002/1521-4095(200103)13:5<347::AID-ADMA347>3.0.CO;2-9Search in Google Scholar

[62] Higashiguchi K, Matsuda K, Tanifuji N, Irie M. Full-color photochromism of a fused dithienylethene trimer. J Am Chem Soc. 2005;127:8922–3.10.1021/ja051467iSearch in Google Scholar

[63] Tsujioka T, Irie M. Electrical functions of photochromic molecules. J Photochem Photobio C Photochem Rev. 2010;11:1–14.10.1016/j.jphotochemrev.2010.02.001Search in Google Scholar

[64] Gilat SL, Kawai SH, Lehn J-M. Light-triggered molecular devices: photochemical switching of optical and electrochemical properties in molecular wire type diarylethene species. Chem Eur J. 1995;1:275–84.10.1002/chem.19950010504Search in Google Scholar

[65] Kawai T, Kunitake T, Irie M. Novel photochromic conducting polymer having diarylethene derivative in the main chain. Chem Lett. 1999;28:905–6.10.1246/cl.1999.905Search in Google Scholar

[66] Gentili PL, Giubila MS, Germani R, Heron BM. Photochromic and luminescent compounds as artificial neuron models. Dyes Pigm. 2018;156:149–59.10.1016/j.dyepig.2018.04.006Search in Google Scholar

[67] Galbraith CA, Galbraith JA. Super-resolution microscopy at a glance. J Cell Sci. 2011;124:1607–11.10.1242/jcs.080085Search in Google Scholar PubMed PubMed Central

[68] Hell SW. Nanoscopy with Focused Light (Nobel Lecture). Angew Chem Int Ed. 2015;54:8054–66.10.1002/anie.201504181Search in Google Scholar PubMed

[69] Pujals S, Feiner-Gracia N, Albertazzi L. Unveiling complex structure and dynamics in supramolecular biomaterials using super-resolution microscopy. In: Azevedo HS, da Silva RM, editor(s). Self-assembling biomaterials: molecular design, characterization and application in biology and medicine. Kidlington: Woodhead. Chapter 12 2018:251–74.10.1016/B978-0-08-102015-9.00013-7Search in Google Scholar

[70] Minoshima M, Kikuchi K. Photostable and photoswitching fluorescent dyes for super-resolution imaging. J Biol Inorg Chem. 2017;22:639–52.10.1007/s00775-016-1435-ySearch in Google Scholar PubMed

[71] Uno K, Bossi ML, Konen T, Belov VN, Irie M, Hell SW. Asymmetric diarylethenes with oxidized 2-Alkylbenzothiophen-3-yl units: Chemistry, fluorescence, and photoswitching. Adv Opt Mater. 2019;7:1801746.10.1002/adom.201801746Search in Google Scholar

[72] Uno K, Bossi ML, Irie M, Belov VN, Hell SW. Reversibly photoswitchable fluorescent diarylethenes resistant against photobleaching in aqueous solutions. J Am Chem Soc. 2019;141:16471–8.10.1021/jacs.9b08748Search in Google Scholar PubMed

[73] Kathan M, Hecht S. Photoswitchable molecules as key ingredients to drive systems away from the global thermodynamic minimum. Chem Soc Rev. 2017;46:5536–50.10.1039/C7CS00112FSearch in Google Scholar PubMed

[74] Szymański W, Beierle JM, Kistemaker HA, Velema WA, Feringa BL. Reversible photocontrol of biological systems by the incorporation of molecular photoswitches. Chem Rev. 2013;113:6114–78.10.1021/cr300179fSearch in Google Scholar PubMed

[75] Zhang J, Wang J, Tian H. Taking orders from light: progress in photochromic bio-materials. Mater Horiz. 2014;1:169–84.10.1039/C3MH00031ASearch in Google Scholar

[76] Xiao C, Zhao W-Y, Zhou D-Y, Huang Y, Tao Y, Wu W-H, et al. Recent advance of photochromic diarylethenes-containing supramolecular systems. Chin Chem Lett. 2015;26:817–24.10.1016/j.cclet.2015.05.013Search in Google Scholar

[77] Lerch MM, Hansen MJ, van Dam GM, Szymanski W, Feringa BL. Emerging targets in photopharmacology. Angew Chem Intl Edn. 2016;55:10978–99.10.1002/anie.201601931Search in Google Scholar PubMed

[78] Reeßing F, Szymanski W. Beyond photodynamic therapy: light-activated cancer chemotherapy. Curr Med Chem. 2017;24:4905–50.10.2174/0929867323666160906103223Search in Google Scholar PubMed

[79] Velema WA, Szymanski W, Feringa BL. Photopharmacology: beyond proof of principle. J Am Chem Soc. 2014;136:2178–91.10.1021/ja413063eSearch in Google Scholar PubMed

[80] Presa A, Brissos RF, Cabellero AB, Borilovic I, Korrodi-Gregório L, Pérez-Tomás R, et al. Photoswitching the cytotoxic properties of platinum(II) compounds. Angew Chem Intl Edn. 2015;54:4561–5.10.1002/anie.201412157Search in Google Scholar PubMed

[81] Albert L, Vázquez O. Photoswitchable peptides for spatiotemporal control of biological functions. Chem Commun. 2019;55:10192–213.10.1039/C9CC03346GSearch in Google Scholar

[82] Babii O, Afonin S, Garmanchuk LV, Nikulina VV, Nikolaienko TV, Storozhuk OV, et al. Direct photocontrol of peptidomimetics: an alternative to oxygen-dependent photodynamic cancer therapy. Angew Chem. 2016;128:5583–6.10.1002/ange.201600506Search in Google Scholar

[83] Babii O, Afonin S, Ischenko AY, Schober T, Negelia AO, Tolstanova GM, et al. Structure-activity relationships of photoswitchable diarylethene-based β-hairpin peptides as membranolytic antimicrobial and anticancer agents. J Med Chem. 2018;61:10793–813.10.1021/acs.jmedchem.8b01428Search in Google Scholar PubMed

[84] Schober T, Wehl I, Afonin S, Babii O, Iampolska A, Schepers U, et al. Controlling the uptake of diarylethene-based cell-penetrating peptides into cells using light. ChemPhotoChem. 2019;3:384–91.10.1002/cptc.201900019Search in Google Scholar

[85] Fleming C, Remón P, Li S, Simeth NA, König B, Grøtli M, et al. On the use of diarylmaleimide derivatives in biological contexts: An investigation of the photochromic properties in aqueous solution. Dyes Pigm. 2017;137:410–20.10.1016/j.dyepig.2016.10.023Search in Google Scholar

[86] Komarov IV, Afonin S, Babii O, Schober T, Ulrich AS. Efficiently photocontrollable or not? Biological activity of photoisomerizable diarylethenes. Chem Eur J. 2018;24:11245–54.10.1002/chem.201801205Search in Google Scholar PubMed

[87] Higashiguchi K, Taira G, Kitai J-I, Hirose T, Matsuda K. Photoinduced macroscopic morphological transformation of an amphiphilic diarylethene assembly: reversible dynamic motion. J Am Chem Soc. 2015;137:2722–9.10.1021/ja512924qSearch in Google Scholar PubMed

[88] Kobatake S, Takami S, Muto H, Ishikawa T, Irie M. Rapid and reversible shape changes of molecular crystals on photoirradiation. Nature. 2007;446:778–81.10.1038/nature05669Search in Google Scholar PubMed

[89] Nakagawa Y, Morimoto M, Yasuda N, Hyodo K, Yokojima S, Nakamura S, et al. Photosalient effect of diarylethene crystals of Thiazolyl and Thienyl derivatives. Chem Eur J. 2019;25:7874–80.10.1002/chem.201900811Search in Google Scholar PubMed

[90] Mamiya J-I, Kuriyama A, Yokota N, Yamada M, Ikeda T. Photomobile polymer materials: photoresponsive behavior of cross-linked liquid-crystalline polymers with mesomorphic diarylethenes. Chem Eur J. 2015;21:3174–7.10.1002/chem.201406299Search in Google Scholar PubMed

[91] Kuenstler AS, Hayward RC. Light-induced shape morphing of thin films. Curr Opinion Colloid Interface Sci. 2019;40:70–86.10.1016/j.cocis.2019.01.009Search in Google Scholar

Published Online: 2020-04-17

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/psr-2019-0146/html
Scroll to top button