Home Electrodes: definitions and systematisation – a crystallographers view
Article
Licensed
Unlicensed Requires Authentication

Electrodes: definitions and systematisation – a crystallographers view

  • Falk Meutzner EMAIL logo , Matthias Zschornak , Melanie Nentwich , Damien Monti and Tilmann Leisegang
Published/Copyright: August 11, 2018
Become an author with De Gruyter Brill

Abstract

Electrodes are, in combination with electrolytes and the active, reacting materials the function-giving materials in electrochemical energy storage devices. They are responsible for the transfer of electrons and provide the surface at which the electrochemical reactions take place. Those electrochemical reactions span the potential difference which drives the battery. We present a crystallographically inspired systematisation of all electrodes found in electrochemical storages that comprise inert and reactive electrodes, subdivided in active and passive electrodes, and solvation, mixed crystal, and phase transition electrodes, respectively. After the description of all electrode types we present a concise summary of battery chemistries and the applied electrode types.

Funding statement: Financial support of the Federal Ministry of Education and Research (CryPhysConcept (03EK3029A) and R2RBattery (03SF0542A)) is gratefully acknowledged. DM acknowledges the EC for a H2020 MSCA-IF grant (contract number 743439).

References

[1] Wiberg N. Lehrbuch der Anorganischen Chemie, 102. stark umgearbeitete und verbesserte Auflage. Berlin: Walter de Gruyter & Co, 2007.10.1515/9783110177701Search in Google Scholar

[2] Takahashi Y, Shevchuk AI, Novak P, Babakinejad B, Macpherson J, Unwin PR, et al. Topographical and electrochemical nanoscale imaging of living cells using voltage-switching mode scanning electrochemical microscopy. Proc Nat Acad. 2012;109:11540–5. DOI: 10.1073/pnas.1203570109.Search in Google Scholar PubMed PubMed Central

[3] Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414:359–67.10.1038/35104644Search in Google Scholar PubMed

[4] Leuthardt EC, Schalk G, Wolpaw JR, Ojemann JG, Moran DW. A brain-computer interface using electrocorticographic signals in humans. J Neural Eng. 2004;1:63–71.10.1088/1741-2560/1/2/001Search in Google Scholar PubMed

[5] Sutton SJ, Lewin PL, Swingler SG. Review of global HVDC subsea cable projects and the application of sea electrodes. Int J Electr Power Energy Syst. 2017;87:121–35.10.1016/j.ijepes.2016.11.009Search in Google Scholar

[6] Obrovac MN, Chevrier VL. Alloy negative electrodes for Li-Ion batteries. Chem Rev. 2014;114:11444–502.10.1021/cr500207gSearch in Google Scholar PubMed

[7] Reddy TD, editor(s). Linden’s handbook of batteries, 4th ed. McGraw Hill, 2011.Search in Google Scholar

[8] Daniel C, Besenhard J. Handbook of battery materials, 2nd ed, vol. 1. Weihnheim: Wiley-VCH, 2011.10.1002/9783527637188Search in Google Scholar

[9] Daniel C, Mohanty D, Li J, Wood DL. Cathode materials review. AIP Conf Proc. 2014;26–43 1597.10.1063/1.4878478Search in Google Scholar

[10] Dresselhaus MS, Dresselhaus G. Intercalation compounds of graphite. Adv Phys. 2002;51:1–186.10.1080/00018730110113644Search in Google Scholar

[11] Whittingham MS. Lithium batteries and cathode materials. Chem Rev. 2004;104:4271–301.10.1021/cr020731cSearch in Google Scholar PubMed

[12] Meyer DC, Leisegang T. Electrochemical storage materials: from crystallography to engineering. DE GRUYTER OLDENBOURG Publishing House, 2018.10.1515/9783110493986Search in Google Scholar

[13] Faraday M. Experimental researches in electricity. Philos Trans Royal Soc London. 1832;122:125–62.10.1098/rstl.1832.0006Search in Google Scholar

[14] Verma P, Maire P, Novák P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta. 2010;55:6332–41.10.1016/j.electacta.2010.05.072Search in Google Scholar

[15] Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li-O2 and Li-S batteries with high energy storage. Nat Mater. 2012;11:19–29.10.1038/nmat3191Search in Google Scholar

[16] Ponce de Leon C, Frías-Ferrer A, González-García J, Szánto DA, Walsh FC. Redox flow cells for energy conversion. J Power Sources. 2006;160:716–32.10.1016/j.jpowsour.2006.02.095Search in Google Scholar

[17] Skyllas-Kazacos M, Chakrabarti MH, Hajimolana SA, Mjalli FS, Saleem M. Progress in flow battery research and development. J Electrochem Soc. 2011;158:R55–79.10.1149/1.3599565Search in Google Scholar

[18] Remick RJ, Ang PGP. Electrically rechargeable anionically active reduction – oxidation electrical storage-supply system. U.S. Patent No. 4,485,154 1984 27Nov.Search in Google Scholar

[19] Lu X, Xia G, Lemmon JP, Yang Z. Advanced materials for sodium-beta alumina batteries: status, challenges and perspectives. J Power Sources. 2010;195:2431–42.10.1016/j.jpowsour.2009.11.120Search in Google Scholar

[20] Cheng F, Chen J. Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev. 2012;41:2172–92.10.1039/c1cs15228aSearch in Google Scholar PubMed

[21] Sun B, Skyllas-Kazakos M. Chemical modification and electrochemical behaviour of graphite fibre in acidic vanadium solution. Electrochim Acta. 1991;36:513–17.10.1016/0013-4686(91)85135-TSearch in Google Scholar

[22] Sun B, Skyllas-Kazacos M. Modification of graphite electrode materials for vanadium redox flow battery application – I. Thermal treatment. Electrochim Acta. 1992;37:1253–60.10.1016/0013-4686(92)85064-RSearch in Google Scholar

[23] Sun B, Skyllas-Kazacos M. Chemical modification of graphite electrode materials for vanadium redox flow battery application – part II. Acid treatments. Electrochim Acta. 1992;37:2459–65.10.1016/0013-4686(92)87084-DSearch in Google Scholar

[24] Holze R. Anodes – materials for negative electrodes in electrochemical energy technology. AIP Conf Proc. 2014;1597:44–65.10.1063/1.4878479Search in Google Scholar

[25] Powers RW, Breiter MW. The anodic dissolution and passivation of zinc in concentrated potassium hydroxide solutions. J Electrochem Soc. 1969;116:719–29.10.1149/1.2412040Search in Google Scholar

[26] Zendejas MA, Thomas JO. Conduction mechanisms in solid electrolytes: Na+ beta-alumina. Phys Scr. 1990;1990:235–44.10.1088/0031-8949/1990/T33/045Search in Google Scholar

[27] Diggle JW, Despic AR, Bockris JM. The mechanism of the dendritic electrocrystallization of zinc. J Electrochem Soc. 1969;116:1503–14.10.1149/1.2411588Search in Google Scholar

[28] Palacin MR. Recent advances in rechargeable battery materials: a chemist’s perspective. Chem Soc Rev. 2009;38:2565–75.10.1039/b820555hSearch in Google Scholar PubMed

[29] Galloway RC. A sodium/beta-alumina/nickel chloride secondary cell. J Electrochem Soc. 1987;134:256–7.10.1149/1.2100421Search in Google Scholar

[30] Bones RJ, Teagle DA, Brooker SD, Cullen FL. Development of a Ni, NiCl2 positive electrode for a liquid sodium (ZEBRA) battery cell. J Electrochem Soc. 1989;136:1274–7.10.1149/1.2096905Search in Google Scholar

[31] Hill RJ. The crystal structure of lead dioxides from the positive plate of the lead/acid battery. Mat Res Bull. 1982;17:769–84.10.1016/0025-5408(82)90028-9Search in Google Scholar

[32] D’Antonio P, Santoro A. Powder neutron diffraction study of chemically prepared β-lead dioxide. Acta Cryst B. 1980;36:2394–7.10.1107/S0567740880008813Search in Google Scholar

[33] James RW, Wood WA. The crystal structure of barytes, celestine and anglesite. Proc Roy Soc A. 1925;109:598–20.10.1098/rspa.1925.0148Search in Google Scholar

[34] Cherkouk C, Nestler T. Cathodes – technological review. AIP Conf Proc. 2014;1597:134–45.10.1063/1.4878484Search in Google Scholar

[35] Parker JF, Chervin CN, Pala IR, Machler M, Burz MF, Long JW, et al. Rechargeable nickel–3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science. 2017;356:415–8.10.1126/science.aak9991Search in Google Scholar PubMed

[36] Mulder FM, Weninger BMH, Middelkoop J, Ooms FGB, Schreuders H. Efficient electricity storage with a battolyser, an integrated Ni–fe battery and electrolyser. Energy Environ Sci. 2017;10:756–64.10.1039/C6EE02923JSearch in Google Scholar

[37] Bradwell DJ, Kim H, Sirk AHC, Sadoway DR. Magnesium–antimony liquid metal battery for stationary energy storage. J Am Chem Soc. 2012;134:1895–7.10.1021/ja209759sSearch in Google Scholar PubMed

[38] Guidotti RA. Thermal batteries: a technology review and future directions. Proc 27th Int SAMPE Tech Conf Abuquerque 1995;27:807–18.Search in Google Scholar

[39] Egan DR, Ponce De León C, Wood RJK, Jones RL, Stokes KR, Walsh FC. Developments in electrode materials and electrolytes for aluminium–air batteries. J Power Sources. 2013;236:293–310.10.1016/j.jpowsour.2013.01.141Search in Google Scholar

[40] Narayanan SR, Surya Prakash GK, Manohar A, Yang B, Malkhandi S, Kindler A. Materials challenges and technical approaches for realizing inexpensive and robust iron–air batteries for large-scale energy storage. Solid State Ionics. 2012;216:105–9.10.1016/j.ssi.2011.12.002Search in Google Scholar

[41] Winter M, Besenhard JO, Spahr ME, Novák P. Insertion electrode materials for rechargeable lithium batteries. Adv Mater. 1998;10:725–63.10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-ZSearch in Google Scholar

[42] Kirubakaran A, Jain S, Nema RK. A review on fuel cell technologies and power electronic interface. Renew Sustainable Energy Rev. 2009;13:2430–40.10.1016/j.rser.2009.04.004Search in Google Scholar

[43] Reddy AM, Fichtner M. Batteries based on fluoride shuttle. J Mater Chem. 2011;21:17059–62.10.1039/c1jm13535jSearch in Google Scholar

Published Online: 2018-08-11

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/psr-2018-0043/html?lang=en&srsltid=AfmBOooIjmB8H4xD2Z0O2QztOC9mCemDAM9_a5TFVAGaCZAvpY0wf83Y
Scroll to top button