Abstract
Ceramics are among the most studied findings, one of the best markers for providing technological and functional information in archaeological contexts. Their chemical-mineralogical characterization allows to answer a large number of historical-archaeological questions about classification, provenance, production technologies, trade routes, economic exchange, etc. The best methodological approach not only integrates morphological-stylistic studies to the archaeometric ones, but also includes a synergic instrumental strategy aimed both to take advantage of each different analytical technique to the best of its potentiality and to over step the problems connected to the preciousness and uniqueness of the objects. As far as the mineralogical and petrographical composition of preindustrial ceramics is concerned, its determination is crucial to answer provenance and technological issues like raw materials procurement and the production processes in this respect, equivalent firing temperature, redox atmosphere during firing are important factors that help in understanding the relevant mineralogical and micro-structural transformations. In this paper, we illustrate how an integrated approach of analytical techniques, tested on different classes of ceramics – pottery with spathic calcite, Apulian red figure pottery and technical ceramics – can provide answers to archaeological questions.
References
[1] Fabbri B. Lo studio dei materiali ceramici nei beni culturali. La La Chimica e l’Industria. 2002;84:43–8Search in Google Scholar
[2] Brunetti B, Sgamellotti A. Lo studio delle ceramiche storico-artistiche. La La Chimica e l’Industria. 2002;84:49–54Search in Google Scholar
[3] Riccardi P, Nodari L, Gualtieri S, De Simone D, Fabbri B, Russo U. Firing techniques of black slipped pottery from Nepal (twelveth–third century bc): the role of Mössbauer spectroscopy. J Cultural Heritage. 2008;9:261–8.10.1016/j.culher.2007.12.003Search in Google Scholar
[4] Riccardi P, Nodari L, Fabbri B, Gualtieri S, Russo U. Contribution for a mineralogical thermometer to be applied to low fired and/or non-carbonate ceramics. BAR Internatl Ser. 2007;1691:13–18.Search in Google Scholar
[5] Maritan L, Mazzoli C, Nodari L, Russo U. Second Iron Age grey pottery from Este (Northeastern Italy): study of provenance and technology. Appl Clay Sci. 2005;29:31–44.10.1016/j.clay.2004.09.003Search in Google Scholar
[6] Laviano R, Muntoni IM. Provenance and technology of Apulian Neolithic pottery. Geol Soc London Spec Publ. 2006;257:49–62.10.1144/GSL.SP.2006.257.01.04Search in Google Scholar
[7] Amato F, Gualtieri S, Ricciardi P. Potenzialità dell’archeometria nello studio del materiale ceramico. In Lega A, editor. Ceramica: materia e tecnica, vol. 20. Faenza: Phase srl ed, 2006:57–82.Search in Google Scholar
[8] Weigand PC, Harbottle G, Sayre EV. Turquoise sources and source analysis: Mesoamerica and the southwestern U.S.A.. In: Earle TK, Ericson JE, editor(s). Exchange systems in prehistory. New York: Academic Press, 1977:15–34.10.1016/B978-0-12-227650-7.50008-0Search in Google Scholar
[9] Descantes C, Speakman RJ, Glascock MD. Compositional studies of Caribbean ceramics: an introduction to instrumental neutron activation analysis. J Caribbean Archaeol. 2008;Special Publication 2:1–14Search in Google Scholar
[10] Peacock DP. The heavy mineral analysis of pottery: a preliminary report. Archaeometry. 1967;10:97–100.10.1111/j.1475-4754.1967.tb00619.xSearch in Google Scholar
[11] Glascock M. Characterization of archaeological ceramics at MURR by neutron activation analysis and multivariate statistics. In: Neff H, editor(s). Chemical characterization of Ceramic pastes in archaeology. Madison (WI): Prehistory Press, 1992:11–26.Search in Google Scholar
[12] Glascock M, Neff H. Neutron activation analysis and provenance research in archaeology. Meas Sci Technol. 2003;14:1516–26.10.1088/0957-0233/14/9/304Search in Google Scholar
[13] Vaggelli G, Cossio R. μ-XRF analysis of glasses: a non-destructive utility for cultural heritage applications. Analyst. 2012;137:662–7.10.1039/C1AN15518KSearch in Google Scholar PubMed
[14] Stoner WD, Glascock MD. The forest or the trees? Behavioral and methodological considerations for geochemical characterization of heavily-tempered Ceramic pastes using NAA and LA-ICP-MS. J Archaeol Sci. 2012;39:2668–83.10.1016/j.jas.2012.04.011Search in Google Scholar
[15] Hein A, Tsolakidou A, Iliopoulos I, Mommsen H, Buxeda i Garrig´os J, Montanac G, et al. Standardisation of elemental analytical techniques applied to provenance studies of archaeological ceramics: an inter laboratory calibration study. Analyst. 2002;127:542–53.10.1039/b109603fSearch in Google Scholar PubMed
[16] Gratuze B, Blet-Lemarquard M, Barrandon JN. Mass spectrometry with laser sampling: a new tool to characterize archaeological materials. J Radioanal Nucl Chem. 2001;247:645–56.10.1023/A:1010623703423Search in Google Scholar
[17] James WD, Dahlin ES, Carlson DL. Chemical compositional studies of archaeological artifacts: comparison of LA-ICP-MS to INAA measurements. J Radioanal Nucl Chem. 2005;263:697–702.10.1007/s10967-005-0645-5Search in Google Scholar
[18] Resano M, Garc´ıa-Ruiz E, Vanhaecke F. Laser ablation-inductively coupled plasma mass spectrometry in archaeometric research. Mass Spectrom Rev. 2010;29:55–78.10.1002/mas.20220Search in Google Scholar PubMed
[19] Tite MS. Methods in physical examination in archaeology. London and New York: Seminar Press, 1972Search in Google Scholar
[20] Dinnebier RE, Billinge SJ. Powder diffraction: theory and practice. Cambridge: Royal Society of Chemistry, 200810.1039/9781847558237Search in Google Scholar
[21] Maggetti M. Mineralogical and petrographical methods for the study of ancient pottery. In: Burragato F, Grubessi O, Lazzarini L, editor(s). Proceedings of the 1st European workshop on archaeological ceramics. Dipartmento Scienze della Terra, Università degli Studi di Roma ‘La Sapienza', 1994:23–35.Search in Google Scholar
[22] Artioli G, Angelini I. Scientific methods and cultural heritage: an introduction to the application of materials science to archaeometry and conservation science. Oxford: Oxford University Press, 201010.1093/acprof:oso/9780199548262.001.0001Search in Google Scholar
[23] Tite MS, Maniatis Y. Examination of ancient pottery using the scanning electron microscope. Nature. 1975;257:122.10.1038/257122a0Search in Google Scholar
[24] Riccardi MP, Messiga B, Duminuco P. An approach to the dynamics of clay firing. Appl Clay Sci. 1999;15:393–409.10.1016/S0169-1317(99)00032-0Search in Google Scholar
[25] Rathossi C, Pontikes Y. Effect of firing temperature and atmosphere on ceramics made of NW Peloponnese clay sediments. Part I: reaction paths, crystalline phases, microstructure and colour. J Eur Ceramic Soc. 2010;30:1841–51.10.1016/j.jeurceramsoc.2010.02.002Search in Google Scholar
[26] Hein A, Müller NS, Day PM, Kilikoglou V. Thermal conductivity of archaeological ceramics: the effect of inclusions, porosity and firing temperature. Thermochim Acta. 2008;480:35–42.10.1016/j.tca.2008.09.012Search in Google Scholar
[27] Allegretta I, Pinto D, Eramo G. Effects of grain size on the reactivity of limestone temper in a kaolinitic clay. Appl Clay Sci. 2016;126:223–34.10.1016/j.clay.2016.03.020Search in Google Scholar
[28] Eramo G. The glass-melting crucibles of Derriere Sairoche (1699–1714 AD, Ct. Bern, Switzerland): a petrological approach. J Archaeol Sci. 2006a;33:440–52.10.1016/j.jas.2005.09.002Search in Google Scholar
[29] Richardson C. Petrology of the Galapagos Islands. In Lawrence John Chubb, Geology of Galapagos, Cocos, and Easter Islands. Bernice B Bishop Museum-Bull. 1933;110:45–67.Search in Google Scholar
[30] Hussak E. Feldspatporzellan. Sprechsaal. 1889;22:153Search in Google Scholar
[31] Behrens H. Ueber das Porcellan und einige verwandte Entglasungsproducte. Ann Phys. 1874;226:386–99.10.1002/andp.18742261106Search in Google Scholar
[32] Heimann RB, Maggetti M. Ancient and historical ceramics. Stuttgart: Schweizerbart Sche Vlgsb, 2014Search in Google Scholar
[33] Ingersoll RV. Actualistic sandstone petrofacies: discriminating modern and ancient source rocks. Geology. 1990;18:733–6.10.1130/0091-7613(1990)018<0733:ASPDMA>2.3.CO;2Search in Google Scholar
[34] Heidke JM, Miksa EJ. Correspondence and discriminant analyses of sand and sand temper compositions, Tonto Basin, Arizona. Archaeometry. 2000;42:273–99.10.1111/j.1475-4754.2000.tb00882.xSearch in Google Scholar
[35] Whitbread IK. Greek transport amphorae: a petrological and archaeological study Fitch Laboratory Occasional Paper, vol. 4. London: British School of Athens, 1995Search in Google Scholar
[36] Peck AB. The rôle of the ceramic petrographer. A brief review of the development of the ceramic petrography. Bull Am ceramic Soc. 1927;6:297–305.10.1111/j.1151-2916.1927.tb18461.xSearch in Google Scholar
[37] Peacock DP. The scientific analysis of ancient ceramics: a review. World Archaeol. 1970;1:375–89.10.1080/00438243.1970.9979454Search in Google Scholar
[38] Maggetti M. Phase analysis and its significance for technology and origin. In: Olin JS, Franklin AD, editors. Archaeological ceramic. Washington, DC: Smithsonian Institution Press, 1982:121–33.Search in Google Scholar
[39] Capelli C, Mannoni T. Proposte per una scheda descrittiva delle sezioni sottili e per una classificazione minero-petrografica delle ceramiche. Archeol Medievale. 1996;23:689–97.Search in Google Scholar
[40] Orton C, Hughes M. Pottery in archaeology. Cambridge: Cambridge University Press, 201310.1017/CBO9780511920066Search in Google Scholar
[41] Santacreu DA. Materiality, techniques and society in pottery production: the technological study of archaeological ceramics through paste analysis. Berlin, Boston: Walter de Gruyter GmbH Co KG, 2014.10.2478/9783110410204Search in Google Scholar
[42] Stoltman JB. The role of petrography in the study of archaeological ceramics. In: Goldberg P, Holliday VT, Ferring CR, editor(s). Earth sciences and archaeology. Boston, MA: Springer, 2001:297–326.10.1007/978-1-4615-1183-0_11Search in Google Scholar
[43] Heidke JM, Miksa EJ, Wallace HD. A petrographic approach to sand-tempered pottery provenance studies: examples from two Hohokam local systems. In: Glowacki DM, Neff H, editor(s). Ceramic production and circulation in the greater Southwest: source determination by INAA and complementary mineralogical investigations, vol. 44. Los Angeles: Cotsen Institute of Archaeology, University of California, 2002:152–78.Search in Google Scholar
[44] Eramo G, Giannossa LC, Rocco A, Mangone A, Graziano SF, Laviano R. Oil lamps from the catacombs of Canosa (Apulia, fourth to sixth centuries AD): technological features and typological imitation. Archaeometry. 2014;56:375–91.10.1111/arcm.12016Search in Google Scholar
[45] D’Ercole G, Eramo G, Garcea EA, Muntoni IM, Smith JR. Raw material and technological changes in ceramic productions at Sai Island, northern Sudan from the 7th to the 3rd millennium bce. Archaeometry. 2015;57:597–616.10.1111/arcm.12113Search in Google Scholar
[46] Bishop RL. Aspects of compositional modeling. In: Fry RE, editor. Models and methods in regional exchange, Washington, DC: Society for American Archaeology. 1980:47–66. SAA Papers No. 1.Search in Google Scholar
[47] Shepard AO. Ceramics for the archaeologist. Washington, DC: Carnegie Institution of Washington, 1985.Search in Google Scholar
[48] Tite MS. Ceramic production, provenance and use – a review. Archaeometry. 2008;50:216–31.10.1111/j.1475-4754.2008.00391.xSearch in Google Scholar
[49] Quinn PS. Ceramic Petrography: the interpretation of archaeological pottery and related artefacts in thin section. Oxford: Archaeopress, 201310.2307/j.ctv1jk0jf4Search in Google Scholar
[50] Levi ST. Dal coccio al vasaio. Manifattura, tecnologia e classificazione della ceramica. Bologna: Zanichelli, 2010:1–275.Search in Google Scholar
[51] Aprile A, Castellano G, Eramo G. Classification of mineral inclusions in ancient ceramics: comparing different modal analysis strategies. Archaeol Anthropol Sci. 2019;11:2557–6710.1007/s12520-018-0690-ySearch in Google Scholar
[52] Aprile A, Castellano G, Eramo G. Combining image analysis and modular neural networks for classification of mineral inclusions and pores in archaeological potsherds. J Archaeol Sci. 2014;50:262–72.10.1016/j.jas.2014.07.017Search in Google Scholar
[53] Rye OS. Pottery technology: principles and reconstruction. Washington, DC: Taraxacum, 1981.Search in Google Scholar
[54] Arnold DE. Ethnomineralogy of Ticul, Yucatan potters: etics and emics. Am Antiq. 1971;36:20–40.10.2307/278020Search in Google Scholar
[55] Rye OS. Keeping your temper under control: materials and the manufacture of Papuan pottery. Archaeol Physl Anthropol Oceania. 1976;11:106–37.Search in Google Scholar
[56] Whitbread IK. The characterisation of argillaceous inclusions in ceramic thin sections. Archaeometry. 1986;28:79–88.10.1111/j.1475-4754.1986.tb00376.xSearch in Google Scholar
[57] Cuomo Di Caprio N, Vaughan SJ. An experimental study in distinguishing grog (chamotte) from argillaceous inclusions in ceramic thin sections. Archaeomaterials. 1993;7:21–40.Search in Google Scholar
[58] Eramo G. The glass-melting furnace and the crucibles of Südel (1723–1741, Switzerland): provenance of the raw materials and new evidence of high thermal performances. J Cultural Heritage. 2006b;7:286–300.10.1016/j.culher.2006.04.005Search in Google Scholar
[59] Thér R. Identification of pottery-forming techniques using quantitative analysis of the orientation of inclusions and voids in thin sections. Archaeometry. 2016;58:222–38.10.1111/arcm.12166Search in Google Scholar
[60] Tite MS, Kilikoglou V, Vekinis G. Strength, toughness and thermal shock resistance of ancient ceramics, and their influence on technological choice. Archaeometry. 2001;43:301–24.10.1111/1475-4754.00019Search in Google Scholar
[61] Schubert P. Petrographic modal analysis – a necessary complement to chemical analysis of ceramic Coarse Ware. Archeometry. 1986;28:163–78.10.1111/j.1475-4754.1986.tb00384.xSearch in Google Scholar
[62] Eramo G. Pre-industrial glassmaking in the Swiss Jura: the refractory earth for the glassworks of Derrière Sairoche (ct. Bern, 1699–1714). Geol Soc London Spec Publ. 2006c;257:187–99.10.1144/GSL.SP.2006.257.01.15Search in Google Scholar
[63] Reedy C, Anderson J, Reedy T, Liu Y. Image analysis in quantitative particle studies of archaeological ceramic thin sections. Adv Archaeol Prac. 2014;2:252–68.10.7183/2326-3768.2.4.252Search in Google Scholar
[64] Dal Sasso G, Maritan L, Salvatori S, Mazzoli C, Artioli G. Discriminating pottery production by image analysis: a case study of Mesolithic and Neolithic pottery from Al Khiday (Khartoum, Sudan). J Archaeol Sci. 2014;46:125–43.10.1016/j.jas.2014.03.004Search in Google Scholar
[65] Tang CC, MacLean EJ, Roberts MA, Clarke DT, Pantos E, Prag AJ. The study of Attic black gloss sherds using synchrotron X-ray diffraction. J Archaeol Sci. 2001;28:1015–24.10.1006/jasc.2000.0608Search in Google Scholar
[66] Pantos E, Tang CC, MacLean EJ, Roberts MA, Murphy BM, Collins SP, et al. Applications of synchrotron radiation to archaeological ceramics. BAR Int Ser. 2002;1011:377–84.Search in Google Scholar
[67] Barone G, Bartoli L, Belfiore CM, Crupi V, Longo F, Majolino D, et al. Comparison between TOF-ND and XRD quantitative phase analysis of ancient potteries. J Anal At Spectrom. 2011;26:1060–7.10.1039/c0ja00224kSearch in Google Scholar
[68] Heimann RB. Assessing the technology of ancient pottery: the use of ceramic phase diagrams. Archeomaterials. 1989;3:123–48.Search in Google Scholar
[69] Tite MS. Firing temperature determinations how and why? Kungliga Vitterhets Historie Och Antikvitets Akademien Konferenser. 1995;34:37–42.Search in Google Scholar
[70] Maggetti M, Neururer C, Ramseyer D. Temperature evolution inside a pot during experimental surface (bonfire) firing. Appl Clay Sci. 2011;53:500–8.10.1016/j.clay.2010.09.013Search in Google Scholar
[71] Gosselain OP. Bonfire of the enquiries. Pottery firing temperatures in archaeology: what for? J Archaeol Sci. 1992;19:243–59.10.1016/0305-4403(92)90014-TSearch in Google Scholar
[72] Livingstone Smith A. Bonfire II: the return of pottery firing temperatures. J Archaeol Sci. 2001;28:991–1003.10.1006/jasc.2001.0713Search in Google Scholar
[73] Wolf S. Estimation of the production parameters of very large medieval bricks from St Urban Switzerland. Archaeometry. 2002;44:37–65.10.1111/1475-4754.00042Search in Google Scholar
[74] Thér R. Identification of pottery firing structures using the thermal characteristics of firing. Archaeometry. 2014;56:78–99.10.1111/arcm.12052Search in Google Scholar
[75] Letsch J, Noll W. Phase formation in several ceramic sub-systems at 600–1000 °C as a function of oxygen fugacity. Ceram Forum Int/Ber DKG. 1983;60:259–67.Search in Google Scholar
[76] Duminuco P, Messiga B, Riccardi MP. Firing process of natural clays Some Microtextures and Related Phase Compositions. Thermochim Acta. 1998;321:185–90.10.1016/S0040-6031(98)00458-4Search in Google Scholar
[77] Duminuco P, Riccardi MP, Messiga B, Setti M. Modificazioni tessiturali e mineralogiche come indicatori della dinamica del processo di cottura di manufatti ceramici. Ceramurgia. 1996;26:281–8.Search in Google Scholar
[78] Cruciani G. Processi di idratazione e disidratazione: fillosilicati. Plinius. 1999;21:237–52.Search in Google Scholar
[79] Aras A. The change of phase composition in kaolinite-and illite-rich clay-based ceramic bodies. Appl Clay Sci. 2004;24:257–69.10.1016/j.clay.2003.08.012Search in Google Scholar
[80] Fernandez R, Martirena F, Scrivener KL. The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite. Cement Concr Res. 2011;41:113–22.10.1016/j.cemconres.2010.09.013Search in Google Scholar
[81] Abdrakhimov DV, Abdrakhimova ES, Abdrakhimov VZ. Sintering quality of clay materials. Glass Ceram. 1999;56:190–3.10.1007/BF02681334Search in Google Scholar
[82] Velde B, Druc IC. Archaeological ceramic materials: origin and utilization. Berlin: Springer Science and Business Media, 2012Search in Google Scholar
[83] Bayley J, Rehren T. Towards a functional and typological classification of crucibles. London: Archetype/British Museum, 2007Search in Google Scholar
[84] Levi S, Cazzella A, Moscoloni M, Fratini F, Pecchioni E, Conticelli S, et al. Analisi archeometrica della ceramica dell’età del bronzo di Coppa Nevigata (FG): alcune implicazioni archeologiche. Scienze dell’Antichità. 1995;8:101–60.Search in Google Scholar
[85] Muntoni IM, Eramo G, Laviano R. Production of Mid-late Neolithic “Serra d’Alto” ware in the bradanic trough (south eastern Italy), In: Vessel: inside and outside, Proceedings of the conference Emac’07, 9th European meeting on ancient ceramics. 2009:53–62.Search in Google Scholar
[86] Fabbri B, Gualtieri S, Shoval S. The presence of calcite in archeological ceramics. J Eur ceramic Soc. 2014;34:1899–911.10.1016/j.jeurceramsoc.2014.01.007Search in Google Scholar
[87] Picon M. Quelques observations complémentaires sur les altérations de composition des céramiques au cours du temps: cas de quelques alcalins et alcalino-terreux. ArchéoSciences, revue d’Archéométrie. 1991;15:117–22.10.3406/arsci.1991.1263Search in Google Scholar
[88] D’Argenio B. Le piattaforme carbonatiche periadriatiche. Una rassegna di problemi nel quadro geodinamico mesozoico dell’area mediterranea. Società Geologica Italiana, Memorie. 1974;13:137–59.Search in Google Scholar
[89] Spalluto L, Pieri P, Ricchetti G. Le facies carbonatiche di piattaforma interna del Promontorio del Gargano: implicazioni paleoambientali e correlazioni con la coeva successione delle Murge (Italia meridionale, Puglia). Bollettino-Societa Geologica Italiana. 2005;124:675.Search in Google Scholar
[90] Morsilli M, Hairabian A, Borgomano J, Nardon S, Adams E, Gartner GB. The Apulia carbonate platform – Gargano promontory, Italy (Upper Jurassic–Eocene). Am Assoc Pet Geol Bull. 2017;101:523–31.10.1306/011817DIG17031Search in Google Scholar
[91] Tropeano M, Sabato L. Response of Plio-Pleistocene mixed bioclastic-lithoclastic temperate-water carbonate systems to forced regressions: the Calcarenite di Gravina Formation, Puglia, SE Italy. Geol Soc London Spec Publ. 2000;172:217–43.10.1144/GSL.SP.2000.172.01.11Search in Google Scholar
[92] Tropeano M, Spalluto L, Moretti M, Pieri P, Sabato L. Depositi carbonatici infrapleistocenici di tipo foramol in sistemi di scarpata (Salento–italia meridionale). Il Quaternario. 2004;17:537–46.Search in Google Scholar
[93] Bögli A. Karst hydrology and physical speleology. Berlin: Springer Science and Business Media, 2012Search in Google Scholar
[94] Trendall AD. Red figure vases of south Italy and Sicily: a handbook. London: Thames-Hudson, 1989Search in Google Scholar
[95] Trendall AD, Cambitoglou A. The red-figured vases of Apulia; early and middle Apulian I. Oxford: Oxford University Press, 1989Search in Google Scholar
[96] Trendall AD, Cambitoglou A. The red-figured vases of Apulia; late Apulian II. Oxford: Oxford University Press, 1989Search in Google Scholar
[97] Mangone A, Giannossa LC, Ciancio A, Laviano R, Traini A. Technological features of apulian red figured pottery. J Archaeol Sci. 2008;35:1533–41.10.1016/j.jas.2007.10.020Search in Google Scholar
[98] Mangone A, Caggiani MC, Giannossa LC, Eramo G, Redavid V, Laviano R. Diversified production of red figured pottery in Apulia (Southern Italy) in the late period. J Cult Her. 2013;14:82–8.10.1016/j.culher.2012.03.011Search in Google Scholar
[99] Giannossa LC, Laviano R, Mastrorocco F, Giannelli G, Muntoni IM, Mangone A. A pottery jigsaw puzzle: distinguish true and false pieces in two Apulian red figured vases by a poli-technique action plan. Appl Phys A-Mater Sci Process. 2016;122. DOI: 10.1007/s00339-016-9615-8.Search in Google Scholar
[100] Bitetto A, Mangone A, Mininni RM, Giannossa LC. A nonlinear principal component analysis to study archeometric data. J Chemom. 2016;30:405–15.10.1002/cem.2807Search in Google Scholar
[101] Giannossa LC, Mininni RM, Laviano R, Mastrorocco F, Caggiani MC, Mangone A. An archaeometric approach to gain knowledge on technology and provenance of Apulian red figured pottery from Taranto. Archaeol Anthropol Sci. 2016;9:1125–35.10.1007/s12520-016-0345-9Search in Google Scholar
[102] Jones RE. Greek and Cypriot pottery: a review of scientific studies. Athens: British School of Athens, 1986.Search in Google Scholar
[103] http://helios.unive.it/-termo/DataBank/Attica/AiginaandMegaride/Athens.htm.Search in Google Scholar
[104] Castoldi M. I vasi a figure rosse del periodo protoapulo e apulo antico: Taranto e le officine ceramiche. In: Sena Chiesa G, Slavazzi F, editors. Ceramiche attiche e magnogreche, collezione Banca Intesa. Milano: Electa, 2006:178–81.Search in Google Scholar
[105] Dell’Aglio A. La forma della città: aree e strutture di produzione artigianale. In: Taranto e il Mediterraneo, Proceedings of the 41st convegno di studi sulla Magna Grecia, 12–16 october 2001. Taranto: Istituto per la storia e l’archeologia della Magna Grecia, 2002:171–93.Search in Google Scholar
[106] Rice PM. Pottery analysis: a sourcebook. Chicago: University of Chicago Press, 2015Search in Google Scholar
[107] Gonda C, Évéquoz E, Eramo G. Découverte d’une verrerie du XIX e siècle: rebeuvelier (Jura, CH). In: Bélet-Gonda C, Mazimann JP, Richard A, Schifferdecker F, editors. Actes des Premières Journées Archéologiques Frontalières de l’Arc Jurassien Delle (F) – Boncourt (CH) 21–22 octobre 2005., Besançon-Porrentruy: Presses Universitaires de Franche-Comté, Office de la culture et Société jurassienne d’Émulation; 2007.Search in Google Scholar
© 2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Archaeometry of ceramic materials
- “Drug-likeness” properties of natural compounds
- Applying green chemistry approaches to EPA standard method of analysis for dioxins
- Recent trends in the application of Fourier Transform Infrared (FT-IR) spectroscopy in Heritage Science: from micro- to non-invasive FT-IR
- Computational methods for NMR and MS for structure elucidation II: database resources and advanced methods
- Prediction of toxicity of secondary metabolites
Articles in the same Issue
- Archaeometry of ceramic materials
- “Drug-likeness” properties of natural compounds
- Applying green chemistry approaches to EPA standard method of analysis for dioxins
- Recent trends in the application of Fourier Transform Infrared (FT-IR) spectroscopy in Heritage Science: from micro- to non-invasive FT-IR
- Computational methods for NMR and MS for structure elucidation II: database resources and advanced methods
- Prediction of toxicity of secondary metabolites