Abstract
Solvent extraction one of the oldest approaches of separation known, remains one of the most well-known methods operating on an industrial scale. With the availability of variety of solvents as well as commercial equipment, liquid–liquid extractions finds applications in fields like chemicals and bio-products, food, polymer, pharmaceutical industry etc. Liquid–liquid extraction process is particularly suitable for biorefinery process (through conversion using microorganisms), featuring mild operational conditions and ease of control of process. The principles, types, equipment and applications of liquid–liquid extraction for bioproducts are discussed. Currently various intensification techniques are being applied in the field of liquid–liquid extraction for improving the process efficiency like hybrid processes, reactive extraction, use of ionic liquids etc, which are gaining importance due to the cost associated with the downstream processing of the fermentation products (20–50% of total production cost).
References
1. Biddy MJ, Scarlata C, Kinchin C. Chemicals from biomass: a market assessment of bioproducts with near-term potential. National Renewable Energy Laboratory (NREL). 2016. DOI:10.Search in Google Scholar
2. de Jong E. Bio-Based Chemicals: value added products from biorefineries. 2012. http://www.iea-bioenergy.task42-biorefineries.com/. May 2012.Search in Google Scholar
3. Huang HJ, Ramaswamy S, Tschirner UW, Ramarao BV. A review of separation technologies in current and future biorefineries. Sep Purif Techno. 2008;62:1–21.10.1016/j.seppur.2007.12.011Search in Google Scholar
4. Huang, H.-J. and Ramaswamy S. Separation and purification of phytochemicals as co-products in biorefineries. In: Biorefinery Co-Products: Phytochemicals, Primary Metabolites and Value-Added Biomass Processing, edited by Bergeron C., D. Julie Carrier, and Ramaswamy S. John Wiley & Sons, Ltd, U S A, 2012.10.1002/9780470976692.ch3Search in Google Scholar
5. Ramaswamy S, Huang H. J, & Ramarao, B. V. Separation and purification technologies in biorefineries. John Wiley and Sons, U S A, 2013. https://doi.org/10.1002/9781118493441.10.1002/9781118493441Search in Google Scholar
6. Schlosser Š, Sabolová E, Kertész R, Kubišová L. Factors influencing transport through liquid membranes and membrane based solvent extraction. J Sep Sci. 2001;24:509–18.10.1002/1615-9314(20010801)24:7<509::AID-JSSC509>3.0.CO;2-RSearch in Google Scholar
7. Giorno L, Spicka P, Drioli E. Downstream processing of lactic acid by membrane-based solvent extraction. Sep Sci Technol. 1996;31:2159–69.10.1080/01496399608001037Search in Google Scholar
8. Prasad R, Sirkar K.K. (1992) Membrane-based solvent extraction. In: Ho W.S.W., Sirkar K.K. (eds) Membrane handbook. Springer, Boston, MA.1992:727-63. https://doi.org/10.1007/978-1-4615-3548-5_41.10.1007/978-1-4615-3548-5_41Search in Google Scholar
9. Schlosser Š. Membrane Based Processes with Immobilized Interface. In: ibid, Kluwer Academic, 2000:55–72.10.1007/978-1-4615-4269-8_5Search in Google Scholar
10. Walter H, Johansson G. editor. Aqueous two phase systems, methods in enzymology. vol. 228. Elsevier, Academic Press,U S A, 1994.Search in Google Scholar
11. Zaslavsky: BY. Aqueous two-phase partitioning – physical chemistry and bioanalytical applications. New York, Basel, Oxford: Marcel Dekker, Inc., 1995. ISBN 0-8247-9461-3.Search in Google Scholar
12. Clark B. Chap. 6 in Biochemical Engineering Dekker. 1997. 474–82.10.1201/9780429258732Search in Google Scholar
13. Ayala CA, Kamat S, Beckman AJ. Protein extraction and activity in reverse micelles of a nonionic detergent. Biotechnol Bioeng. 1992;39:806–14.10.1002/bit.260390803Search in Google Scholar
14. Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biolog Chem. 1981;256:1604–7.10.1016/S0021-9258(19)69848-0Search in Google Scholar
15. Simoni LD, Chapeaux A, Brennecke JF, Stadtherr MA. Extraction of biofuels and biofeedstocks from aqueous solutions using ionic liquids. Comput Chem Eng. 2010;34:1406–12.10.1016/j.compchemeng.2010.02.020Search in Google Scholar
16. Bressler E, Braun S. Separation mechanisms of citric and itaconic acids by water-immiscible amines. J Chem Technol Biotechnol. 1999;74:891–6.10.1002/(SICI)1097-4660(199909)74:9<891::AID-JCTB113>3.0.CO;2-ESearch in Google Scholar
17. Grzenia D, Qian X, da Silva SS, Wang X, Wickramasinghe SR. Membrane extraction for biofuel production. In: Membrane science and technology. vol. 14. Edited by Oyama S.T, Susan M. Williams S, Elsevier B.V, 2011:213–33. DOI:10.1016/B978-0-444-53728-7.00010-0.Search in Google Scholar
18. Berrios M, Mart´ın MA, Chica AF, Mart´ın A. Purification of biodiesel from used cooking oils. Appl Energy. 2011;88:3625–31.10.1016/j.apenergy.2011.04.060Search in Google Scholar
19. Werpy T, Petersen GE. TopValueAddedChemicalsfromBiomass, volume I. ResultsofScreeningforPotentialCandidatesfromSugarsandSynthesisGas. 2004:76.10.2172/15008859Search in Google Scholar
20. Bozell JJ, Petersen GR. Technology development fortheproductionofbiobasedproductsfrombiorefinerycarbohydrates-the US department ofEnergy’s "Top 10" revisited. Green Chem. 2010;12:539–54.10.1039/b922014cSearch in Google Scholar
21. Offeman RD, Stephenson SK, Franqui D, Cline JL, Robertson GH, Orts WJ. Extraction of ethanol with higher alcohol solvents and their toxicity to yeast. Sep Purif Technol. 2008;63:444–51.10.1016/j.seppur.2008.06.005Search in Google Scholar
22. Koullas DP, Umealu OS, Koukios EG. Solvent selection for the extraction of ethanol from aqueous solutions. Sep Sci Technol. 1999;34:2153–63.10.1081/SS-100100762Search in Google Scholar
23. Offeman RD, Stephenson SK, Robertson GH, Orts WJ. Solvent extraction of ethanol from aqueous solutions using biobased oils, alcohols, and esters. J Am Oil Chem Soc. 2006;83:153–7.10.1007/s11746-006-1188-9Search in Google Scholar
24. Mehta GD, Fraser MD. A novel extraction process for separating ethanol and water. Ibid. 1985;24:556–60.10.1021/i200030a007Search in Google Scholar
25. Petracic A, Sander A, Magic L. Separation of free glycerol and glycerides from biodiesel by means of liquid-liquid extraction. Sci J Energy Eng. 2017;5:87–94.10.11648/j.sjee.20170504.12Search in Google Scholar
26. Abbott AP, Cullis PM, Gibson MJ, Harris RC, Raven E. Extraction of glycerol from biodiesel into a eutectic based ionic liquid. Green Chem. 2007;9:868.10.1039/b702833dSearch in Google Scholar
27. Moraes LDS, Kronemberger FDA, Ferraz HC, Habert AC. Liquid–liquid extraction of succinic acid using a hollow fiber membrane contactor. J Ind Eng Chem. 2015;21:206–11.10.1016/j.jiec.2014.02.026Search in Google Scholar
28. Lee WY, Hong YK. Liquid extraction of succinic acid by aqueous two-phase systems composed of piperidinium ionic liquids and phosphate salt. Korean J Chem Eng. 2016;54:52–6.10.9713/kcer.2016.54.1.52Search in Google Scholar
29. Kurzrock T, Weuster-Botz D. New reactive extraction systems for separation of bio-succinic acid. Bioprocess Biosyst Eng. 2011;34:779–87.10.1007/s00449-011-0526-ySearch in Google Scholar
30. Brouwer T, Blahusiak M, Babic K, Schuur B. Reactive extraction and recovery of levulinic acid, formic acid and furfural from aqueous solutions containing sulphuric acid. Sep Purif Technol. 2017;185:186–95.10.1016/j.seppur.2017.05.036Search in Google Scholar
31. Datta D, Marti ME, Pal D, Kumar S. Equilibrium study on the extraction of levulinic acid from aqueous solution with aliquat 336 dissolved in different diluents: solvent’s polarity effect and column design. Chem Eng Data. 2017;62:3–10.10.1021/acs.jced.6b00164Search in Google Scholar
32. Uslu H. Reactive extraction of levulinic acid using TPA in toluene solution: LSER modeling, kinetic and equilibrium studies. Sep Sci Technol. 2008;43:1535–48.10.1080/01496390801941216Search in Google Scholar
33. Chemarin F, Moussa M, Chadni M, Pollet B, Lieben P, Allais F, et al. New insights in reactive extraction mechanisms of organic acids: an experimental approach for 3-hydroxypropionic acid extraction with tri-n-octylamine. Sep Purif Technol. 2017;179:523–32.10.1016/j.seppur.2017.02.018Search in Google Scholar
34. Moussa M, Burgé G, Chemarin F, Bounader R, Saulou-Bérion C, Allais F, et al. Reactive extraction of 3-hydroxypropionic acid from model aqueous solutions and real bioconversion media. comparison with its isomer 2-hydroxypropionic (lactic) acid. J Chem Technol Biotechnol. 2015;91:2276–85.10.1002/jctb.4813Search in Google Scholar
35. Wasewar KL, Heesink AB, Versteeg GF, Pangarkar VG. Reactive extraction of lactic acid using alamine 336 in mibk : equilibria and kinetics. J Biotech. 2002;97:59–68.10.1016/S0168-1656(02)00057-3Search in Google Scholar
36. Wasewar KL, Heesink AB, Versteeg GF, Pangarkar VG. Equilibria and kinetics for reactive extraction of lactic acid using alamine 336 in decanol. J Chem Tech Biotech. 2002a;77:1068–75.10.1002/jctb.680Search in Google Scholar
37. Hong YK, Hong WH. Reactive extraction of lactic acid with mixed tertiary amine extracts. Biotechnol Tech. 1999;13:915–8.10.1023/A:1008903032300Search in Google Scholar
38. Perry RH, Green DW. Perry’s chemical engineer’s handbook. 7th ed. New York: McGraw-Hill; 1997.Search in Google Scholar
39. McCabe WL, Smith JC, Harriott P. Unit operations of chemical engineering. 5th ed. McGraw Hill N.Y., 1993.Search in Google Scholar
40. Seader JD, Henley EJ. Separation process principles. John Wiley, U S A 1998.Search in Google Scholar
41. Nhien LC, Long NV, Lee M. Process design of hybrid extraction and distillation processes through a systematic solvent selection for furfural production. Energy Procedia. 2017;105:1084–9.10.1016/j.egypro.2017.03.467Search in Google Scholar
42. Maeda K, Nomura Y, Fukui K, Hirota S. Separation of fatty acids by crystallization using two liquid phases. Korean J Chem Eng. 1997;14:175–8.10.1007/BF02706091Search in Google Scholar
43. Thompson JA. Selective extraction solvent recovery using regenerated cellulose membrane under reverse osmosis conditions. 1985:US4510047A.Search in Google Scholar
44. Kumar S, Wasewar KL, Babu BV. Intensification of nicotinic acid separation using organophosphorus solvating extractants: extraction equilibria. Chem EngTechnol. 2008;31:1584–90.Search in Google Scholar
45. Kertes AS, King CJ. Extraction chemistry of fermentation product carboxylic acids. Bio Technol Bioeng. 1986;28:269–82.10.1002/bit.260280217Search in Google Scholar PubMed
46. Kyuchoukov G, MoralesA F, Albet J, Malmary G, Molinier J. On the possibility of predicting the extraction of dicarboxylic acids with tributylphosphate dissolved in a diluent. J Chem Eng Data. 2008;53:639–47.10.1021/je700356ySearch in Google Scholar
47. Kumar S, Datta D, Babu BV. Differential evolution approach for reactive extraction of propionic acid using tri-n-butyl phosphate (TBP) in kerosene and 1-decanol. Mater Manuf Process. 2011;26:1222–8.10.1080/10426914.2011.551965Search in Google Scholar
48. Wasewar KL, Shende D. Equilibrium study for reactive extraction of caproic acid in MIBK and Xylene. Engineering. 2011;3:829–35.10.4236/eng.2011.38101Search in Google Scholar
49. Wardell JM, King CJ. Solvent equilibriums for extraction of carboxylic acids from water. J Chem Eng Data. 1978;23:144–8.10.1021/je60077a009Search in Google Scholar
50. Kumar S, Wasewar KL, BabuB V. Intensification of nicotinic acid separation using organophosphorous solvating extractants by reactive extraction. ChemEng Technol. 2008;31:1584–90.10.1002/ceat.200800245Search in Google Scholar
51. Ren Z, Zhang W, Li J, Wang S, Liu J, Lv Y. Effect of organic solutions on the stability and extraction equilibrium of penicillin G, J. Chem Eng Data. 2010;55:2687–94.10.1021/je900910rSearch in Google Scholar
52. Li Y, Wang Y, Li Y, Dai Y. Extraction of glyoxylic acid, glycolic acid, acrylic acid, and benzoic acid with trialkylphosphine oxide, J. Chem Eng Data. 2003;48:621–4.10.1021/je020174rSearch in Google Scholar
53. Uslu H, Kirbaşlar ŞI, Wasewar KL. Reactive extraction of levulinic acid by amberlite LA-2 extractant. J Chem Eng Data. 2009;54:712–8.10.1021/je800261jSearch in Google Scholar
54. Asci YS, Inci I. Extraction of glycolic acid from aqueous solutions by amberlite la-2 in different diluent solvents. J Chem Eng Data. 2009;54:2791–4.10.1021/je800722aSearch in Google Scholar
55. Asci YS, İnci İ, Uslu H. LSER modelim extraction of succinic acid by tridodecyl amine dissolved in 2-octanone and 1-octanlol. J Ind Eng Chem. 2010;32:1951–7.Search in Google Scholar
56. Juang RS, HuangR H. Kinetic studies on lactic acid extraction with amine using a microporous membrane-based stirred cell. J Membr Sci. 1997;129:185–96.10.1016/S0376-7388(96)00338-9Search in Google Scholar
57. Pehlivanoğlu N, Uslu H, KirbaşlarŞ I. Experimental and modeling studies on the extraction of glutaric acid by trioctylamine. J Chem Eng Data. 2009;54:3202–7.10.1021/je900202fSearch in Google Scholar
58. Keshav A, Norge P, WasewarK L. Reactive extraction of citric acid using tri-n-octylamine in nontoxic natural diluents: part 1—equilibrium studies from aqueous solutions. Appl Biochem Biotechnol. 2012;167:197–213.10.1007/s12010-012-9682-zSearch in Google Scholar
59. Malmary G, Albet J, Putranto A, Hanine H, Molinier J. Recovery of aconitic and lactic acids from simulated aqueous effluents of the sugar-cane industry through liquid-liquid extraction. J Chem Technol Biotechnol. 2000;75:1169–73.10.1002/1097-4660(200012)75:12<1169::AID-JCTB334>3.0.CO;2-FSearch in Google Scholar
60. Bízek V, Horáček J, Řeřicha R, Koušová M. Amine extraction of hydroxycarboxylic acids. 1. extraction of citric acid with 1-octanol/n-heptane solutions of trialkylamine. Ind Eng Chem Res. 1992;31:1554–62.10.1021/ie00006a019Search in Google Scholar
61. Tamada JA, Kertes AS, KingC J. Extraction of carboxylic acids with amine extractants. 1. equilibria and law of mass action modeling. Ind Eng Chem Res. 1990;29:1319–26.10.1021/ie00103a035Search in Google Scholar
62. Bayazit ŞS, Uslu H, Inci I. Comparative equilibrium studies for citric acid by amberlite LA-2 or Tridodecylamine (TDA). J Chem Eng Data. 2009;54:1991–6.10.1021/je800766pSearch in Google Scholar
63. Şahin S, Bayazit ŞS, Bilgin M. InciI.Investigation of formic acid separation from aqueous solution by reactive extraction: effects of extractant and diluent. J Chem Eng Data. 2010;55:1519–22.10.1021/je9006635Search in Google Scholar
64. Freire MG, Neves CM, Marrucho IM, Lopes JN, Rebelob LP, Coutinho JA. High-performance extraction of alkaloids using aqueous two- phase systems with ionic liquids. Green Chem. 2010;12:1715–18.10.1039/c0gc00179aSearch in Google Scholar
65. Lui Q, Xuesheng H, Wang Y, Yang P, Xia H, Yu J, et al. Extraction of penicillin G by aqueous two-phase system of [Bmim]BF4/NaH2PO4. Chin Sci Bull. 2005;50:1582–5.10.1360/982004-367Search in Google Scholar
66. Marták J, Schlosser Š. New mechanism and model of butyric acid extraction byphosphonium ionic liquid. J Chem Eng Data. 2016;61:2979–96.10.1021/acs.jced.5b01082Search in Google Scholar
67. Chen J, Wang Y, Zeng Q, Ding X, Huang Y. Partition of proteins with extraction in aqueous two-phase system by hydroxyl ammonium-based ionic liquid. Anal Methods. 2014;6:4067–76.10.1039/C4AY00233DSearch in Google Scholar
68. Hu XM, Li S, Ma HH, Zhang BX, Gao YF. Pyrrolidinium ionic liquids as effective solvents for lignin extraction and enzymatic hydrolysis of lignocelluloses. Bio Res. 2016;11:7672–85.10.15376/biores.11.3.7672-7685Search in Google Scholar
69. Liu JF, Jiang GB, J¨onsson J˚A. Application of ionic liquids in analytical chemistry. TrAC-Trends Anal Chem. 2005;24:20–7. DOI:10.1016/j.trac.2004.09.005.Search in Google Scholar
70. Marták J, Schlosser Š. Phosphonium ionic liquids as new, reactive extractants of lactic acid. Chem Pap. 2006;60:395–8.10.2478/s11696-006-0072-2Search in Google Scholar
71. Marták J, Schlosser Š. Extraction of lactic acid by phosphonium ionic liquids. Sep Purif Technol. 2007;57:483–94.10.1016/j.seppur.2006.09.013Search in Google Scholar
72. McFarlane WB, Ridenour H, Luo RD, Hunt DD, Ren RX. Room temperature ionic liquids for separating organics from produced water. Sep Sci Technol. 2005;40:1245–65.10.1081/SS-200052807Search in Google Scholar
73. Pandey S. Analytical applications of room-temperature ionic liquids: A review of recent efforts. Analytica Chimica Acta. 2006;556:38–45.10.1016/j.aca.2005.06.038Search in Google Scholar PubMed
74. Zhao H, Xia SQ, Ma PS. Use of ionic liquids as ‘green’ solvents for extractions. J Chem Technol Biotechnol. 2005;80:1089–96.10.1002/jctb.1333Search in Google Scholar
75. Schügerl K. Solvent extraction in biotechnology recovery of primary and secondary metabolites. Berlin Heidelberg: Springer-Verlag; 1994.10.1007/978-3-662-03064-6Search in Google Scholar
76. Morales M, Ataman M, Badr S, Linster S, Kourlimpinis I, Papadokonstantakis S, et al. Sustainability assessment of succinic acid production technologies from biomass using metabolic engineering. Energy Environ Sci. 2016;9:2794–805.10.1039/C6EE00634ESearch in Google Scholar
77. Kaur G, Elst K. Development of reactive extraction systems for itaconic acid: a step towards in situ product recovery for itaconic acid fermentation. RSC Adv. 2014;4:45029–39.10.1039/C4RA06612JSearch in Google Scholar
78. Wardell JM, King CJ. Solvent equilibria for extraction of carboxylic acids from water. J Chem Eng Data. 1978;23:144–8.10.1021/je60077a009Search in Google Scholar
79. Wennersten R. The extraction of citric acid from fermentation broth using a solution of a tertiary amine. J Chem Technol Biotechnol. 1983;33:85–94.10.1002/jctb.280330202Search in Google Scholar
80. Wasewar KL, Heesink AB, Versteeg GF, Pangarkar VG. Equilibria and kinetics for back extraction of lactic acid using trimethylamine. J Chem Eng Sci. 2004;59:2315–20.10.1016/j.ces.2003.11.023Search in Google Scholar
81. Wasewar KL, Yawalkar A, Moulijn J, Pangarkar VG. Fermentation of glucose to lactic acid coupled with reactive extraction: A review. Ind Eng Chem Res. 2004;43:5969–82.10.1021/ie049963nSearch in Google Scholar
82. Wasewar KL, Heesink AB, Versteeg GF, Pangarkar VG. Intensification of enzymatic conversion of glucose to lactic acid by reactive extraction. Chem Eng Sci. 2003;58:3385–94.10.1016/S0009-2509(03)00221-5Search in Google Scholar
83. Keshav A, Wasewar KL. Reactive extraction of acrylic acid using Tri-n-Butyl phosphate in different solvents. J Chem Eng Data. 2009;54:1782–6.10.1021/je800856eSearch in Google Scholar
84. Datta D, Kumar S, Wasewar KL. Reactive extraction of benzoic acid and pyridine −3-carboxylic acid using organophosphoric and aminic extractant dissolved in binary diluent mixtures. J Chem Eng Data. 2011;56:3367–75.10.1021/je200332sSearch in Google Scholar
85. Athankar KK, Wasewar KL, Varma MN, Shende DZ. Separation of phenylacetic acid using tri-n-butyl phosphate in hexanol: Equilibrium and kinetics. Sep Sci Technol. 2017;52:2696–703.10.1080/01496395.2017.1374408Search in Google Scholar
86. Athankar KK, Varma MN, Shende DZ, Yoo CK, Wasewar KL. Reactive extraction of phenylacetic acid with tri-n-butyl phosphate in benzene, hexanol, and rice bran oil at 298 K. J Chem Eng Data. 2013;58:3240–8.10.1021/je400696dSearch in Google Scholar
87. Athankar KK, Wasewar KL, Varma MN, Shende DZ, Uslu H. Extractive separation of benzylformic acid with phosphoric acid tributyl ester in ccl4, decanol, kerosene, toluene, and xylene at 298 K. J Chem Eng Data. 2015;60:1014–22.10.1021/je500943mSearch in Google Scholar
88. Gaidhani HK, Wasewar KL, Pangarkar VG. Intensification of enzymatic hydrolysis of penicillin-g: 1. equilibria and kinetics of extraction of phenyl acetic acid by alamine 336. Chem Eng Sci. 2002;57:1979-.10.1016/S0009-2509(02)00078-7Search in Google Scholar
89. Sharma H, Singh K, Wasewar KL, Athankar KL. L(+)-tartaric acid separations using aliquat 336 in n-heptane, kerosene, and 1-octanol at 300 ± 1 K. J Chem Eng Data. 2017;62:4047–63.10.1021/acs.jced.6b01070Search in Google Scholar
90. Keshav A, Wasewar KL. Back extraction of propionic acid from loaded organic phase. Chem Eng Sci. 2010;65:2751–7.10.1016/j.ces.2010.01.010Search in Google Scholar
91. Keshav A, Wasewar KL, Chand S. Reactive extraction of propionic acid using tri-n-butyl phosphate in petroleum ether: equilibrium study. Chem Biochem Eng Q. 2008;22:433–7.Search in Google Scholar
92. Keshav A, Wasewar KL, Chand S. Reactive extraction of propionic acid using tri-n-octylamine. Chem Eng Commun. 2009;197:606–26.10.1080/00986440903249015Search in Google Scholar
93. Keshav A, Wasewar KL, Chand S. Equilibrium studies for extraction of propionic acid using tri-n-butyl phosphate in different solvents. J Chem Eng Data. 2008;22:1424–30.10.1021/je7006617Search in Google Scholar
94. Athankar KK, Wasewar KL, Varma MN, Shende DZ. Reactive extraction of gallic acid with tri-n-caprylylamine. New J Chem. 2016;40:2413–7.10.1039/C5NJ03007BSearch in Google Scholar
95. Rewatkar K, Shende DZ, Wasewar KL. Effect of temperature on reactive extraction of gallic acid using tri-n-butyl phosphate, tri-n-octylamine and aliquat 336. J Chem Eng Data. 2016;61:3217–24.10.1021/acs.jced.6b00310Search in Google Scholar
96. Rewatkar K, Shende DZ, Wasewar KL. Reactive separation of gallic acid: experimentation and optimization using response surface methodology and artificial neural network. Chem Biochem Eng Q. 2017;31:33–46.10.15255/CABEQ.2016.931Search in Google Scholar
97. Wasewar KL, Shende DZ. Equilibrium for the reactive extraction of caproic acid using tri-n-butyl phosphate in methylisobutyl ketone and xylene. J Chem Eng Data. 2011;56:3318–22.10.1021/je200138wSearch in Google Scholar
98. Wasewar KL, Shende DZ. Reactive extraction of caproic acid using tri-nbutyl phosphate in hexanol, octanol, and decanol. J Chem Eng Data. 2011;56:288–97.10.1021/je100974fSearch in Google Scholar
99. Wasewar KL, Shende DZ. Extraction of caproic acid using tri-n-butyl phosphate in benzene and toluene at 301 K. J Chem Eng Data. 2010;55:4121–5.10.1021/je100337mSearch in Google Scholar
100. Uslu H, Kirbaslar SI, Wasewar KL. Reactive extraction of levulinic acid by amberlite la-2 extractant. J Chem Eng Data. 2009;54:712–8.10.1021/je800261jSearch in Google Scholar
101. Waghmare MD, Wasewar KL, Sonawane SS, Shende DZ. Reactive extraction of picolinic acid and nicotinic acid by naturalnon-toxic solvent. Sep Purif Technol. 2013;120:296–303.10.1016/j.seppur.2013.10.019Search in Google Scholar
102. Antony FM, Wasewar KL, BS D. Efficacy of tri-n-octylamine, tri-n-butyl phosphate and di-(2-ethylhexyl) phosphoric acid for reactive separation of protocatechuic acid. Sep Sci Technol. 2018c. DOI:https://doi.org/10.1080/01496395.2018.1556692.Search in Google Scholar
103. Antony FM, Wasewar KL. Separation of protocatechuic acid using di-(2-ethylhexyl)phosphoric acid in isobutyl acetate, toluene, and petroleum ether. J Chem Eng Data. 2018a;207. DOI:10.1021/acs.jced.7b00797.Search in Google Scholar
104. Antony FM, Wasewar KL. Reactive separation of protocatechuic acid using Tri-n-octyl amine and Di-(2-ethylhexyl) phosphoric acid in methyl isobutyl ketone. Sep Purif Technol. 2018b. DOI:10.1016/j.seppur.2018.06.037.Search in Google Scholar
105. Yang S-T, Huang H, Tay A, Qin W, De Guzman L, San Nicolas EC. Extractive fermentation for the production of carboxylic acids. In: Yang S-T, editor. Bioprocessing for value added products from renewable resources. Elsevier, U S A, 2007:421–46.10.1016/B978-044452114-9/50017-7Search in Google Scholar
106. López-Garzón CS, Straathof AJJ. Recovery of carboxylic acids produced by fermentation. Bio Technol Adv. 2014;32:873–904.10.1016/j.biotechadv.2014.04.002Search in Google Scholar PubMed
107. Wu ZT, Yang ST. Extractive fermentation for butyricacid production from glucose by Clostridiumtyrobutyricum. Biotechnol Bioeng. 2003;82:93–102.10.1002/bit.10542Search in Google Scholar PubMed
108. Jin ZW, Yang ST. Extractive fermentation for enhanced propionic-acid production from lactose by propionibacteriumacidipropionici. Biotechnol Prog. 1998;14:457.10.1021/bp980026iSearch in Google Scholar PubMed
109. Rüffer N, Heidersdorf U, Kretzers I, Sprenger GA, Raeven L, Takors R. Fully integrated L-phenylalanine separation and concentration using reactive-extraction with liquid-liquid centrifuges in a fed-batch process with E. coli. Bioprocess Biosyst Eng. 2004;26:239–48.10.1007/s00449-004-0354-4Search in Google Scholar
110. Xiu Z-L, Zeng A-P. Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl Microbiol Biotechnol. 2008;78:917–26. DOI:10.1007/s00253-008-1387-4.Search in Google Scholar PubMed
111. Hao J, Xu F, Liu H, Liu D. Downstream processing of 1,3-propanediol fermentation broth. J Chem Technol Biotechnol. 2006;81:102–8.10.1002/jctb.1369Search in Google Scholar
112. Mussatto SI, Santos JC, Filho WC. Silva SS purification of xylitol from fermented hemicellulosichydrolyzate using liquid-liquid extraction and precipitation techniques. Bio Technol Lett. 2005;15:1113–15.10.1007/s10529-005-8458-8Search in Google Scholar
113. Mun W, Islam L, Rafiqul SM, Munaim A, Sakinah M, Zularisam W. Purification of bioxylitol by liquid-liquid extraction from enzymatic reaction mixture. Sep Sci Technol. 2016. DOI:10.1080/01496395.2016.1203335.Search in Google Scholar
114. Seader JD, Henley EJ, Roper DK. Separation process principles: chemical and biochemical operations. USA: John Wiley & Sons, Inc., 2006.Search in Google Scholar
115. Freire MG, Neves CM, Marrucho IM, Lopes JN, Rebelo JP, Coutinhob JA. High-performance extraction of alkaloids using aqueous two-phase systems with ionic liquids. Green Chem. 2011;13:1517.10.1039/c0gc00179aSearch in Google Scholar
116. Rosatella AA, Simeonov SP, Fradea RF, Afonso CA. 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chem. 2011;13:754.10.1039/c0gc00401dSearch in Google Scholar
117. Teong SP, Yia G, Zhang Y. Hydroxymethylfurfural production from bioresources: past, present and future. Green Chem. 2014;16:2015.10.1039/c3gc42018cSearch in Google Scholar
118. Habbal S, Haddou B, Kameche M, Derriche Z, Canselier& JP, Gourdon C. Cloud point or ionic liquid extraction of furfural from aqueous solution: a comparative study based upon experimental design. Desalin Water TreaT. 2016;57:23770–8. DOI:10.1080/19443994.2015.1133322.Search in Google Scholar
119. Kiss A, Costin B. Intensified Downstream Processing in Biofuels Production. 2018. 10.1039/9781788010320-00062.10.1039/9781788010320-00062Search in Google Scholar
120. Jönsson LJ, Martín C. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol. 2016;199:103–12. DOI:10.1016/j.biortech.2015.10.009.Search in Google Scholar PubMed
121. Jessop PG, Heldebrant DJ, Li X, Eckert CA, Liotta CL. Reversible nonpolar-to-polar solvent. Nature. 2005;436:1102.10.1038/4361102aSearch in Google Scholar PubMed
122. IUPAC. Compendium of Chemical Terminology. 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). Online version (2019-) created by S. J. Chalk. ISBN 0-9678550-9-8. https://doi.org/10.1351/goldbook.10.1351/goldbookSearch in Google Scholar
123. Blahušiak M, Schlosser Š, Cvengroš J. Simulationof a newregenerationprocessofsolventswithionicliquidbyshort-pathdistillation. Sep Purif Technol. 2012;97:186–94.10.1016/j.seppur.2012.03.010Search in Google Scholar
124. Reyhanitash E, Zaalberg B, Ijmker HM, Kersten SR, Schuur B. CO2-enhanced extractionofaceticacidfrom fermentedwastewater. Green Chem. 2015;17:4393–400.10.1039/C5GC01061FSearch in Google Scholar
125. Reyhanitash E, Fufachev E, vanMunster KD, vanBeek MB, Sprakel LM, Edelijn CN, et al. Recoveryandconversionofaceticacid from a phosphoniumphosphinateionicliquidtoenablevalorizationoffermentedwastewater. Green Chem. 2019;21:2023–34.10.1039/C9GC00725CSearch in Google Scholar
126. Blahušiak M, Schlosser Š, Cvengroš J, Marták J. New approach to regeneration of an ionic liquid containing solvent by molecular distillation. Chem Pap. 2011;65:603–7.10.2478/s11696-011-0053-ySearch in Google Scholar
127. Reyhanitash E, Fufachev E, Van Munster KD, Van Beek MB, Sprakel LM, Edelijn CN, et al. Recovery and conversion of acetic acid from a phosphonium phosphinate ionic liquid to enable valorization of fermented wastewater. Green Chem. 2019. DOI:10.1039/c9gc00725c.Search in Google Scholar
128. Siebold MP. Comparison of the production of lactic acid by three different lactobacilli and its recovery by extraction and electrodialysis. Process Biochem. 1995; 30: 81–95.10.1016/0032-9592(95)87011-3Search in Google Scholar
129. Malmary G, Albet J, Putranto A, Hanine H, Molinier J. Measurement of partition coefficients of carboxylic acids between water and triisooctylamine dissolved in various diluents. J Chem Eng Data. 1998;43:849–51.10.1021/je980087sSearch in Google Scholar
130. Kroon MC, van Spronsen J, Peters CJ, Sheldon RA, Witkamp G-J. Recovery of pure products from ionic liquids using supercriticalcarbon dioxide as a co-solvent in extractions or as an anti-solvent in precipitations. Green Chem. 2006;8:246–9.10.1039/B512303HSearch in Google Scholar
131. Brouwer T, Blahusiak M, Babic K, Schuur B. Reactive extraction and recovery of levulinic acid, formic acidand furfural from aqueous solutions containing sulphuric acid. Sep Purif Technol. 2017;185:186–95.10.1016/j.seppur.2017.05.036Search in Google Scholar
132. Krzyżaniak A, Leeman M, Vossebeld F, Visser TJ, Schuur B, de Haan A. Novel extractants for the recovery of fermentation derivedlactic acid. Sep Purif Technol. 2013;111:82–9.10.1016/j.seppur.2013.03.031Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Recent developments in stereoselective organocatalytic oxyfunctionalizations
- Chemical engineering methods in downstream processing in biotechnology
- Stereoselective organocatalysis and flow chemistry
- Biobleaching: An eco-friendly approach to reduce chemical consumption and pollutants generation
- Separation of bio-products by liquid–liquid extraction
Articles in the same Issue
- Frontmatter
- Recent developments in stereoselective organocatalytic oxyfunctionalizations
- Chemical engineering methods in downstream processing in biotechnology
- Stereoselective organocatalysis and flow chemistry
- Biobleaching: An eco-friendly approach to reduce chemical consumption and pollutants generation
- Separation of bio-products by liquid–liquid extraction