Abstract
Cyanine dyes are characterized by an odd number 2n + 3 of π-centers and 2n + 4 π-electrons (where n is the number of vinyl groups –CH = CH–). This special feature has a marked impact on their electronic structure and thus their equilibrium structure in the electronic ground state as well their color and electronic spectrum, respectively. Their first technical application was the use as spectral sensitizersspectral sensitizers"?> in silver halide photography. Today they have numerous of applications in digital optical data storage, Computer-to-Plate lithographic printing plates, bio-analysisbio-analysis"?> and medical diagnosticsmedical diagnostics"?>.
References
[1] Hamer FM. The cyanine dyes and related compounds. In: Weissberger A, editor. The chemistry of heterocyclic compounds, vol. 18. New York: Interscience, 1964.10.1002/9780470186794Search in Google Scholar
[2] Sturmer DM, Diehl DR. Polymethine dyes. In: Kirk-othmer encyclopedia of chemical technology, vol. 18, 3rd ed. New York: Wiley, 1982:848–74.Search in Google Scholar
[3] Tyutyulkov N, Fabian J, Mehlhorn A, Dietz F, Tadjer A. Polymethine dyes – Structure and properties. Sofia: St. Kliment Ohridski University Press; 1991.Search in Google Scholar
[4] Bach G, Daehne S. Cyanine dyes and related compounds. In: Sainsbury M, editor(s). Second supplements to the 2nd edition of Rodd’s chemistry of carbon compounds Vol. IV B. Amsterdam: Elsevier, 1997:383–481.10.1016/B978-044453347-0.50165-8Search in Google Scholar
[5] Mishra A, Behera RK, Behera PK, Mishra BK, Behera GB. Cyanine dyes during the 1990s: a review. Chem Rev. 2000;100:1973.10.1021/cr990402tSearch in Google Scholar
[6] Mustroph H. Polymethine dyes. Phys Sci Rev. 2020;5. doi:10.1515/psr-2019-0084.Search in Google Scholar
[7] Mustroph H. Dyes: quantum chemical calculation of electronic spectra. Phys Sci Rev. 2019;4. doi:10.1515/psr-2019-0040.Search in Google Scholar
[8] Grahn W. 13C-NMR-Spektren von di- und trinuclearen Polymethincyanin- Farbstoffen. Tetrahedron. 1976;32:1931.10.1016/0040-4020(76)85199-XSearch in Google Scholar
[9] Shklyarevskiy IO, Christianen PC, Aret E, Meekes H, Vlieg E, Deroover G, et al. Determination of the molecular arrangement inside cyanine dye aggregates by magnetic orientation. J Phys Chem B. 2004;108:16386.10.1021/jp049945jSearch in Google Scholar
[10] Cambridge Crystallographic Data Center (CCDC). https://www.ccdc.cam.ac.uk/Search in Google Scholar
[11] Kulpe S, Kuban RJ, Schulz B, Dähne S. Crystal structure determination of bis-dimethyl heptamethine cyanine chloride, C11N2H19Cl · 4 H2O. Cryst Res Technol. 1987;22:375.10.1002/crat.2170220315Search in Google Scholar
[12] Baughman RH, Kohler BE, Levy IJ, Spangler C. The crystal structure of trans,trans-1,3,5,7-octatetraene as a model for fully-ordered trans-polyacetylene. Synth Met. 1985;11:37.10.1016/0379-6779(85)90172-9Search in Google Scholar
[13] Brooker LG. Absorption and resonance in dyes. Rev Mod Phys. 1942;14:275.10.1103/RevModPhys.14.275Search in Google Scholar
[14] Brooker LG. Some recent developments in the chemistry of photographic sensitizing dyes. Experientia Suppl. 1955;2:229.Search in Google Scholar
[15] Robin MB, Day P. Mixed valence chemistry - a survey and classification. Adv Inorg Chem Radiochem. 1968;10:247.10.1016/S0065-2792(08)60179-XSearch in Google Scholar
[16] Marder SR, Perry JW, Tiemann BG, Gorman CB, Gilmour S, Biddle SL, et al. Direct observation of reduced bond-length alternation in donor/acceptor polyenes . J Am Chem Soc. 1993;115:2524.10.1021/ja00059a067Search in Google Scholar
[17] Gorman CB, Marder SR. An investigation of the interrelationships between linear and nonlinear polarizabilities and bond-length alternation in conjugated organic molecules. Proc Natl Acad Sci USA. 1993;90:11297.10.1073/pnas.90.23.11297Search in Google Scholar PubMed PubMed Central
[18] Marder SR, Perry JW, Bourhill G, Gorman CB, Tiemann BG, Mansour K. Relation between bond-length alternation and second electronic hyperpolarizability of conjugated organic molecules. Science. 1993;261:186.10.1126/science.261.5118.186Search in Google Scholar PubMed
[19] König W. Über den Begriff der „Polymethinfarbstoffe“ und eine davon ableitbare allgemeine Farbstoff-Formel als Grundlage einer neuen Systematik der Farbenchemie. J Prakt Chem. 1926;112:1.10.1002/prac.19261120101Search in Google Scholar
[20] Dähne S. Systematik und Begriffserweiterung der Polymethinfarbstoffe. Z Chem. 1965;5:441.10.1002/zfch.19650051202Search in Google Scholar
[21] Dähne S. Color and constitution: one hundred years of research. Science. 1978;199:1163.10.1126/science.199.4334.1163Search in Google Scholar PubMed
[22] Pauling L. A theory of the colors of dyes. Proc Natl Acad Sci. 1939;25:577.10.1073/pnas.25.11.577Search in Google Scholar PubMed PubMed Central
[23] Förster T. Quantenmechanische Rechnungen zur Theorie der organischen Farbstoffe. Z Phys Chem B. 1940;47:245.10.1515/zpch-1940-4713Search in Google Scholar
[24] Herzfeld KF. On the absorption spectrum of some polymethine dyes. J Chem Phys. 1942;10:508.10.1063/1.1723758Search in Google Scholar
[25] Sklar AL. Energy levels and color of polymethine dyes. J Chem Phys. 1942;10:521.10.1063/1.1723759Search in Google Scholar
[26] Herzfeld KF, Sklar AL. Colour and constitution of polymethine dyes. Rev Mod Phys. 1942;14:294.10.1103/RevModPhys.14.294Search in Google Scholar
[27] Beretta P, Jaboli A. Correlations between the acid-base equilibria and the electrochemical properties of some carbocyanine dyes. Photogr Sci Eng. 1974;18:197.Search in Google Scholar
[28] Strekowski L, Mason JC, Britton JE, Lee H, Van Aken K, Patonay G. The addition reaction of hydroxide or ethoxide ion with benzindolium heptamethine cyanine dyes. Dyes Pigm. 2000;46:163.10.1016/S0143-7208(00)00046-2Search in Google Scholar
[29] Kimura M, Mitekura H, No T, Suzuki K. Synthesis of meso-substituted trimethine cyanine dyes and evaluation of their sensitivities in sensitized photo-polymerization. Bull Chem Soc Jpn. 2002;75:2655.10.1002/chin.200315180Search in Google Scholar
[30] Strekowski L, Lipowska M, Patonay G. Facile derivatizations of heptamethine cyanine dyes. Synth Commun. 1992;22:2593.10.1080/00397919208021656Search in Google Scholar
[31] Strekowski L, Lipowska M, Patonay G. Substitition reactions of a nucleofugal group in heptamethine cyanine dyes. J Org Chem. 1992;57:4578.10.1021/jo00043a009Search in Google Scholar
[32] Mustroph H, Towns A. Fine structure in electronic spectra of cyanine dyes : Are sub-bands largely determined by a dominant vibration or a collection of singly-excited vibrations? ChemPhysChem. 2018;19:1016.10.1002/cphc.201701300Search in Google Scholar PubMed PubMed Central
[33] Pouradier J. Remarque sur le spectre d´absorption des cyanines en solution. J Chim Phys. 1964;61:1107.10.1051/jcp/1964611107Search in Google Scholar
[34] Scheibe G. Ergebnisse der Absorptionsspektroskopie hinsichtlich Lage, Intensität und Struktur der Banden. In: Jung W, editor. Optische Anregung organischer Systeme. Weinheim: Verlag Chemie; 1966:109–59.Search in Google Scholar
[35] Mustroph H, Reiner K, Mistol J, Ernst S, Keil D, Hennig L. Relationship between the molecular structure of cyanine dyes and the vibrational fine structure of their electronic absorption spectra. ChemPhysChem. 2009;10:835.10.1002/cphc.200800755Search in Google Scholar PubMed
[36] Meguellati K, Ladame S, Spichty M. A conceptually improved TD-DFT approach for predicting the maximum absorption wavelength of cyanine dyes. Dyes Pigm. 2011;90:114.10.1016/j.dyepig.2010.12.001Search in Google Scholar
[37] Mustroph H, Ernst S, Senns B, Towns AD. Molecular electronic spectroscopy: from often neglected fundamental principles to limitations of state-of-the-art computational methods. Color Technol. 2015;131:9.10.1111/cote.12120Search in Google Scholar
[38] Mustroph H, Reiner K, Senns B. Bond length alternation in unsymmetrical cyanine dyes and its influence on the vibrational structure of their electronic absorption spectra. Color Technol. 2017;133:469.10.1111/cote.12303Search in Google Scholar
[39] Dewar MJ. Colour and constitution. Part 1. Basic dyes. J Chem Soc. 1950:2329.10.1039/jr9500002329Search in Google Scholar
[40] Dewar MJ. Modern theories of color. Chem Soc (London) Spec Publ. 1956;4:64.Search in Google Scholar
[41] Knott EB. The colour of organic compounds. Part I. A general colour rule. J Chem Soc. 1951:1024.10.1039/jr9510001024Search in Google Scholar
[42] Griffiths J. Colour and constitution of organic molecules. London: Academic Press; 1976.Search in Google Scholar
[43] Fabian J, Hartmann H. Light absorption of organic colorants. Berlin: Springer, 1980.10.1007/978-3-642-67587-4Search in Google Scholar
[44] Brunings KJ, Corwin AH. Steric influences on the aromaticity of dipyrrylmethenes. The synthesis and study of the properties of a di-N-methyldipyrrylmethene. J Am Chem Soc. 1942;64:593.10.1021/ja01255a039Search in Google Scholar
[45] Brooker LG, White FL, Sprague RH, Dent SG, Van Zandt G. Steric hindrance to planarity in dye molecules. Chem Rev. 1947;41:325.10.1021/cr60129a012Search in Google Scholar
[46] Nys J. Environmental influences on the spectral absorption of sensitizing dyes. In: Berg WF, Mazzucato U, Meier H, Semerano G, editors. Dye sensitization, symposium: Bressanone. London, New York: Focal Press, 1970:26–43.Search in Google Scholar
[47] Dietz F. Die Aggregation der Cyaninfarbstoffe und ihre Bedeutung für die spektrale Sensibilisierung. J Signalaufzeichnungsmater. 1973;1:157, 237, 381.Search in Google Scholar
[48] Herz A. Aggregation of sensitizing dyes in solution and their adsorption onto silver halides. Adv Colloid Interface Sci. 1977;8:237.10.1016/0001-8686(77)80011-0Search in Google Scholar
[49] Blokzijl W, Engberts JB. Hydrophobic effects. Opinions and facts. Angew Chem Int Ed. 1993;32:1545.10.1002/anie.199315451Search in Google Scholar
[50] Breslow R. Hydrophobic effects on simple organic reactions in water. Acc Chem Res. 1991;24:159.10.1021/ar00006a001Search in Google Scholar
[51] Pirrung MC. Acceleration of organic reactions through aqueous solvent effects. Chem Eur J. 2006;12:1312.10.1002/chem.200500959Search in Google Scholar PubMed
[52] Davydov AS. Theory of molecular excitons. New York: Plenum Press, 1971:23–47.10.1007/978-1-4899-5169-4_2Search in Google Scholar
[53] McRae EG, Kasha M. The molecular exciton model. In: Augenstein L, Mason R, Rosenberg B, editors. Physical processes in radiation biology. New York: Academic Press, 1964:23–42.10.1016/B978-1-4831-9824-8.50007-4Search in Google Scholar
[54] Rosenoff AE, Walworth VK, Bird GR. The stability of sensitizing dye aggregates on silver bromide. Photogr Sci Eng. 1970;14:328.Search in Google Scholar
[55] Hestand NJ, Spano FC. Expanded theory of H- and J-molecular aggregates: the effects of vibronic coupling and intermolecular charge transfer. Chem Rev. 2018;118:7069.10.1021/acs.chemrev.7b00581Search in Google Scholar PubMed
[56] Perkin WH. GB 1984 (26th August 1856).Search in Google Scholar
[57] Williams CG. Researches on chinoline and its homologues. Trans Roy Soc Edinburgh. 1857;21:377.10.1017/S0370164600028558Search in Google Scholar
[58] von Babo. Ueber einige Zersetzungsprodukte des Cinchonins. J Prakt Chem. 1857;72:73.10.1002/prac.18570720110Search in Google Scholar
[59] Schnitzer G. Ueber Anilinroth und Chinolinblau. Chem Centr NF. 1861;6:636.Search in Google Scholar
[60] Jacobsen E. DRP 19 306 (14th February 1882).Search in Google Scholar
[61] Spalteholz W. Ueber Farbstoffe aus dem Steinkohlentheerchinolin. Ber Dtsch Chem Ges. 1883;16:1847.10.1002/cber.18830160267Search in Google Scholar
[62] Fischer O, Scheibe G. Beitrag zur Kenntnis der Chinocyanine. J Prakt Chem. 1920;100:86.10.1002/prac.19201000107Search in Google Scholar
[63] Dieterle W. Der Anteil der deutschen Teerfarbenindustrie am Ausbau und an der Weiterentwicklung der Entdeckung H. W. Vogels. Veröff Agfa Wolfen. 1939;6:1.Search in Google Scholar
[64] König W, US 1,524,791 (5th May 1923).10.1136/bmj.1.3253.791-aSearch in Google Scholar
[65] Doja MQ. The cyanine dyes. Chem Rev. 1932;11:273.10.1021/cr60040a001Search in Google Scholar
[66] Ficken GE. Cyanine dyes. In: Venkataraman K, editor. The chemistry of synthetic dyes, vol. 4. New York: Academic Press, 1971:211–340.10.1016/B978-0-12-717004-6.50012-6Search in Google Scholar
[67] Berlin L, Riester O. Methoden zur Herstellung von Cyaninen (Polymethinen). In: Müller E, editor. Methoden der organischen Chemie (Houben-Weyl), vol. 5/1d. Stuttgart: Thieme, 1972:231–98.Search in Google Scholar
[68] Sturmer DM. Syntheses and properties of cyanine and related dyes. In: Weissberger A, Taylor EC, editors. The chemistry of heterocyclic compounds, vol. 30. New York: Wiley, 1977:441–587.10.1002/9780470187005.ch8Search in Google Scholar
[69] Sturmer DM. Cyanine dyes. In: Kirk-Othmer encyclopedia of chemical technology, vol. 7, 3rd ed. New York: Wiley, 1979:335–58.Search in Google Scholar
[70] Raue R, Riester O. Methinfarbstoffe. In: Ullmanns Enzyklopädie der Technischen Chemie, vol. 16, 5th ed. Weinheim: Verlag Chemie, 1979:635–69.Search in Google Scholar
[71] Berneth H. Methine dyes and pigments. In: Ullmann´s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH, 2008.10.1002/14356007.a16_487.pub2Search in Google Scholar
[72] Panigrahi M, Dash S, Patel S, Mishra BK. Syntheses of cyanines: a review. Tetrahedron. 2012;68:781.10.1016/j.tet.2011.10.069Search in Google Scholar
[73] König W. Über Indolenino-cyanine (Indocyanine). Ber Dt Chem Ges. 1924;57:685.10.1002/cber.19240570420Search in Google Scholar
[74] Kainrath P. Fortschritte auf dem Gebiete der Sensibilisierungsfarbstoffe für photographische Halogensilber-Emulsionen. Angew Chem. 1948;60:36.10.1002/ange.19480600204Search in Google Scholar
[75] Brooker LG, Vittum PW. A century of progress in the synthesis of dyes for photography. J Photogr Sci. 1957;5:71.10.1080/00223638.1957.11736597Search in Google Scholar
[76] Brooker LG. Sensitizing and desensitizing dyes. In: Mees CE, James TH, editors. The theory of the photographic process. 3rd ed. New York: Macmillan, 1966:198–232.Search in Google Scholar
[77] Sturmer DM, Heseltine DW. Sensitizing and desensitizing dyes. In: James TH, editor. The theory of the photographic process. New York: Macmillan, 1977:194–234.Search in Google Scholar
[78] Keller K, Kampfer H, Matejec R, Lapp O, Krafft W, Frenken H, et al. Photography. In: Ullmann´s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH, 2000.10.1002/14356007.a20_001Search in Google Scholar
[79] Nakazumi H. Organic colorants for laser disc optical data storage. J Soc Dyers Colour. 1988;104:121.10.1111/j.1478-4408.1988.tb01153.xSearch in Google Scholar
[80] Emmelius M, Pawlowski G, Vollmann HW. Materials for optical data storage. Angew Chem Int Ed. 1989;28:1445.10.1002/anie.198914453Search in Google Scholar
[81] Matsui F. Optical recording systems. In: Matsuoka M, editor. Infrared absorbing dyes. New York: Plenum Press, 1990:117–40.10.1007/978-1-4899-2046-1_10Search in Google Scholar
[82] Mustroph H, Stollenwerk M, Bressau V. Current developments in optical data storage with organic dyes. Angew Chem Int Ed. 2016;45:2006.10.1002/anie.200502820Search in Google Scholar
[83] Wochele RE, van Houten H, Duchateau JP, Kloosterboer HJ, Verhoeven JA, van Vlimmeren R, et al. Information storage materials, 2. Optical recording. In: Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH, 2011.10.1002/14356007.o14_o07Search in Google Scholar
[84] Vollmann HW. New technologies for the filmless manufacture of printing forms. Angew Chem Int Ed. 1980;19:99.10.1002/anie.198000991Search in Google Scholar
[85] Taggi AJ, Walker P. Printing processes. In: Kirk-Othmer encyclopedia of chemical technology. Weinheim: Wiley-VCH, 2000.10.1002/0471238961.1618091420010707.a01Search in Google Scholar
[86] Baumann H, Hoffmann-Walbeck T, Wenning W, Lehmann HJ, Simpson CD, Mustroph H, et al. Imaging technology, 3. Imaging in graphic arts. In: Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH, 2015.10.1002/14356007.o13_o09.pub2Search in Google Scholar
[87] Daehne S, Resch U, Wolfbeis OS, editors. Near-infrared dyes for high technology applications. Dordrecht: Kluwer Academic, 1998.10.1007/978-94-011-5102-3Search in Google Scholar
[88] Tatikolov AS. Polymethine dyes as spectral-fluorescent probes for biomacromolecules. J Photochem Photobiol C: Photochem Rev. 2012;13:55.10.1016/j.jphotochemrev.2011.11.001Search in Google Scholar
[89] Gonçalves MS. Fluorescent labeling of biomolecules with organic probes. Chem Rev. 2009;109:190.10.1021/cr0783840Search in Google Scholar PubMed
[90] Pansare VJ, Hejazi S, Faenza WJ, Prud’homme RK. Review of long- wavelength optical and NIR imaging materials: contrast agents, fluorophores, and multifunctional nano carriers. Chem Mater. 2012;24:812−27.10.1021/cm2028367Search in Google Scholar PubMed PubMed Central
[91] Della Ciana L. New trends in fluorescent reporters in biology. In: Pedras B, editor. Fluorescence in industry. Springer series on fluorescence (Methods and applications), vol. 18. Cham: Springer, 2019:321–39.10.1007/4243_2018_3Search in Google Scholar
[92] Deligeorgiev TG, Kaloyanova S, Vaquero JJ. Intercalating cyanine dyes for nucleic acid detection. Recent Pat Mater Sci. 2009;2:1.10.2174/1874464810902010001Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Chiral imidazolidinones: A class of priviliged organocatalysts in stereoselective organic synthesis
- Computer-based techniques for lead identification and optimization II: Advanced search methods
- Basic principles of substrate activation through non-covalent bond interactions
- Cyanine dyes
- Technology of large volume alcohols, carboxylic acidsand esters
Articles in the same Issue
- Chiral imidazolidinones: A class of priviliged organocatalysts in stereoselective organic synthesis
- Computer-based techniques for lead identification and optimization II: Advanced search methods
- Basic principles of substrate activation through non-covalent bond interactions
- Cyanine dyes
- Technology of large volume alcohols, carboxylic acidsand esters