Abstract
The relevance of FT-IR spectroscopy in heritage science has experienced a constant grow in the last two decades owing to analytical peculiarities that make it an extremely useful tool to answer the questions posed by the study and conservation of art-historical and archaeological materials. High versatility, sensitivity and molecular specificity are, in fact, all requirements that FT-IR spectroscopy fulfils allowing for the investigation of the chemical properties of heritage materials spanning from the micro- to the macro-scale and offering a variety of approaches to minimize sample manipulation and maximize extracted information. Molecular identification and localisation at high lateral resolution of organic and inorganic components in micro-samples was, over recently, the mostly exploited use of FT-IR in heritage science; however, benefiting from technological progress and advances in optical materials and components achieved in the last decade, it now stands out also for non-invasive surface analysis of artworks by fully portable instrumentation.
Acknowledgements
The authors gratefully acknowledge the financial support of the project IPERION CH, Integrated Platform for the European Research Infrastructure on Cultural Heritage, H2020 RIA GA n. 654028, www.iperionch.eu.
References
[1] Domenéch-Carbó MT, Osete-Cortina L. Another beauty of analytical chemistry: chemical analysis of inorganic pigments of art and archaeological objects. Chem Texts. 2016;2:14.10.1007/s40828-016-0033-5Search in Google Scholar
[2] Casadio F, Toniolo L. The analysis of polychrome works of art: 40 years of infrared spectroscopic investigations. J Cult Herit. 2001;2:71–8.10.1016/S1296-2074(01)01107-4Search in Google Scholar
[3] Derrick MR, Stulik DC, Landry JM. Infrared spectroscopy in conservation science. Los Angeles: The Getty Conservation Institute, 1999.Search in Google Scholar
[4] Griffiths PR, de Haseth JA. Fourier transform infrared spectrometry. New Jersey: John Wiley & Sons, Inc. Publication, 2007.10.1002/047010631XSearch in Google Scholar
[5] Milosevic M. Internal reflection and ATR spectroscopy. New Jersey: John Wiley & Sons, Inc. Publication, 2012.10.1002/9781118309742Search in Google Scholar
[6] Averett LA, Griffiths PR. Effective path length in attenuated total reflection spectroscopy. Anal Chem. 2008;80:3045–9.10.1021/ac7025892Search in Google Scholar PubMed
[7] Van Nimmen E, De Clerck K, Verschuren J, Gellynck K, Gheysens T, Mertens J, et al. FT-IR spectroscopy of spider and silkworm silks, part I : different sampling techniques. Vib Spectrosc. 2008;46:63–8.10.1016/j.vibspec.2007.10.003Search in Google Scholar
[8] Miljković M, Bird B, Diem M. Line shape distortion effects in infrared spectroscopy. Analyst. 2012;137:3954–64.10.1039/c2an35582eSearch in Google Scholar PubMed
[9] Miliani C, Rosi F, Daveri A, Brunetti BG. Reflection infrared spectroscopy for the non-invasive in situ study of artists’ pigments. Appl Phys A. 2012;106:295–307.10.1007/s00339-011-6708-2Search in Google Scholar
[10] Korte EH, Röseler A. Infrared reststrahlen revisited: commonly disregarded optical details related to n < 1. Anal Bioanal Chem. 2005;382:1987–92.10.1007/s00216-005-3407-xSearch in Google Scholar PubMed
[11] Fox M. Optical properties of solids. London: Oxford University Press, 2010.Search in Google Scholar
[12] Milosevic M, Berets SL. A review of FT-IR diffuse reflection sampling consideration. Appl Spectrosc Rev. 2002;37:347–64.10.1081/ASR-120016081Search in Google Scholar
[13] Hopfe V, Korte EH, Klobes P, Grälert W. Optical data of rough-surfaced ceramics: infrared specular and diffuse reflectance versus spectra simulation. Appl Spectr. 1993;47:423–9.10.1366/0003702934335065Search in Google Scholar
[14] Buti D, Rosi F, Brunetti BG, Miliani C. In-situ identification of copper-based green pigments on paintings and manuscripts by reflection FTIR. Anal Bioanal Chem. 2013;415:2699–711.10.1007/s00216-013-6707-6Search in Google Scholar PubMed
[15] Monico L, Rosi F, Miliani C, Daveri A, Brunetti BG. Non-invasive identification of metal-oxalate complexes on polychrome artwork surfaces by reflection mid-infrared spectroscopy. Spectrochim Acta A. 2013;116:270–80.10.1016/j.saa.2013.06.084Search in Google Scholar PubMed
[16] Gabrieli F, Rosi F, Vichi A, Cartechini L, Pensabene Buemi L, Kazarian SG, et al. Revealing the nature and distribution of metal carboxylates in Jackson Pollock’s Alchemy (1947) by micro-attenuated total reflection FT-IR spectroscopic imaging. Anal Chem. 2017;89:1283–9.10.1021/acs.analchem.6b04065Search in Google Scholar PubMed
[17] Capobianco G, Bracciale MP, Sali D, Sbardella F, Belloni P, Bonifazi G, et al. Chemometrics approach to FT-IR hyperspectral imaging analysis of degradation products in artwork cross-section. Microchem J. 2017;132:69–76.10.1016/j.microc.2017.01.007Search in Google Scholar
[18] Prati S, Joseph E, Sciutto G, Mazzeo R. New advances in the application of FTIR microscopy and spectroscopy for the characterization of artistic materials. Acc Chem Res. 2010;43:792–801.10.1021/ar900274fSearch in Google Scholar PubMed
[19] Prati S, Sciutto G, Bonacini I, Mazzeo R. New frontiers in application of FTIR microscopy for characterization of cultural heritage materials. Top Curr Chem. 2016;374:129–60.10.1007/978-3-319-52804-5_4Search in Google Scholar
[20] Bertasa M, Possenti E, Botteon A, Conti C, Sansonetti A, Fontana R, et al. Close to the diffraction limit in high resolution ATR FTIR mapping: demonstration on micrometric multi-layered art systems. Analyst. 2017;142:4801–11.10.1039/C7AN00873BSearch in Google Scholar PubMed
[21] Van Der Weerd J, Brammer H, Boon JJ, Heeren RM. Fourier Transform Infrared microscopic imaging of an embedded paint cross-section. Appl Spectr. 2002;56:275–83.10.1366/0003702021954683Search in Google Scholar
[22] Pilc J, White R. The application of FTIR-microscopy to the analysis of paint binders in easel paintings. National Gallery Technical Bull. 1995;16:73–84.Search in Google Scholar
[23] van der Weerd J, Heeren RM, Boon JJ. Preparation methods and accessories for the infrared spectroscopic analysis of multi-layer paint films. Stud Conserv. 2004;49:193–210.Search in Google Scholar
[24] Mazzeo R, Joseph E, Prati S, Millemaggi A. Attenuated total reflection-Fourier transform infrared microspectroscopic mapping for the characterisation of paint cross-sections. Anal Chim Acta. 2007;599:107–17.10.1016/j.aca.2007.07.076Search in Google Scholar PubMed
[25] Prati S, Rosi F, Sciutto G, Olivieri P, Catelli E, Miliani C, et al. Evaluation of the effect of different paint cross section preparation methods on the performances of Fourier transformed infrared microscopy in total reflection mode. Microchem J. 2013;110:314–9.10.1016/j.microc.2013.04.016Search in Google Scholar
[26] Prati S, Rosi F, Sciutto G, Mazzeo R, Magrini D, Sotiropoulou S, et al. Evaluation of the effect of six different paint cross section preparation methods on the performances of Fourier transformed infrared microscopy in attenuated total reflection mode. Microchem J. 2012;103:79–89.10.1016/j.microc.2012.01.007Search in Google Scholar
[27] Prati S, Sciutto G, Catelli E, Ashashina A, Mazzeo R. Development of innovative embedding procedures for the analyses of paint cross sections in ATR FITR microscopy. Anal Bioanal Chem. 2013;405:895–905.10.1007/s00216-012-6435-3Search in Google Scholar PubMed
[28] Pouyet E, Lluveras-Tenorio A, Nevin A, Saviello D, Sette F, Cotte M. Preparation of thin-sections of painting fragments: classical and innovative strategies. Anal ChimActa. 2014;822:51–9.10.1016/j.aca.2014.03.025Search in Google Scholar PubMed
[29] de Fonjaudran CM, Nevin A, Piqué F, Cather S. Stratigraphic analysis of organic materials in wall painting samples using micro- FTIR attenuated total reflectance and a novel sample preparation technique. Anal Bioanal Chem. 2008;392:77–86.10.1007/s00216-008-2111-zSearch in Google Scholar PubMed
[30] Papliaka EZ, Vaccari L, Zanini F, Sotiropoulou S. Improving FTIR imaging speciation of organic compound residues or their degradation products in wall painting samples, by introducing a new thin section preparation strategy based on cyclododecane pre-treatment. Anal Bioanal Chem. 2015;407:5393–403.10.1007/s00216-015-8698-ySearch in Google Scholar PubMed
[31] Kazarian SG, Chan KL. Micro- and macro-attenuated total reflection Fourier transform infrared spectroscopic imaging. Appl Spectr Focal Point. 2010;64:135–52.10.1366/000370210791211673Search in Google Scholar PubMed
[32] Chan KL, Kazarian SG. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) imaging of tissues and live cells. Chem Soc Rev. 2016;45:1850–64.10.1039/C5CS00515ASearch in Google Scholar PubMed
[33] Chan KL, Kazarian SG. ATR-FTIR spectroscopic imaging: recent advances and applications to biological systems. Analyst. 2013;138:1940–51.10.1039/c3an36865cSearch in Google Scholar PubMed
[34] Joseph E, Prati S, Sciutto G, Ioele M, Santopadre P, Mazzeo R. Performance evaluation of mapping and linear imaging FTIR microspectroscopy for the characterisation of paint cross sections. Anal Bioanal Chem. 2010;396:899–910.10.1007/s00216-009-3269-8Search in Google Scholar PubMed
[35] Chan KL, Kazarian SG. New opportunities in micro- and macro-attenuated total reflection infrared spectroscopic imaging: spatial resolution and sampling versatility. Appl Spectr. 2003;57:381–9.10.1366/00037020360625907Search in Google Scholar
[36] Joseph E, Ricci C, Kazarian SG, Mazzeo R, Prati S, Ioele M. Macro-ATR-FT-IR spectroscopic imaging analysis of paint cross-sections. Vibr Spectrosc. 2010;53:274–8.10.1016/j.vibspec.2010.04.006Search in Google Scholar
[37] Rosi F, Daveri A, Doherty B, Nazzareni S, Brunetti BG, Sgamellotti A, et al. On the use of overtone and combination bands for the analysis of the CaSO4-H2O system by mid-infrared reflection spectroscopy. Appl Spectrosc. 2010;64:956–63.10.1366/000370210792080975Search in Google Scholar PubMed
[38] Spring M, Ricci C, Peggie DA, Kazarian SG. ATR-FTIR imaging for the analysis of organic materials in paint cross sections: case studies on paint samples from the national gallery, London. Anal Bioanal Chem. 2008;392:37–45.10.1007/s00216-008-2092-ySearch in Google Scholar PubMed
[39] Ricci C, Bloxham S, Kazarian SG. ATR-FTIR imaging of albumen photographic prints. J Cult Herit. 2007;8:387–95.10.1016/j.culher.2007.07.002Search in Google Scholar
[40] Kaszowska Z, Malek K, Pańczyk M, Mikołajska A. A joint application of ATR-FTIR and SEM imaging with high spatial resolution: identification and distribution of painting materials and their degradation products in paint cross sections. Vib Spectrosc. 2013;65:1–11.10.1016/j.vibspec.2012.11.018Search in Google Scholar
[41] Rosi F, Cartechini L, Monico L, Gabrieli F, Vagnini M, Buti D, et al. Tracking metal oxalates and carboxylates on painting surfaces by non-invasive reflection mid-FTIR spectroscopy. In: Casadio F, Keune K, Noble P, van Loon A, Hendriks E, Centeno S, Osmond G, editors. Metal soaps in art – conservation& research. Springer Nature book, 2018, in press.10.1007/978-3-319-90617-1_10Search in Google Scholar
[42] Heeren RM, Boon JJ. Preprint of the 12thTriennal ICOM-CC meeting. Lyon, ICOM Committee for Conservation. 1999;1:228–33.Search in Google Scholar
[43] Keune K, Boon JJ. Analytical imaging studies of cross-sections of paintings affected by lead soap aggregate formation. Stud Conserv. 2007;52:161–76.10.1179/sic.2007.52.3.161Search in Google Scholar
[44] van Loon A. Color changes and chemical reactivity in seventeenth-century oil paintings. Amsterdam: University of Amsterdam. PhD Thesis, permalink http://hdl.handle.net/11245/1.292118 2008:–.Search in Google Scholar
[45] Keune K. Binding medium, pigments and metal soaps characterised and localised in paint cross-sections. Amsterdam: University of Amsterdam. PhD Thesis, permalink http://hdl.handle.net/11245/1.248900 2005:–.Search in Google Scholar
[46] van der Weerd J. Microspectroscopic analysis of traditional oil paint. Amsterdam: University of Amsterdam. PhD Thesis. http://hdl.handle.net/11245/1.200948 2002:–.Search in Google Scholar
[47] Mazel V, Richardin P, Touboul D, Brunelle A, Walter P, Laprevote O. Chemical imaging techniques for the analysis of complex mixtures: new application to the characterization of ritual matters on African wooden statuettes. Anal Chim Acta. 2006;570:34–40.10.1016/j.aca.2006.03.111Search in Google Scholar
[48] Bruni S, Cariati F, Casadio F, Toniolo L. Spectrochemical characterization by micro-FTIR spectroscopy of blue pigments in different polychrome works of art. Vib Spectros. 1999;20:15–25.10.1016/S0924-2031(98)00096-4Search in Google Scholar
[49] Rosi F, Federici A, Brunetti BG, Sgamellotti A, Clementi S, Miliani C. Multivariate chemical mapping of pigments and binders in easel painting cross-sections by micro IR reflection spectroscopy. Anal Bioanal Chem. 2011;399:3133–45.10.1007/s00216-010-4239-xSearch in Google Scholar PubMed
[50] Sciutto G, Prati S, Bonacini I, Oliveri P, Mazzeo R. FT-NIR microscopy: an advanced spectroscopic approach for the characterisation of paint cross-sections. Microchem J. 2014;112:87–96.10.1016/j.microc.2013.09.021Search in Google Scholar
[51] Sciutto G, Oliveri P, Prati S, Quaranta M, Lanteri S, Mazzeo R. Analysis of paint cross-sections: a combined multivariate approach for the interpretation of μATR FTIR hyperspectral data arrays. Anal Bioanal Chem. 2013;405:625–33.10.1007/s00216-011-5680-1Search in Google Scholar PubMed
[52] Cotte M, Susini J, Solé VA, Taniguchi Y, Chillida J, Checroun E, et al. Applications of synchrotron-based micro-imaging techniques to the chemical analysis of ancient paintings. J Anal At Spectrom. 2008;23:820–8.10.1039/b801358fSearch in Google Scholar
[53] Cotte M, Checroun E, Mazel V, Solé VA, Richardin P, Taniguchi Y, et al. Combination of FTIR and X-rays synchrotron-based micro-imaging techniques for the study of ancient paintings. A practical point of view. e-PS. 2009;6:1–9.Search in Google Scholar
[54] Pouyet E, Fayard B, Salomé M, Taniguchi Y, Sette F, Cotte M. Thin-sections of painting fragments: opportunities for combined synchrotron-based micro-spectroscopic techniques. Herit Sci. 2015;3:3–3.3 and references therein10.1186/s40494-014-0030-1Search in Google Scholar
[55] Echard JP, Cotte M, Dooryhee E, Bertrand L. Insights into the varnishes of historical musical instruments using synchrotron microanalytical methods. Appl Phys A. 2008;92:77–81.10.1007/s00339-008-4449-7Search in Google Scholar
[56] Salvadó N, Buti S, Tobin MJ, Pantos E, Prag A, Pradell T. Advantages of the use of sr-ft-ir microspectroscopy: applications to cultural heritage. Anal Chem. 2005;77:3444–51.10.1021/ac050126kSearch in Google Scholar PubMed
[57] Saviello D, Pouyet E, Toniolo L, Cotte M, Nevin A. Synchrotron-based ftir microspectroscopy for the mapping of photo-oxidation and additives in acrylonitrile-butadiene-styrene model samples and historical objects. Anal Chim Acta. 2014;843:59–72.10.1016/j.aca.2014.07.021Search in Google Scholar PubMed
[58] Nasse MJ, Walsh MJ, Mattson EC, Reininger R, Kajdacsy-Balla A, Macias V, et al. High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams. Nat Methods. 2011;8:413–6.10.1038/nmeth.1585Search in Google Scholar PubMed PubMed Central
[59] Carr JL, Miller LM, Dumas P. Synchrotron radiation as a source for infrared microspectroscopy imaging with 2D multi-element detection. In: Moss D, editor. Biomedical applications of synchrotron infrared spectromicroscopy. Cambridge: Royal Society of Chemistry, 2011:226–59.Search in Google Scholar
[60] Petibois C, Deleris G, Piccinini M, Cestelli-Guidi M, Marcelli A. A bright future for synchrotron imaging. Nat Photonics. 2009;3:179.10.1038/nphoton.2009.31Search in Google Scholar
[61] Hirschmugl CJ, Gough KM. Fourier transform infrared spectrochemical imaging: review of design and applications with a focal plane array and multiple beam synchrotron radiation source. App Spectros. 2012;66:475–91.10.1366/12-06629Search in Google Scholar PubMed
[62] Schmidt Patterson C, Carson D, Phenix A, Khanjian H, Trentelman K, Mass J, et al. Synchrotron-based imaging FTIR spectroscopy in the evaluation of painting cross-sections. e-PS. 2013;10:1–9.Search in Google Scholar
[63] Latour G, Robinet L, Dazzi A, Portier F, Deniset-Besseau A, Schanne-Klein M-C. Correlative nonlinear optical microscopy and infrared nanoscopy reveals collagen degradation in altered parchments. Sci Rep. 2016;6:26344.10.1038/srep26344Search in Google Scholar PubMed PubMed Central
[64] Prati S, Quaranta M, Sciutto G, Bonacini I, Litti L, Meneghetti M, et al. Use of nano gold obtained by laser ablation for SEIRA analyses of colorants. Herit Sci. 2014;2:28.10.1186/s40494-014-0028-8Search in Google Scholar
[65] Prati S, Milosevic M, Sciutto G, Bonacini I, Kazarian SG, Mazzeo R. Analyses of trace amounts of dyes with a new enhanced sensitivity FTIR spectroscopic technique: MU-ATR (metal underlayer ATR spectroscopy). Anal Chim Acta. 2016;941:67–79.10.1016/j.aca.2016.09.005Search in Google Scholar PubMed
[66] Sciutto G, Prati S, Bonacini I, Litti L, Meneghetti M, Mazzeo R. A new integrated TLC/MU-ATR/SERS advanced approach for the identification of trace amounts of dyes in mixtures. Anal Chim Acta. 2017;991:104–12.10.1016/j.aca.2017.08.020Search in Google Scholar PubMed
[67] Rosi F, Legan L, Miliani C, Ropret P. Micro transflection on a metallic stick: an innovative approach of reflection infrared spectroscopy for minimally invasive investigation of painting varnishes. Anal Bioanal Chem. 2017;409:3187–97.10.1007/s00216-017-0260-7Search in Google Scholar PubMed
[68] Miliani C, Rosi F, Brunetti BG, Sgamellotti A. In situ noninvasive study of artworks: the MOLAB multitechnique approach. Acc Chem Res. 2010;43:728–38.10.1021/ar100010tSearch in Google Scholar PubMed
[69] Blümich B, Casanova F, Perlo J, Presciutti F, Anselmi C, Doherty B. Noninvasive testing of art and cultural heritage by mobile NMR. Acc Chem Res. 2010;43:761–70.10.1021/ar900277hSearch in Google Scholar PubMed
[70] Ricci C, Miliani C, Brunetti BG, Sgamellotti A. Non-invasive identification of surface materials on marble artefacts with fiber optic mid-FTIR reflectance spectroscopy. Talanta. 2006;69:1221–6.10.1016/j.talanta.2005.12.054Search in Google Scholar PubMed
[71] Rosi F, Miliani C, Clementi C, Kahrim K, Presciutti F, Vagnini M, et al. An integrated spectroscopic approach for the non-invasive study of modern art materials and techniques. Appl Phys A. 2010;100:613–24.10.1007/s00339-010-5744-7Search in Google Scholar
[72] Miliani C, Rosi F, Borgia I, Benedetti P, Brunetti BG, Sgamelotti A. Fiber-optic Fourier transform mid-infrared reflectance spectroscopy: a suitable technique for in situ studies of mural paintings. Appl Spectrosc. 2007;61:293–9.10.1366/000370207780220840Search in Google Scholar PubMed
[73] Rosi F, Grazia C, Fontana R, Gabrieli F, Pensabene Buemi L, Pampaloni E, et al. Disclosing Jackson Pollock’s palette in Alchemy (1947) by non‑invasive spectroscopies. Herit Sci. 2016;4:18.10.1186/s40494-016-0089-ySearch in Google Scholar
[74] Brunetti B, Miliani C, Rosi F, Doherty B, Monico L, Romani A, et al. Non-invasive investigations of paintings by portable instrumentation: the MOLAB experience. Top Curr Chem (Z). 2016;374:10.10.1007/s41061-015-0008-9Search in Google Scholar PubMed
[75] Miliani C, Daveri A, Brunetti BG, Sgamellotti A. CO2 entrapment in natural ultramarine blue. Chem Phys Lett. 2008;466:148–51.10.1016/j.cplett.2008.10.038Search in Google Scholar
[76] Zumbühl S, Eggenberger U, Scherrer NC, Berger A. Early Viridian Pigment Composition: characterization of a (hydrated) chromium oxide borate pigment. Stud Conserv. 2009;54:149–59.10.1179/sic.2009.54.3.149Search in Google Scholar
[77] Daveri A, Malagodi M, Vagnini M. The bone black pigment identification by noninvasive, in situ infrared reflection spectroscopy. J Anal Methods Chem. 2018. Article ID 6595643:8 https://doi.org/10.1155/2018/6595643.10.1155/2018/6595643Search in Google Scholar PubMed PubMed Central
[78] Miliani C, Rosi F, Burnstock A, Brunetti BG, Sgamellotti A. Non-invasive in-situ investigations versus micro-sampling: a comparative study on a Renoir’s painting. Appl Phys A. 2007;89:849–56.10.1007/s00339-007-4222-3Search in Google Scholar
[79] Szmelter I, Cartechini L, Romani A, Pezzati L. Multi-criterial studies of the masterpiece ‘The Last Judgement’ attributed to hans memling at the national museum of Gdańsk (2010–2013). In: Sgamellotti A, Brunetti BG, Miliani C, editors. Science and art. The painted surface. Cambridge: Royal Society in Chemistry, RSC, 2014:230–51.Search in Google Scholar
[80] Rosi F, Daveri A, Miliani C, Verri G, Benedetti P, Pique F, et al. Non-invasive identification of organic materials in wall paintings by fiber optic reflectance infrared spectroscopy: a statistical multivariate approach. Anal Bioanal Chem. 2009;395:2097–106.10.1007/s00216-009-3108-ySearch in Google Scholar PubMed
[81] Rosi F, Daveri A, Moretti P, Brunetti BG, Miliani C. Interpretation of mid and near-infrared reflection properties of synthetic polymer paints for the non-invasive assessment of binding media in twentieth-century pictorial artworks. Microchem J. 2016;124:898–908.10.1016/j.microc.2015.08.019Search in Google Scholar
[82] Poli T, Chiantore O, Nervo M, Piccirillo A. Mid-IR fiber-optic reflectance spectroscopy for identifying the finish on wooden furniture. Anal Bioanal Chem. 2001;400:1161–71.10.1007/s00216-011-4834-5Search in Google Scholar PubMed
[83] Ploeger R, Chiantore O, Scalarone D, Poli T. Mid-infrared fiber-optic reflection spectroscopy (FORS) analysis of artists’ alkyd paints on different supports. Appl Spectrosc. 2011;65:429–35.10.1366/10-06059Search in Google Scholar PubMed
[84] Saviello D, Toniolo L, Goidanich S, Casadio F. Non-invasive identification of plastic materials in museum collections with portable FTIR reflectance spectroscopy: reference database and practical applications. Microchem J. 2016;124:868–77.10.1016/j.microc.2015.07.016Search in Google Scholar
[85] Picollo M, Bartolozzi G, Cucci C, Galeotti M, Marchiafava V, Pizzo B. Comparative study of Fourier transform infrared spectroscopy in transmission, attenuated total reflection, and total reflection modes for the analysis of plastics in the cultural heritage field. Appl Spectros. 2014;68:389–96.10.1366/13-07199Search in Google Scholar PubMed
[86] Stacey RJ, Dyer J, Mussell C, Lluveras-Tenorio A, Colombini MP, Duce C, et al. Ancient encaustic: an experimental exploration of technology, ageing behaviour and approaches to analytical investigation. Microchem J. 2018;138:472–87.10.1016/j.microc.2018.01.040Search in Google Scholar
[87] Miliani C, Sgamellotti A, Verri G, Benedetti P, Brunetti BG, Daveri A, et al. Noninvasive, in situ identification of binding media using reflection mid-FTIR. In: Piqué F, Verri G, editor(s). Organic materials in wall paintings: project report —. Los Angeles: The Getty Conservation Institute, 2015Search in Google Scholar
[88] Cséfalvayová L, Strlič M, Karjalainen H. Quantitative NIR chemical imaging in heritage science. Anal Chem. 2011;83:5101–6.10.1021/ac200986pSearch in Google Scholar PubMed
[89] Cucci C, Delaney JK, Picollo M. Reflectance hyperspectral imaging for investigation of works of art: old master paintings and illuminated manuscripts. Acc Chem Res. 2016;49:(2070-79 and references therein).10.1021/acs.accounts.6b00048Search in Google Scholar PubMed
[90] Wu T, Li G, Yang Z, Zhang H, Lei Y, Wang N, et al. Shortwave infrared imaging spectroscopy for analysis of ancient paintings. Appl Spectrosc. 2016;71:977–9810.1177/0003702816660724Search in Google Scholar PubMed
[91] Ricciardi P, Delaney JK, Facini M, Zeibel JG, Picollo M, Lomax SQ, et al. Near infrared reflectance imaging spectroscopy to map paint binders in situ on illuminated manuscripts. Angew Chem Int Ed. 2012;51:5607–10.10.1002/anie.201200840Search in Google Scholar PubMed
[92] Dooley KA, Lomax S, Zeibel JG, Miliani C, Ricciardi P, Hoenigswald A, et al. Mapping of egg yolk and animal skin glue paint binders in early renaissance paintings using near infrared reflectance imaging spectroscopy. Analyst. 2013;138:4838–48.10.1039/c3an00926bSearch in Google Scholar PubMed
[93] Dooley KA, Coddington J, Krueger J, Conover DM, Loew M, Delaney JK. Standoff chemical imaging finds evidence for Jackson Pollock's selective use of alkyd and oil binding media in a famous ‘drip’ painting. Anal Methods. 2017;9:28–3710.1039/C6AY01795ASearch in Google Scholar
[94] Delaney JK, Conover DM, Dooley KA, Glinsman L, Janssens K, Loew M. Integrated X-ray fluorescence and diffuse visible-to-near-infrared reflectance scanner for standoff elemental and molecular spectroscopic imaging of paints and works on paper. Herit Sci. 2018;6:31.10.1186/s40494-018-0197-ySearch in Google Scholar
[95] Dooley KA, Conover DM, Deming Glinsman L, Delaney JK. Complementary standoff chemical imaging to map and identify artist materials in an early Italian renaissance panel painting. Angew Chem Int Ed. 2014;53:13775–9.10.1002/anie.201407893Search in Google Scholar PubMed
[96] Legrand S, Alfeld M, Vanmeert F, De Nolf W, Janssens K. Macroscopic Fourier transform infrared scanning in reflection mode (MA-rFTIR), a new tool for chemical imaging of cultural heritage artefacts in the mid-infrared range. Analyst. 2014;139:2489–98.10.1039/C3AN02094KSearch in Google Scholar PubMed
[97] Rosi F, Miliani C, Braun R, Harig R, Sali D, Brunetti BG, et al. Noninvasive analysis of paintings by mid-infrared hyperspectral imaging. Angew Chem Int Ed. 2013;52:5258–61.10.1002/anie.201209929Search in Google Scholar PubMed
[98] Sabbah S, Harig R, Rusch P, Eichmann J, Keens A, Gerhard JH. Remote sensing of gases by hyperspectral imaging: system performance and measurements. Opt Eng. 2012;51:111717.10.1117/1.OE.51.11.111717Search in Google Scholar
[99] Rosi F, Harig R, Miliani C, Braun R, Sali D, Daveri A, et al. Mid-infrared hyperspectral imaging of painting materials. In: Pezzati L, Targowski P, editor(s). Proceedings of SPIE Optics for arts, architecture, and archaeology IV Vol. 8790 . DOI 10.1117/12.2020477 201310.1117/12.2020477Search in Google Scholar
[100] Gabrieli F, Dooleya KA, Zeibel JG, Howe JD, Delaney JK. Standoff mid-infrared emissive imaging spectroscopy to identify and map materials in polychrome objects. Angew Chem Int Ed. 2018;57:7341–5.10.1002/anie.201710192Search in Google Scholar PubMed
[101] Daveri A, Paziani S, Marmion M, Harju H, Vidmand A, Azzarelli M, et al. New perspectives in the non-invasive, in situ identification of painting materials: the advanced MWIR hyperspectral imaging. Trends Anal Chem. 2018;98:143–8.10.1016/j.trac.2017.11.004Search in Google Scholar
[102] Polak A, Kelman T, Murray P, Marshall S, Stothard DJ, Eastaugh N, et al. Use of infrared hyperspectral imaging as an aid for paint identification. J Spectral Imaging. 2016;5:a2. DOI: 10.1255/jsi.2016.a2.Search in Google Scholar
[103] Polak A, Kelman T, Murray T, Marshalla S, Stothard DJ, Eastaugh N, et al. Hyperspectral imaging combined with data classification techniques as an aid for artwork authentication. J Cul Herit. 2017;26:1–11.10.1016/j.culher.2017.01.013Search in Google Scholar
© 2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Archaeometry of ceramic materials
- “Drug-likeness” properties of natural compounds
- Applying green chemistry approaches to EPA standard method of analysis for dioxins
- Recent trends in the application of Fourier Transform Infrared (FT-IR) spectroscopy in Heritage Science: from micro- to non-invasive FT-IR
- Computational methods for NMR and MS for structure elucidation II: database resources and advanced methods
- Prediction of toxicity of secondary metabolites
Articles in the same Issue
- Archaeometry of ceramic materials
- “Drug-likeness” properties of natural compounds
- Applying green chemistry approaches to EPA standard method of analysis for dioxins
- Recent trends in the application of Fourier Transform Infrared (FT-IR) spectroscopy in Heritage Science: from micro- to non-invasive FT-IR
- Computational methods for NMR and MS for structure elucidation II: database resources and advanced methods
- Prediction of toxicity of secondary metabolites