Home Ferroelectric polarization in multiferroics
Article
Licensed
Unlicensed Requires Authentication

Ferroelectric polarization in multiferroics

  • Stephan Krohns EMAIL logo and Peter Lunkenheimer
Published/Copyright: July 2, 2019
Become an author with De Gruyter Brill

Abstract

Multiferroic materials, showing ordering of both electrical and magnetic degrees of freedom, are promising candidates enabling the design of novel electronic devices. Various mechanisms ranging from geometrically or spin-driven improper ferroelectricity via lone-pairs, charge-order or -transfer support multiferroicity in single-phase or composite compounds. The search for materials showing these effects constitutes one of the most important research fields in solid-state physics during the last years, but scientific interest even traces back to the middle of the past century. Especially, a potentially strong coupling between spin and electric dipoles captured the interest to control via an electric field the magnetization or via a magnetic field the electric polarization. This would imply a promising route for novel electronics. Here, we provide a review about the dielectric and ferroelectric properties of various multiferroic systems ranging from type I multiferroics, in which magnetic and ferroelectric order develop almost independently of each other, to type II multiferroics, which exhibit strong coupling of magnetic and ferroelectric ordering. We thoroughly discuss the dielectric signatures of the ferroelectric polarization for BiFeO3, Fe3O4, DyMnO3 and an organic charge-transfer salt as well as show electric-field poling studies for the hexagonal manganites and a spin-spiral system LiCuVO4.

Funding statement: We acknowledge funding from the Deutsche Forschungsgemeinschaft (DFG) via the Transregional Collaborative Research Center TRR80 (Augsburg, Munich) and the BMBF via ENREKON 03EK3015.

References

[1] Fiebig M. Revival of the magnetoelectric effect. J Phys D Appl Phys. 2005;38:R123.10.1088/0022-3727/38/8/R01Search in Google Scholar

[2] Hill NA. Why are there so few magnetic ferroelectrics? J Phys Chem B. 2000;104:66–94.10.1021/jp000114xSearch in Google Scholar

[3] Eerenstein W, Mathur ND, Scott JF. Multiferroic and magnetoelectric materials. Nature. 2006;442:759.10.1038/nature05023Search in Google Scholar PubMed

[4] Fiebig M, Lottermoser T, Meier D, Trassin M. The evolution of multiferroics. Nat Rev Mater. 2016;1:16046.10.1038/natrevmats.2016.46Search in Google Scholar

[5] Catalan G, Seidel J, Ramesh R, Scott JF. Domain wall nanoelectronics. Rev Mod Phys. 2012;84:119.10.1103/RevModPhys.84.119Search in Google Scholar

[6] Meier D. Functional domain walls in multiferroics. J Phys Condens Matter. 2015;27:463003.10.1088/0953-8984/27/46/463003Search in Google Scholar PubMed

[7] Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B, et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science. 2003;299:1719.10.1126/science.1080615Search in Google Scholar PubMed

[8] Schrettle F, Krohns S, Lunkenheimer P, Brabers VAM, Loidl A. Relaxor ferroelectricity and the freezing of short-range polar and charge order in magnetite. Phys Rev B. 2011;83:195109.10.1103/PhysRevB.83.195109Search in Google Scholar

[9] Choi T, Horibe Y, Yi HT, Choi YJ, Wu W, Cheong S-W. Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3. Nat Mater. 2010;9:253.10.1038/nmat2632Search in Google Scholar PubMed

[10] Ruff A, Li Z, Schafnitzel M, Krohns S, Dielectric properties and resource criticality aspects of hexagonal manganite. Ceramic Transactions. Volume 264. Proceedings of the 12th pacific rim conference on ceramic and glass technology 2018.10.1002/9781119494096.ch16Search in Google Scholar

[11] Lilienblum M, Lottermoser T, Manz S, Selbach SM, Cano A, Fiebig M. Ferroelectricity in the multiferroic hexagonal manganites. Nat Phys. 2015;11:1070.10.1038/nphys3468Search in Google Scholar

[12] Ruff A, Li Z, Loidl A, Schaab J, Fiebig M, Cano A, et al. Frequency dependent polarisation switching in h-ErMnO3. Appl Phys Lett. 2018;112:182908.10.1063/1.5026732Search in Google Scholar

[13] Lunkenheimer P, Müller J, Krohns S, Schrettle F, Loidl A, Hartmann B, et al. Multiferroicity in an organic charge-transfer salt that is suggestive of electric-dipole-driven magnetism. Nat Mater. 2012;11:755.10.1038/nmat3400Search in Google Scholar PubMed

[14] Khomskii D. Classifying multiferroics: mechanisms and effects. Physics. 2009;2:20.10.1103/Physics.2.20Search in Google Scholar

[15] Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y. Magnetic control of ferroelectric polarization. Nature. 2003;426:55.10.1038/nature02018Search in Google Scholar PubMed

[16] Kimura T, Lawes G, Goto T, Tokura Y, Ramirez AP. Magnetoelectric phase diagrams of orthorhombic RMnO3 (R = Gd, Tb, and Dy). Phys Rev B. 2005;71:224425.10.1103/PhysRevB.71.224425Search in Google Scholar

[17] Naito Y, Sato K, Yasui Y, Kobayashi Y, Kobayashi Y, Sato M. Ferroelectric transition induced by the Incommensurate magnetic ordering in LiCuVO4. J Phys Soc Jpn. 2007;76:023708.10.1143/JPSJ.76.023708Search in Google Scholar

[18] Kimura T. Spiral magnets as magnetoelectrics. Annu Rev Mater Res. 2007;37:387.10.1146/annurev.matsci.37.052506.084259Search in Google Scholar

[19] Tokura Y, Seki S. Multiferroics with spiral spin orders. Adv Mater. 2010;22:1554.10.1002/adma.200901961Search in Google Scholar PubMed

[20] Ruff A, Krohns S, Lunkenheimer P, Prokofiev A, Loidl A. Dielectric properties and electrical switching behavior of the spin-driven multiferroic LiCuVO4. J Phys Condens Matter. 2014;26:485901.10.1088/0953-8984/26/48/485901Search in Google Scholar PubMed

[21] Lunkenheimer P, Krohns S, Riegg S, Ebbinghaus SG, Reller A, Loidl A. Colossal dielectric constant in transition-metal oxides. Eur Phys J Spec Top. 2009;180:61.10.1140/epjst/e2010-01212-5Search in Google Scholar

[22] Devonshire AF. Theory of ferroelectrics. Adv Phys. 1954;3:85.10.1080/00018735400101173Search in Google Scholar

[23] Cochran W. Crystal stability and the theory of ferroelectricity. Adv Phys. 1960;9:387.10.1080/00018736000101229Search in Google Scholar

[24] Jona F, Shirane G. Ferroelectric crystals. London: Pergamon Press, 1962.Search in Google Scholar

[25] Blinc R, Zeks B. Soft modes in ferroelectrics and antiferroelectrics. Amsterdam: North Holland Publishing, 1974.Search in Google Scholar

[26] Lines ME, Glass AM. Principles and applications of ferroelectrics and related materials. Clarendon: Oxford, 1977.Search in Google Scholar

[27] Schrettle F, Krohns S, Lunkenheimer P, Hemberger J, Büttgen N, Krug von Nidda H-A, et al. Switching the ferroelectric polarization by external magnetic fields in the spin = 1/2 chain cuprate LiCuVO4. Phys Rev B. 2008;77:144101.10.1103/PhysRevB.77.144101Search in Google Scholar

[28] Cross LE. Relaxor ferroelectrics. Ferroelectrics. 1987;76:241.10.1080/00150198708016945Search in Google Scholar

[29] Samara GA. The relaxational properties of compositionally disordered ABO3 perovskites. J Phys Condens Matt. 2003;15:R367.10.1088/0953-8984/15/9/202Search in Google Scholar

[30] Smolenski GA, Isupov VA, Agranovskaya AI, Popov SN. Ferroelectris with diffuse phase transitions. Sov Phys Solid State. 1961;2:2584.Search in Google Scholar

[31] Lunkenheimer P, Schneider U, Brand R, Loidl A. Glassy dynamics. Contemp Phys. 2000;41:15.10.1080/001075100181259Search in Google Scholar

[32] Viehland D, Jang SJ, Cross LE, Wuttig M. Freezing of the polarization fluctuations in lead magnesium niobate relaxors. J Appl Phys. 1990;68:2916.10.1063/1.346425Search in Google Scholar

[33] Levstik A, Kutnjak Z, Filipiĉ C, Pirc R. Glassy freezing in relaxor ferroelectric lead magnesium niobate. Phys Rev B. 1998;57:11204.10.1103/PhysRevB.57.11204Search in Google Scholar

[34] Glazounov AE, Tagantsev AK. Direct evidence for Vögel–fulcher freezing in relaxor ferroelectrics. Appl Phys Lett. 1998;73:856.10.1063/1.122024Search in Google Scholar

[35] Lunkenheimer P, Kastner S, Köhler M, Loidl A. Temperature development of glassy -relaxation dynamics determined by broadband dielectric spectroscopy. Phys Rev E. 2010;81:051504.10.1103/PhysRevE.81.051504Search in Google Scholar

[36] Sillescu H. Heterogeneity at the glass transition: a review. J Non-Cryst Solids. 1999;243:81.10.1016/S0022-3093(98)00831-XSearch in Google Scholar

[37] Ediger MD. Spatially heterogeneous dynamics in supercooled liquids. Annu Rev Phys Chem. 2000;51:99.10.1146/annurev.physchem.51.1.99Search in Google Scholar PubMed

[38] Cole KS, Cole RH. Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys. 1941;9:341.10.1063/1.1750906Search in Google Scholar

[39] Davidson DW, Cole RH. Dielectric relaxation in glycerine. J Chem Phys. 1950;18:1417.10.1063/1.1747496Search in Google Scholar

[40] Havriliak S, Negami S. A complex plane analysis of -dispersions in some polymers. J Polym Sci C. 1966;14:99.10.1002/polc.5070140111Search in Google Scholar

[41] Viehland D, Jang SJ, Cross LE, Wuttig M. Deviation from curie-weiss behavior in relaxor ferroelectrics. Phys Rev B. 1992;46:8003.10.1103/PhysRevB.46.8003Search in Google Scholar

[42] van Den Brink J, Khomskii D. Multiferroicity due to charge ordering. J Phys Condens Matter. 2008;20:434217.10.1088/0953-8984/20/43/434217Search in Google Scholar

[43] Lunkenheimer P, Bobnar V, Pronin AV, Ritus AI, Volkov AA, Loidl A. Origin of apparent colossal dielectric constants. Phys Rev B. 2002;66:052105.10.1103/PhysRevB.66.052105Search in Google Scholar

[44] Emmert S, Wolf M, Gulich R, Krohns S, Kastner S, Lunkenheimer P, et al. Electrode polarization effects in broadband dielectric spectroscopy. Eur Phys J B. 2011;83:157.10.1140/epjb/e2011-20439-8Search in Google Scholar

[45] Scott JF. Ferroelectrics go bananas. J Phys Condens Matter. 2008;20:021001.10.1088/0953-8984/20/02/021001Search in Google Scholar

[46] Loidl A, Krohns S, Hemberger J, Lunkenheimer P. Bananas go paraelectric. J Phys Condens Matter. 2008;20:191001.10.1088/0953-8984/20/19/191001Search in Google Scholar

[47] Homes CC, Vogt T, Shapiro SM, Wakimoto S, Ramirez AP. Optical response of high-dielectric-constant perovskite-related oxide. Science. 2001;293:673.10.1126/science.1061655Search in Google Scholar PubMed

[48] Lunkenheimer P, Fichtl R, Ebbinghaus SG, Loidl A. Non-intrinsic origin of the colossal dielectric constants in CaCu3Ti4O12. Phys Rev B. 2004;70:172102.10.1103/PhysRevB.70.172102Search in Google Scholar

[49] Dittl A, Krohns S, Sebald J, Schrettle F, Hemmida M, Krug von Nidda H-A, et al. On the magnetism of Ln2/3Cu3Ti4O12 (Ln = lanthanide). Eur Phys J B. 2011;79:391.10.1140/epjb/e2010-10796-1Search in Google Scholar

[50] Ikeda N, Ohsumi H, Ohwada K, Ishii K, Inami T, Kakurai K, et al. Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4. Nature. 2005;436:1136.10.1038/nature04039Search in Google Scholar PubMed

[51] Ren P, Yang Z, Zhu WG, Huan CHA, Wang L. Origin of the colossal dielectric permittivity and magnetocapacitance in LuFe2O4. J Appl Phys. 2011;109:074109.10.1063/1.3560564Search in Google Scholar

[52] Niermann D, Waschkowski F, de Groot J, Angst M, Hemberger J. Dielectric properties of charge-ordered LuFe2O4 revisited: the apparent influence of contacts. Phys Rev Lett. 2012;109:016405.10.1103/PhysRevLett.109.016405Search in Google Scholar PubMed

[53] Ruff A, Krohns S, Schrettle F, Tsurkan V, Lunkenheimer P, Loidl A. Absence of polar order in LuFe2O4. Eur Phys J B. 2012;85:290.10.1140/epjb/e2012-30296-6Search in Google Scholar

[54] Scott JF. Ferroelectric memories, 1st ed. Springer Press: Berlin/Heidelberg, Germany, 2000.10.1007/978-3-662-04307-3Search in Google Scholar

[55] Choi YJ, Yi HT, Lee S, Huang Q, Kiryukhin V, Cheong S-W. Ferroelectricity in an ising chain magnet. Phys Rev Lett. 2008;100:047601.10.1103/PhysRevLett.100.047601Search in Google Scholar

[56] Van Aken BB, Palstra TTM, Filippetti A, Spaldin NA. The origin of ferroelectricity in magnetoelectric YMnO3. Nat Mater. 2004;3:164.10.1038/nmat1080Search in Google Scholar PubMed

[57] Iwara N, Kohn K. Magnetoelectric effect and rare earth magnetic ordering of ErMnO3. Ferroelectrics. 1998;219:161.10.1080/00150199808213512Search in Google Scholar

[58] Schaab J, Skjaervo SH, Krohns S, Dai X, Holtz M, Cano A, et al. Electrical half-wave rectification at improper ferroelectric domain walls. Nat Nano. 2018;13:1028.10.1038/s41565-018-0253-5Search in Google Scholar

[59] Mostovoy M. Ferroelectricity in spiral magnets. Phys Rev Lett. 2006;96:067601.10.1103/PhysRevLett.96.067601Search in Google Scholar PubMed

[60] Sergienko IA, Dagotto E. Role of the dzyaloshinskii-moriya interaction in multiferroic perovskites. Phys Rev B. 2006;73:094434.10.1103/PhysRevB.73.094434Search in Google Scholar

[61] Katsura H, Nagaosa N, Balatsky AV. Spin current and magnetoelectric effect in noncollinear magnets. Phys Rev Lett. 2005;95:057205.10.1103/PhysRevLett.95.057205Search in Google Scholar PubMed

[62] Catalan G, Scott JF. Physics and applications of bismuth ferrite. Adv Mater. 2009;21:2463.10.1002/adma.200802849Search in Google Scholar

[63] Moreau JM, Michel C, Gerson R, James WJ. Ferroelectric BiFeO3 X-ray and neutron diffraction study. J Phys Chem Sol. 1971;32:1315.10.1016/S0022-3697(71)80189-0Search in Google Scholar

[64] Lu J, Schmidt M, Günther A, Schrettle F, Mayr F, Krohns S, et al. Magnetic susceptibility, heat capacity, electric polarization and dielectric constants of single crystalline BiFeO3. Eur Phys J B. 2010;75:451.10.1140/epjb/e2010-00170-xSearch in Google Scholar

[65] Lebeugle D, Colson D, Forget A, Viret M. Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields. Appl Phys Lett. 2007;91:022907.10.1063/1.2753390Search in Google Scholar

[66] Smith RT, Achenbach GD, Gerson R, James WJ. Dielectric properties of solid solutions of BiFeO3 with Pb(Ti,Zr)O3 at high temperature and high frequency. J Appl Phys. 1968;39:70.10.1063/1.1655783Search in Google Scholar

[67] Fischer P, Polomska M, Sosnowska I, Szymanski M. Temperature dependence of the crystal and magnetic structures of BiFeO3. J Phys C Solid State Phys. 1931;13:1980.10.1088/0022-3719/13/10/012Search in Google Scholar

[68] Palewicz A, Przenioslo R, Sosnowska I, Hewat AW. Atomic displacements in BiFeO3 as a function of temperature: neutron diffraction study. Acta Cryst B. 2007;63:537.10.1107/S0108768107023956Search in Google Scholar PubMed

[69] Palewicz A, Sosnowska I, Przenioslo R, Hewat AW. BiFeO3 crystal structure at low temperatures. Acta Phys Pol A. 2010;117:296.10.12693/APhysPolA.117.296Search in Google Scholar

[70] Krainik NN, Khuchua NP, Zhdanova VV, Evseev VA. Phase transitions in BiFeO3. Sov Phys Solid State. 1966;8:654.Search in Google Scholar

[71] Lunkenheimer P, Loidl A. Response of disordered matter to electromagnetic fields. Phys Rev Lett. 2003;91:207601.10.1103/PhysRevLett.91.207601Search in Google Scholar PubMed

[72] Meier D, Seidel J, Cano A, Delaney K, Kumagai Y, Mostovoy M, et al. Anisotropic conductance at improper ferroelectric domain walls. Nat Mater. 2012;11:284.10.1038/nmat3249Search in Google Scholar PubMed

[73] Schaab J, Cano A, Lilienblum M, Yan Z, Bourret. E, Ramesh R, et al. Optimization of electronic domain‐wall properties by aliovalent cation substitution. Adv Electron Mater. 2016;2:1500195.10.1002/aelm.201500195Search in Google Scholar

[74] Lorenz B. Hexagonal Manganites—(rMnO3): class (I) Multiferroics with strong coupling of magnetism and ferroelectricity. ISRN Cond Mat Phys. 2013;497073:2013.10.1155/2013/497073Search in Google Scholar

[75] Griffin SM, Lilienblum M, Delaney KT, Kumagai Y, Fiebig M, Spaldin NA. Scaling behavior and beyond equilibrium in the hexagonal manganites. Phys Rev X. 2012;2:041022.10.1103/PhysRevX.2.041022Search in Google Scholar

[76] Holtz ME, Shapovalov K, Mundy JA, Chang CS, Yan Z, Bourret E, et al. Topological defects in hexagonal manganites: inner structure and emergent electrostatics. Nano Lett. 2017;17:5883.10.1021/acs.nanolett.7b01288Search in Google Scholar PubMed

[77] Ruff E, Krohns S, Lilienblum M, Meier D, Fiebig M, Lunkenheimer P, et al. Conductivity contrast and tunneling charge transport in the vortex-like ferroelectric domain patterns of multiferroic hexagonal YMnO3. Phys Rev Lett. 2017;118:036803.10.1103/PhysRevLett.118.036803Search in Google Scholar PubMed

[78] Adem U, Mufti N, Nugroho AA, Catalan G, Nohed B, Palstra TTM. Dielectric relaxation in YMnO3 single crystals. J Alloy Compd. 2015;638:228.10.1016/j.jallcom.2015.02.207Search in Google Scholar

[79] Dey P, Natha TK, Nanda Goswami ML. Room temperature ferroelectric and ferromagnetic properties of multiferroics composites. Appl Phys Lett. 2007;90:162510.10.1063/1.2723198Search in Google Scholar

[80] Ismailzade I, Kizhaev SA. DETERMINATION OF THE CURIE POINT OF THE FERROELECTRICS YMnO3 AND YbMnO3. Sov Phys Solid State. 1965;7:298.Search in Google Scholar

[81] Krohns S, Lunkenheimer P, Ebbinghaus SG, Loidl A. Broadband dielectric spectroscopy on single-crystalline and ceramic CaCu3Ti4O12. Appl Phys Lett. 2007;91:022910.10.1063/1.2757098Search in Google Scholar

[82] Jonscher AK. The ‘universal’ dielectric response. Nature. 1977;267:673.10.1038/267673a0Search in Google Scholar

[83] Holstad TS, Evans DM, Ruff A, Smabraten DR, Schaab J, Tzschaschel C, et al. Electronic bulk and domain wall properties in B-Site doped hexagonal ErMnO3. Phys Rev B. 2018;97:085143.10.1103/PhysRevB.97.085143Search in Google Scholar

[84] Fennie CJ, Rabe KM. Ferroelectric transition in YMnO3 from first principles. Phys Rev B. 2005;72:100103.10.1103/PhysRevB.72.100103Search in Google Scholar

[85] Han MG, Zhu Y, Wu L, Aoki T, Volkov V, Wang X, et al. Ferroelectric switching dynamics of topological vortex domains in a hexagonal manganite. Adv Mater. 2013;25:2415.10.1002/adma.201204766Search in Google Scholar PubMed

[86] Yang KL, Zhang Y, Zheng SH, Lin L, Yan ZB, Liu J-M, et al. Electric field driven evolution of topological domain structure in hexagonal manganites. Phys Rev B. 2017;96:144103.10.1103/PhysRevB.96.144103Search in Google Scholar

[87] Ishibashi Y, Orihara H. A theory of DE hysteresis loop. Integr Ferroelectr. 1995;9:57.10.1080/10584589508012906Search in Google Scholar

[88] Scott JF, Ross FM, Paz de Araujo CA, Scott MC, Huffman M. Structure and device characteristics of SrBi2Ta2O9-based nonvolatile random-access memories. MRS Bull. 1996;21:33.10.1557/S0883769400035892Search in Google Scholar

[89] Ruff A, Loidl A, Krohns S. Multiferroic Hysteresis loop. Mater. 2017;10:1318.10.3390/ma10111318Search in Google Scholar

[90] Verwey EJW, Haayman PW. Electronic conductivity and transition point of magnetite Fe3O4. Physica. 1941;8:979.10.1016/S0031-8914(41)80005-6Search in Google Scholar

[91] Verwey EJW, Haayman PW, Romeijn FC. Physical properties and cation arrangement of oxides with spinel structures II. electronic conductivity. J Chem Phys. 1947;15:181.10.1063/1.1746466Search in Google Scholar

[92] Lopes AML, Araujo JP, Amaral VS, Correia JG, Tomioka Y, Tokura Y. New phase transition in the Pr1 − xCaxMnO3 SYstem: evidence for electrical polarization in charge ordered manganites. Phys Rev Lett. 2008;100:155702.10.1103/PhysRevLett.100.155702Search in Google Scholar PubMed

[93] Wright JP, Attfield JP, Radaelli PG. Long range charge ordering in magnetite below the verwey transition. Phys Rev Lett. 2001;87:266401.10.1103/PhysRevLett.87.266401Search in Google Scholar PubMed

[94] Alexe M, Ziese M, Hesse D, Esquinazi P, Yamauchi K, Fukushima T, et al. Ferroelectric switching in multiferroic magnetite (Fe3O4) thin films. Adv Mater. 2009;21:4452.10.1002/adma.200901381Search in Google Scholar

[95] Tomić S, Dressel M. Ferroelectricity in molecular solids: a review of electrodynamic properties. Rep Prog Phys. 2015;78:096501.10.1088/0034-4885/78/9/096501Search in Google Scholar PubMed

[96] Lunkenheimer P, Loidl A. Dielectric spectroscopy on organic charge-transfer salts. J Phys Condens Matter. 2015;27:373001.10.1088/0953-8984/27/37/373001Search in Google Scholar PubMed

[97] Yoshimi K, Seo H, Ishibashi S, Brown SE. Tuning the magnetic dimensionality by charge ordering in the molecular TMTTF salts. Phys Rev Lett. 2012;108:096402.10.1103/PhysRevLett.108.096402Search in Google Scholar PubMed

[98] Giovannetti G, Nourafkan R, Kotliar G, Capone M. Correlation-driven electronic multiferroicity in TMTTF2 − X organic crystals. Phys Rev B. 2015;91:125130.10.1103/PhysRevB.91.125130Search in Google Scholar

[99] Kanoda K. Mott Transition and Superconductivity in Q2D Organic Conductors, chapter 22. In: Lebed A, editor. The physics of organic superconductors and conductors. Springer: Berlin, 2008:623–642.10.1007/978-3-540-76672-8_22Search in Google Scholar

[100] Toyota N, Lang M, Müller J. Low-dimensional molecular metals. Berlin: Springer, 2007.10.1007/978-3-540-49576-5Search in Google Scholar

[101] Abdel-Jawad M, Terasaki I, Sasaki T, Yoneyama NN, Kobayashi N, Uesu Y, et al. Anomalous dielectric response in the dimer Mott insulator κ-(BEDT-TTF)2Cu2(CN)3. Phys Rev B. 2010;82:125119.10.1103/PhysRevB.82.125119Search in Google Scholar

[102] Hotta C. Quantum electric dipoles in spin-liquid dimer Mott insulator κ-(ET)2Cu2(CN)3. Phys Rev B. 2010;82:241104(R).10.1103/PhysRevB.82.241104Search in Google Scholar

[103] Li H, Clay RT, Mazumdar S. The paired-electron crystal in the two-dimensional frustrated quarter-filled band. J Phys Condens Matter. 2010;22:272201.10.1088/0953-8984/22/27/272201Search in Google Scholar PubMed

[104] Sedlmeier K, Elsässer S, Neubauer D, Beyer R, Wu D, Ivek T, et al. Absence of charge order in the dimerized κ-phase BEDT-TTF salts. Phys Rev B. 2012;86:245103.10.1103/PhysRevB.86.245103Search in Google Scholar

[105] Dressel M, Grüner G, Carlson KD, Wang HH, Williams JM. Studies of the microwave resistivity of κ-(BEDT-TTF)2Cu[N(CN)2]Cl. Synth Met. 1995;70:927.10.1016/0379-6779(94)02704-3Search in Google Scholar

[106] Ito H, Ishiguro T, Kubota M, Saito G. Metal-nonmetal transition and superconductivity localization in the two-dimensional conductor κ-(BEDT-TTF)2Cu[N(CN)2]Cl under pressure. J Phys Soc Jpn. 1996;65:2987.10.1143/JPSJ.65.2987Search in Google Scholar

[107] Miyagawa K, Kawamoto A, Nakazawa Y, Kanoda K. Antiferromagnetic ordering and spin structure in the organic conductor, κ-(BEDT-TTF)2Cu[N(CN)2]Cl. Phys Rev Lett. 1995;75:1174.10.1103/PhysRevLett.75.1174Search in Google Scholar PubMed

[108] Pinterić M, Miljak M, Biškup N, Milat O, Aviani I, Tomić S, et al. Magnetic anisotropy and low-frequency dielectric response of weak ferromagnetic phase in κ-(BEDT-TTF)2Cu[N(CN)2]Cl, where BEDT-TTF is Bis(ethylenedithio)tetrathiafulvalene. Eur Phys J B. 1999;11:217.10.1007/BF03219166Search in Google Scholar

[109] Tomić S, Pinterić M, Ivek T, Sedlmeier K, Beyer R, Wu D, et al. Magnetic ordering and charge dynamics in κ-(BEDT-TTF)2Cu[N(CN)2]Cl. J Phys Condens Matter. 2013;25:436004.10.1088/0953-8984/25/43/436004Search in Google Scholar PubMed

[110] Lang M, Lunkenheimer P, Müller J, Loidl A, Hartmann B, Hoang NH, et al. Multiferroicity in the Mott Insulating Charge-Transfer Salt κ − (BEDT − TTF)2Cu[N(CN)2]Cl. IEEE Trans Magn. 2014;50:2700107.Search in Google Scholar

[111] Gati E, Fischer JKH, Lunkenheimer P, Zielke D, Köhler S, Kolb F, et al. Evidence for electronically driven ferroelectricity in a strongly correlated dimerized BEDT-TTF molecular conductor. Phys Rev Lett. 2018;120:247601.10.1103/PhysRevLett.120.247601Search in Google Scholar PubMed

[112] Lunkenheimer P, Hartmann B, Lang M, Müller J, Schweitzer D, Krohns S, et al. Electronic relaxor ferroelectricity in charge-ordered -(BEDT-TTF)2I3. Phys Rev B. 2015;91:245132.10.1103/PhysRevB.91.245132Search in Google Scholar

[113] Kimura T, Ishihara S, Shintani H, Arima T, Takahashi KT, Ishizaka K, et al. Distorted perovskite with e1g configuration as a frustrated spin system. Phys Rev B. 2003;68:060403(R).10.1103/PhysRevB.68.060403Search in Google Scholar

[114] Wang HW, Li CL, Yuan SL, Wang JF, Lu CL, Liu J-M. The crucial role of Mn spiral spin order in stabilizing the Dy–mn exchange striction in multiferroic DyMnO3. Phys Chem Chem Phys. 2017;19:3706.10.1039/C6CP06369ASearch in Google Scholar PubMed

[115] Xiang HJ, Whangbo M-H. Density-functional characterization of the multiferroicity in spin spiral chain cuprates. Phys Rev Lett. 2007;99:257203.10.1103/PhysRevLett.99.257203Search in Google Scholar PubMed

[116] Singh K, Simon C, Cannuccia E, Lepetit M-B, Corraze B, Janod E, et al. Orbital-ordering-driven multiferroicity and magnetoelectric coupling in GeV4S8. Phys Rev Lett. 2014;113:137602.10.1103/PhysRevLett.113.137602Search in Google Scholar PubMed

[117] Ruff E, Widmann S, Lunkenheimer P, Tsurkan V, Bordács S, Kézsmárki I, et al. Multiferroicity and skyrmions carrying electric polarization in GaV4S8. Sci Adv. 2015;1:e1500916.10.1126/sciadv.1500916Search in Google Scholar PubMed PubMed Central

[118] Ruff E, Butykai A, Geirhos K, Widmann S, Tsurkan V, Stefanet E, et al. Polar and magnetic order in GaV4Se8. Phys Rev B. 2017;96:165–119.10.1103/PhysRevB.96.165119Search in Google Scholar

[119] Geirhos K, Krohns S, Nakamura H, Waki T, Tabata Y, Kézsmárki I, et al. Orbital-order driven ferroelectricity and dipolar relaxation dynamics in multiferroic GaMo4S8. Phys Rev B. 2018;98:224306.10.1103/PhysRevB.98.224306Search in Google Scholar

Published Online: 2019-07-02

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/psr-2019-0015/pdf
Scroll to top button