Home X-ray absorption spectroscopy principles and practical use in materials analysis
Article
Licensed
Unlicensed Requires Authentication

X-ray absorption spectroscopy principles and practical use in materials analysis

  • Wolfgang Grünert EMAIL logo and Konstantin Klementiev
Published/Copyright: March 5, 2020
Become an author with De Gruyter Brill

Abstract

The X-ray Absorption Fine Structure (XAFS) with its subregions X-ray Absorption Near-edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) is a powerful tool for the structural analysis of materials, which is nowadays a standard component of research strategies in many fields. This review covers a wide range of topics related to its measurement and use: the origin of the fine structure, its analytical potential, derived from the physical basis, the environment for measuring XAFS at synchrotrons, including different measurement geometries, detection modes, and sample environments, e. g. for in-situin-situ"?> and operandooperando"?> work, the principles of data reduction, analysis, and interpretation, and a perspective on new methods for structure analysis combining X-ray absorption with X-ray emission. Examples for the application of XAFS have been selected from work with heterogeneous catalysts with the intention to demonstrate the strength of the method providing structural information about highly disperse and disordered systems, to illustrate pitfalls in the interpretation of results (e. g. by neglecting the averaged character of the information obtained) and to show how its merits can be further enhanced by combination with other methods of structural analysis and/or spectroscopy.

References

[1] Rühl E, Heinzel C, Hitchcock AP, Baumgärtel H. Ar 2p spectroscopy of free argon clusters. J Chem Phys. 1993;98:2653–63.10.1063/1.464146Search in Google Scholar

[2] Nakamura M, Sasanuma M, Sato S, Watanabe M, Yamashita H, Iguchi Y, et al. Absorption structure near L2,3 Edge of Argon Gas. Phys Rev Lett. 1968;21:1303–6.10.1103/PhysRevLett.21.1303Search in Google Scholar

[3] King GC, Tronc M, Read FH, Bradford RC. Investigation of structure near L2,3 Edges of Argon, M4,5 edges of krypton and N4,5 edges of xenon, using electron-impact with high-resolution. J Phys B At Mol Opt Phys. 1977;10:2479–95.10.1088/0022-3700/10/12/026Search in Google Scholar

[4] Lytle FW. The EXAFS family tree: a personal history of the development of extended X-ray absorption fine structure. J Synchrotron Rad. 1999;6:123–34.10.1107/S0909049599001260Search in Google Scholar PubMed

[5] Rehr JJ, Albers RC. Theoretical approaches to X-ray absorption fine structure. Rev Modern Phys. 2000;72:621–54.10.1103/RevModPhys.72.621Search in Google Scholar

[6] Kozlenkov A. Bull Acad Sci USSR Phys Ser. 1961;24:968–87.Search in Google Scholar

[7] Lee PA, Pendry JB. Theory of the extended X-ray absorption fine structure. Phys Rev B. 1975;11:2795–811.10.1007/978-1-4757-1238-4_2Search in Google Scholar

[8] Natoli CR, Benfatto M, Brouder C, Lopez MF, Foulis DL. Multichannel multiple-scattering theory with general potentials. Phys Rev B. 1990;42:1944–68.10.1103/PhysRevB.42.1944Search in Google Scholar

[9] Chao W, Fischer P, Tyliszczak T, Rekawa S, Anderson E, Naulleau P. Real space soft X-ray imaging at 10 nm spatial resolution. Opt Express. 2012;20:9777–83.10.1364/OE.20.009777Search in Google Scholar PubMed

[10] Hitchcock AP, Berejnov V, Lee V, West M, Colbow V, Dutta M, et al. Carbon corrosion of proton exchange membrane fuel cell catalyst layers studied by scanning transmission X-ray microscopy. J Power Sources. 2014;266:66–78.10.1016/j.jpowsour.2014.04.119Search in Google Scholar

[11] Beale AM, Jacques SD, Weckhuysen BM. Chemical imaging of catalytic solids with synchrotron radiation. Chem Soc Rev. 2010;39:4656–72.10.1039/c0cs00089bSearch in Google Scholar PubMed

[12] Grunwaldt J-D, Schroer CG. Hard and soft X-ray microscopy and tomography in catalysis: bridging the different time and length scales. Chem Soc Rev. 2010;39:4741–53.10.1039/c0cs00036aSearch in Google Scholar PubMed

[13] Bordiga S, Groppo E, Agostini G, van Bokhoven JA, Lamberti C. Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques. Chem Rev. 2013;113:1736–850.10.1021/cr2000898Search in Google Scholar PubMed

[14] Sun ZH, Liu QH, Yao T, Yan WS, Wei SQ. X-ray absorption fine structure spectroscopy in nanomaterials. Sci China-Mater. 2015;58:313–41.10.1007/s40843-015-0043-4Search in Google Scholar

[15] Frenkel AI, Yevick A, Cooper C, Vasic R. Modeling the structure and composition of nanoparticles by extended X-ray absorption fine-structure spectroscopy. Ann Rev Analyt Chem. 2011;4:23–39.10.1146/annurev-anchem-061010-113906Search in Google Scholar PubMed

[16] Brown GE, Catalano JG, Templeton AS, Trainor TP, Farges F, Bostick BC, et al. Environmental interfaces, heavy metals, microbes, and plants: Applications of XAFS spectroscopy and related synchrotron radiation methods to environmental science. Phys Scripta. 2005;T115:80–7.10.1238/Physica.Topical.115a00080Search in Google Scholar

[17] Kempson IM, Kirkbride KP, Skinner WM, Coumbaros J. Applications of synchrotron radiation in forensic trace evidence analysis. Talanta. 2005;67:286–303.10.1016/j.talanta.2005.05.026Search in Google Scholar PubMed

[18] Yu SJ, Wang XX, Yang ST, Sheng GD, Alsaedi A, Hayat T, et al. Interaction of radionuclides with natural and manmade materials using XAFS technique. Sci China-Chem. 2017;60:170–87.10.1007/s11426-016-0317-3Search in Google Scholar

[19] Wende H. Recent advances in X-ray absorption spectroscopy. Rep Progr Phys. 2004;67:2105–81.10.1088/0034-4885/67/12/R01Search in Google Scholar

[20] Lee PA, Citrin PH, Eisenberger P, Kincaid BM. Extended X-ray absorption fine structure - its strengths and limitations as a structural tool. Rev Mod Phys. 1981;53:769–806.10.1103/RevModPhys.53.769Search in Google Scholar

[21] Hou ZS, Theyssen N, Brinkmann A, Klementiev KV, Grünert W, Bühl M, et al. Supported palladium nanoparticles on hybrid mesoporous silica: structure/activity-relationship in the aerobic alcohol oxidation using supercritical carbon dioxide. J Catal. 2008;258:315–23.10.1016/j.jcat.2008.07.002Search in Google Scholar

[22] Hayes TM, Sen PN, Hunter SH. Structure determination using EXAFS in real space: Ge. J Phys C Solid State Phys. 1976;9:4357–64.10.1088/0022-3719/9/24/006Search in Google Scholar

[23] Bunker G. Application of the ratio method of EXAFS analysis to disordered systems. Nucl Instr Methods Phys Res. 1983;207:437–44.10.1016/0167-5087(83)90655-5Search in Google Scholar

[24] Ankudinov AL, Ravel B, Rehr JJ, Conradson SD. Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure. Phys Rev B. 1998;58. Art. No. 7565.10.1103/PhysRevB.58.7565Search in Google Scholar

[25] Filipponi A, Di Cicco A, Natoli CR. X-ray-absorption spectroscopy and n-body distribution functions in condensed matter. II. Data analysis and applications. Phys Rev B. 1995;52:Art No. 15135.10.1103/PhysRevB.52.15135Search in Google Scholar

[26] Gurman SJ, Binsted N, Ross I. A rapid, exact, curved-wave theory for EXAFS calculations. II. The multiple-scattering contributions. J Phys C Solid State Phys. 1986;19:1845.10.1088/0022-3719/19/11/021Search in Google Scholar

[27] Bunau O, Joly Y. Self-consistent aspects of X-ray absorption calculations. J Phys Condens Matter. 2009;21:Art. No. 345501.10.1088/0953-8984/21/34/345501Search in Google Scholar PubMed

[28] Benfatto M, Della Longa S. Geometrical fitting of experimental XANES spectra by a full multiple-scattering procedure. J Synchrotron Rad. 2001;8:1087–94.10.1107/S0909049501006422Search in Google Scholar PubMed

[29] Yamamoto T. Assignment of pre-edge peaks in K-edge X-ray absorption spectra of 3d transition metal compounds: electric dipole or quadrupole?. X-Ray Spectrome. 2008;37:572–84.10.1002/xrs.1103Search in Google Scholar

[30] Wasserman SR. The analysis of mixtures: application of principal component analysis to XAS spectra. J Phys IV France. 1997;7:C2–203–C2-205.10.1051/jp4/1997163Search in Google Scholar

[31] Grünert W. Auger Electron, X-ray and UV Photoelectron Spectroscopy. In: Che M, Vedrine JC, editor(s). Characterisation of Solid Materials: From Structure to Surface Reactivity Vol. 1. Weinheim: Wiley-VCH, 2012:537–83.Search in Google Scholar

[32] Levina A, McLeod Andrew I, Lay Peter A. Vanadium Speciation by XANES Spectroscopy: a three-dimensional approach. Chem Eur J. 2014;20:12056–60.10.1002/chem.201403993Search in Google Scholar PubMed

[33] Meitzner G, Via GH, Lytle FW, Sinfelt JH. Analysis of X-ray absorption edge data on metal catalysts. J Phys Chem. 1992;96:4960–4.10.1021/j100191a043Search in Google Scholar

[34] Ankudinov AL, Rehr JJ, Low JJ, Bare SR. Theoretical Interpretation of XAFS and XANES in Pt Clusters. Top Catal. 2002;18:3–7.10.1023/A:1013849814153Search in Google Scholar

[35] Ankudinov AL, Rehr JJ, Low JJ, Bare SR. Sensitivity of Pt X-ray absorption near edge structure to the morphology of small Pt clusters. J Chem Phys. 2002;116:1911–19.10.1063/1.1432688Search in Google Scholar

[36] Mansour AN, Cook JW, Sayers DE. Quantitative technique for the determination of the number of unoccupied d-electron states in a platinum catalyst using the L2,3 X.ray absorption-edge spectra. J Phys Chem. 1984;88:2330–4.10.1021/j150655a029Search in Google Scholar

[37] Ramaker DE, Koningsberger DC. The atomic AXAFS and Δμ- XANES techniques as applied to heterogeneous catalysis and electrocatalysis. Phys Chem Chem Phys. 2010;12:5514–34.10.1039/b927120cSearch in Google Scholar

[38] Soldatov AV, Della Longa S, Bianconi A. Relevant role of hydrogen atoms in the XANES of Pd hydride: evidence of hydrogen induced unoccupied states. Solid State Comm. 1993;85:863–8.10.1016/0038-1098(93)90193-QSearch in Google Scholar

[39] Klementiev K, Chernikov R. Powerful scriptable ray tracing package xrt. In: Proc. SPIE 9209, Advances in Computational Methods for X-Ray Optics III, 92090A (5 September 2014). DOI:10.1117/12.2061400.10.1117/12.2061400Search in Google Scholar

[40] Klementiev K, Chernikov R. XAFSmass: a program for calculating the optimal mass of XAFS samples. J Phys Conf Ser. 2016;712:Art. No. 012008.10.1088/1742-6596/712/1/012008Search in Google Scholar

[41] McBreen J, O’Grady WE, Pandya KI, Hoffman RW, Sayers DE. EXAFS study of the nickel oxide electrode. Langmuir. 1987;3:428–33.10.1021/la00075a027Search in Google Scholar

[42] Hannemann S, Casapu M, Grunwaldt JD, Haider P, Trussel P, Baiker A, et al. A versatile in situ spectroscopic cell for fluorescence/transmission EXAFS and X-ray diffraction of heterogeneous catalysts in gas and liquid phase. J Synchrotron Rad. 2007;14:345–54.10.1107/S0909049507024466Search in Google Scholar PubMed

[43] Grunwaldt JD, Ramin M, Rohr M, Michailovski A, Patzke GR, Baiker A. High pressure in situ X-ray absorption spectroscopy cell for studying simultaneously the liquid phase and the solid/liquid interface. Rev Sci Instr. 2005;76 Art. No. 054104.10.1063/1.1914787Search in Google Scholar

[44] Kampers FW, Maas TM, van Grondelle J, Brinkgreve DC, Koningsberger DC. An in-situ cell for transmission EXAFS measurements on catalytic samples. Rev Sci Instr. 1989;60:2635–8.10.1063/1.1140684Search in Google Scholar

[45] Lamberti C, Prestipino C, Bordiga S, Berlier G, Spoto G, Zecchina A, et al. Description of a flexible cell for in situ X-ray and far-IR characterization of the surface of powdered materials. Nucl Instrum Methods Phys Res Sect B. 2003;200:196–201.10.1016/S0168-583X(02)01719-6Search in Google Scholar

[46] Clausen BS. Combined (Q)EXAFS /XRD: technique and applications. Catal Today. 1998;39:293–300.10.1016/S0920-5861(97)00115-6Search in Google Scholar

[47] Jacques SD, Leynaud O, Strusevich D, Stukas P, Barnes P, Sankar G, et al. Recent progress in the use of in situ X-ray methods for the study of heterogeneous catalysts in packed-bed capillary reactors. Catal Today. 2009;145:204–12.10.1016/j.cattod.2009.02.012Search in Google Scholar

[48] Grunwaldt JD, Baiker A. Axial variation of the oxidation state of Pt-Rh/Al2O3 during partial methane oxidation in a fixed-bed reactor: an in situ X-ray absorption spectroscopy study. Catal Lett. 2005;99:5–12.10.1007/s10562-005-0770-3Search in Google Scholar

[49] Grunwaldt J-D, Kimmerle B, Baiker A, Boye P, Schroer CG, Glatzel P, et al. Catalysts at work: from integral to spatially resolved X-ray absorption spectroscopy. Catal Today. 2009;145:267–78.10.1016/j.cattod.2008.11.002Search in Google Scholar

[50] Newton MA, van Beek W. Combining synchrotron-based X-ray techniques with vibrational spectroscopies for the in situ study of heterogeneous catalysts: a view from a bridge. Chem Soc Rev. 2010;39:4845–486.10.1039/b919689gSearch in Google Scholar PubMed

[51] Roth C, Benker N, Mazurek M, Scheiba F, Fuess H. Development of an in-situ cell for X-ray absorption measurements during fuel cell operation. Adv Eng Mat. 2005;7:952–6.10.1002/adem.200500122Search in Google Scholar

[52] Petrova O, Kulp C, van den Berg MW, Klementiev KV, Otto B, Otto H, et al. A spectroscopic PEM fuel cell test setup allowing fluorescence XAS measurements during state-of-the-art cell tests. Rev Sci Instr. 2011;82:Art. No. 044191.10.1063/1.3574225Search in Google Scholar PubMed

[53] Russell AE, Rose A. X-ray absorption spectroscopy of low temperature fuel cells. Chem Rev. 2004;104:4613–35.10.1021/cr020708rSearch in Google Scholar PubMed

[54] Masa J, Sinev I, Mistry H, Ventosa E, de la Mata M, Arbiol J, et al. Ultrathin high surface area nickel boride (NixB) nanosheets as highly efficient electrocatalyst for oxygen evolution. Adv Energy Mat. 2017;7:17.10.1002/aenm.201700381Search in Google Scholar

[55] Viswanathan R, Hou GY, Liu RX, Bare S, Modica F, Mickelson G, et al. In-situ XANES of carbon-supported Pt-Ru anode electrocatalyst for reformate-air polymer electrolyte fuel cells. J Phys Chem B. 2002;106:3458–65.10.1021/jp0139787Search in Google Scholar

[56] Klementiev KV. Extraction of the fine structure from X-ray absorption spectra. J Phys D Appl Phys. 2001;34:209.10.1088/0022-3727/34/2/309Search in Google Scholar

[57] Ravel B, Newville M. ATHENA ARTEMIS HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Rad. 2005;12:537–41.10.1107/S0909049505012719Search in Google Scholar PubMed

[58] Kuzmin A. EDA: EXAFS data analysis software package. Phys B Condens Matter. 1995;208–209:175–6.10.1107/S1574870720003365Search in Google Scholar

[59] Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical recipes. The art of scientific compution. 3rd ed. Cambridge: Cambridge University Press, 2007.Search in Google Scholar

[60] Stern EA. Number of relevant independent points in X-ray-absorption fine-structure spectra. Phys Rev B. 1993;48:Art. No. 9825.10.1103/PhysRevB.48.9825Search in Google Scholar PubMed

[61] Newville M. EXAFS analysis using FEFF and FEFFIT. J Synchrotron Rad. 2001;8:96–100.10.1107/S0909049500016290Search in Google Scholar

[62] Klementiev KV. Statistical evaluations in fitting problems. J Synchrotron Rad. 2001;8:270–2.10.1107/S0909049500015351Search in Google Scholar PubMed

[63] Mustre de Leon J, Rehr JJ, Zabinsky SI, Albers RC. Ab initio curved-wave X-ray-absorption fine structure. Phys Rev B. 1991;55:Art. No. 4146.10.1103/PhysRevB.44.4146Search in Google Scholar

[64] Schoch R, Desens W, Werner T, Bauer M. X-ray spectroscopic verification of the active species in iron-catalyzed cross-coupling reactions. Chem Eur J. 2013;19:15816–21.10.1002/chem.201303340Search in Google Scholar PubMed

[65] Borovski M. Size determination of small Cu-clusters by EXAFS. J Phys IV. 1997;7:C2–259–260.10.1051/jp4/1997190Search in Google Scholar

[66] Jentys A. Estimation of mean size and shape of small metal particles by EXAFS. Phys Chem Chem Phys. 1999;1:4059.10.1039/a904654bSearch in Google Scholar

[67] Frenkel A. Solving the structure of nanoparticles by multiple-scattering EXAFS analysis. J Synchrotron Rad. 1999;6:293–5.10.1107/S0909049598017786Search in Google Scholar PubMed

[68] Hwang B-J, Sarma LS, Chen J-M, Chen C-H, Shih S-C, Wang G-R, et al. Atomic distribution of bimetallic nanoparticles as investigated by X-ray absorption spectroscopy. J Am Chem Soc. 2005;127:11140–5.10.1021/ja0526618Search in Google Scholar PubMed

[69] Makshina EV, Sirotin SV, van den Berg MW, Klementiev KV, Yushchenko VV, Mazo GN, et al. Characterization and catalytic properties of nanosized cobaltate particles prepared by in-situ synthesis inside mesoporous molecular sieves. Appl Catal A. 2006;312:59–66.10.1016/j.apcata.2006.06.021Search in Google Scholar

[70] Popov AG, Smirnov AV, Knyaseva ER, Yuschenko VV, Kalistratova EE, Klementiev KV, et al. Propane conversion over Ni-, Co-, Fe-, and Zn-containing silicalites-1. Microporous Mesopor Mater. 2010;134:124–34.10.1016/j.micromeso.2010.05.017Search in Google Scholar

[71] Medici L, Prins R. The influence of chelating ligands on the sulfidation of Ni and Mo in NiMo/SiO2 hydrotreating catalysts. J Catal. 1996;163:38–49.10.1006/jcat.1996.0303Search in Google Scholar

[72] Wilmer H, Kurtz M, Klementiev KV, Tkachenko OP, Grünert W, Hinrichsen O, et al. Methanol synthesis over ZnO - a structure-sensitive reaction? Phys Chem Chem Phys. 2003;5:4736–42.10.1039/B304425DSearch in Google Scholar

[73] Pettifer RF, Mathon O, Pascarelli S, Cooke MD, Gibbs MR. Measurement of femtometre-scale atomic displacements by X-ray absorption spectroscopy. Nature. 2005;435:78–81.10.1038/nature03516Search in Google Scholar PubMed

[74] Purans J, Dalba G, Fomasini P, Kuzmin A, De Panfilis S, Rocca F. EXAFS and XRD studies with subpicometer accuracy: the case of ReO3. AIP Conf Proc. 2007;882:422–4.10.1063/1.2644546Search in Google Scholar

[75] Bordiga S, Bonino F, Lillerud KP, Lamberti C. X-ray absorption spectroscopies: useful tools to understand metallorganic frameworks structure and reactivity. Chem Soc Rev. 2010;39:4885–927.10.1039/c0cs00082eSearch in Google Scholar

[76] Stakheev AY, Mashkovski IS, Tkachenko OP, Klementiev KV, Grünert W, Baeva GN, et al. Formation of palladium hydride nanoparticles in Pd/C catalyst as evidenced by in-situ XAS data. Russian Chem Bull Intern Ed. 2009;58:280–3.10.1007/s11172-010-0002-xSearch in Google Scholar

[77] Vaarkamp M, Miller JT, Modica FS, Koningsberger DC. On the relation between particle morphology, structure of the metal-support interface, and catalytic properties of Pt/γ-Al2O3. J Catal. 1996;163:294–305.10.1006/jcat.1996.0330Search in Google Scholar

[78] Tkachenko OP, Klementiev KV, van den Berg MW, Koc N, Bandyopadhyay M, Birkner A, et al. Reduction of copper in porous matrices. Stepwise and autocatalytic reduction routes. J Phys Chem B. 2005;109:20979–88.10.1021/jp054033iSearch in Google Scholar

[79] Kim JY, Rodriguez JA, Hanson JC, Frenkel AI, Lee PI. Reduction of CuO and Cu2O with H2: H embedding and kinetic effects in the formation of suboxides. J Am Chem Soc. 2003;125:10684–92.10.1021/ja0301673Search in Google Scholar

[80] Beutel T, Sarkany J, Lei GD, Yan JY, Sachtler WM. Redox chemistry of Cu/ZSM-5. J Phys Chem. 1996;100:845–51.10.1021/jp952455uSearch in Google Scholar

[81] Sarkany J, d’Itri JL, Sachtler WM. Redox chemistry in excessively ion-exchanged Cu/Na-ZSM-5. Catal Lett. 1992;16:241–9.10.1007/BF00764336Search in Google Scholar

[82] Tkachenko OP, Klementiev KV, van den Berg MW, Gies H, Grünert W. The reduction of copper in porous matrices - The role of electrostatic stabilisation. Phys Chem Chem Phys. 2005;8:1539–49.10.1039/B514744ASearch in Google Scholar

[83] Torre-Abreu C, Ribeiro ME, Henriques C, Delahay G, . NO TPD and H2-TPR studies for characterisation of CuMOR catalysts. The role of Si/Al ratio, copper content and cocation. Appl Catal B. 1997;14:261–72.10.1016/S0926-3373(97)00028-3Search in Google Scholar

[84] Bond GC, Louis C, Thompson DT. Catalyis by gold. London: Imperial College Press, 2006:384.10.1142/p450Search in Google Scholar

[85] Zhao JB, Jin RC. Heterogeneous catalysis by gold and gold-based bimetal nanoclusters. Nano Today. 2018;18:86–102.10.1016/j.nantod.2017.12.009Search in Google Scholar

[86] Corma A, Garcia H. Supported gold nanoparticles as catalysts for organic reactions. Chem Soc Rev. 2008;37:2096–126.10.1039/b707314nSearch in Google Scholar

[87] Haruta M, Date M. Advances in the catalysis of Au nanoparticles. Appl Catal A. 2001;222:427–37.10.1016/S0926-860X(01)00847-XSearch in Google Scholar

[88] Haruta M. Catalysis of gold nanoparticles deposited on metal oxides. Cattech. 2002;6:102–15.10.1023/A:1020181423055Search in Google Scholar

[89] Kotobuki M, Leppelt R, Hansgen DA, Widmann D, Behm RJ. Reactive oxygen on a Au/TiO2 supported catalyst. J Catal. 2009;264:67–76.10.1016/j.jcat.2009.03.013Search in Google Scholar

[90] Camellone MF, Zhao JL, Jin LY, Wang YM, Muhler M, Marx D. Molecular understanding of reactivity and selectivity for methanol oxidation at the Au/TiO2 interface. Angew Chem Intern Ed. 2013;52:5780–4.10.1002/anie.201301868Search in Google Scholar PubMed

[91] Saavedra J, Doan HA, Pursell CJ, Grabow LC, Chandler BD. The critical role of water at the gold-titania interface in catalytic CO oxidation. Science. 2014;345:1599–602.10.1126/science.1256018Search in Google Scholar PubMed

[92] Lopez N, Norskov JK. Catalytic CO oxidation by a gold nanoparticle: A density functional study. J Am Chem Soc. 2002;124:11262–3.10.1021/ja026998aSearch in Google Scholar PubMed

[93] Fierro-Gonzalez JC, Bhirud VA, Gates BC. A highly active catalyst for CO oxidation at 298 K: mononuclear Au complexes anchored to La2O3 nanoparticles. Chem Comm. 2005;41:5275–7.10.1039/b509629dSearch in Google Scholar PubMed

[94] Carrettin S, Corma A, Iglesias M, Sánchez F. Stabilization of Au(III) on heterogeneous catalysts and their catalytic similarities with homogeneous Au(III) metal organic complexes. Appl Catal A. 2005;291:247–52.10.1016/j.apcata.2005.01.047Search in Google Scholar

[95] Wang F, Zhang D, Xu X, Ding Y. Theoretical Study of the CO Oxidation Mediated by Au3+, Au3, and Au3-: Mechanism and Charge State Effect of Gold on Its Catalytic Activity. J Phys Chem C. 2009;113:18032–9.10.1021/jp903392wSearch in Google Scholar

[96] van den Berg MW, De Toni A, Bandyopadhyay M, Gies H, Grünert W. CO oxidation with Au/TiO2 aggregates encapsulated in the mesopores of MCM-48: model studies on activation, deactivation and metal-support interaction. Appl Catal A. 2011;391:268–80.10.1016/j.apcata.2010.06.022Search in Google Scholar

[97] Grünert W, Großmann D, Noei H, Pohl MM, Sinev I, De Toni A, et al. Low-temperature CO oxidation with TiO2-supported Au3+ ions. Angew Chem Int Ed. 2014;53:3245–9.10.1002/anie.201308206Search in Google Scholar

[98] Grünert W, Hayes NW, Joyner RW, Shpiro ES, Siddiqui MR, Baeva GN. Structure, chemistry, and activity of Cu-ZSM-5 catalysts for the selective reduction of NOx in the presence of oxygen. J Phys Chem. 1994;98:10832–46.10.1021/j100093a026Search in Google Scholar

[99] Turnes Palomino G, Fisicaro P, Bordiga S, Zecchina A, Giamello E, Lamberti C. Oxidation States of Copper Ions in ZSM-5 Zeolites. A Multitechnique Investigation. J Phys Chem B. 2000;104:4064–73.10.1021/jp993893uSearch in Google Scholar

[100] Neylon MK, Marshall CL, Kropf AJ. in-situ EXAFS analysis of the temperature-programmed reduction of Cu-ZSM-5. J Am Chem Soc. 2002;124:5457–65.10.1021/ja0176696Search in Google Scholar

[101] Sexton BA, Smith TD, Sanders JV. Characterization of copper-exchanged Na-A, X and Y zeolites with X-ray photoelectron spectroscopy and transmission electron microscopy. J Electron Spectrosc Relat Phenom. 1985;35:27–43.10.1016/0368-2048(85)80040-2Search in Google Scholar

[102] Morales J, Espinos JP, Caballero A, Gonzalez-Elipe AR, Mejias JA. XPS study of interface and ligand effects in supported Cu2O and CuO nanometric particles. J Phys Chem B. 2005;109:7758–65.10.1021/jp0453055Search in Google Scholar PubMed

[103] Deka U, Juhin A, Eilertsen EA, Emerich H, Green MA, Korhonen ST, et al. Confirmation of Isolated Cu2+ Ions in SSZ-13 Zeolite as Active Sites in NH3-Selective Catalytic Reduction. J Phys Chem C. 2012;116:4809–18.10.1021/jp212450dSearch in Google Scholar

[104] McEwen JS, Anggara T, Schneider WF, Kispersky VF, Miller JT, Delgass WN, et al. Integrated operando X-ray absorption and DFT characterization of Cu-SSZ-13 exchange sites during the selective catalytic reduction of NOx with NH3. Catal Today. 2012;184:129–44.10.1016/j.cattod.2011.11.037Search in Google Scholar

[105] Kwak JH, Zhu H, Lee JH, Peden CHF, Szanyi J. Two different cationic positions in Cu-SSZ-13? Chem Comm. 2012;48:4758–60.10.1039/c2cc31184dSearch in Google Scholar

[106] Feng X, Hall WK. On the unusual stability of overexchanged Fe-ZSM-5. Catal Lett. 1996;41:45.10.1007/BF00811711Search in Google Scholar

[107] Chen H-Y, Sachtler WM. Activity and durability of Fe/ZSM-5 catalysts for lean-burn NOx reduction in the presence of water vapor. Catal Today. 1998;42:73–83.10.1016/S0920-5861(98)00078-9Search in Google Scholar

[108] Ma A-Z, Grünert W. Selective catalytic reduction of NO by ammonia over Fe-ZSM-5 catalysts. Chem Comm. 1999;35:71–2.10.1039/a807490iSearch in Google Scholar

[109] Long RQ, Yang RT. Superior Fe-ZSM-5 catalyst for selective catalytic reduction of nitric oxide by ammonia. J Am Chem Soc. 1999;121:5595–6.10.1021/ja9842262Search in Google Scholar

[110] Voskoboinikov TV, Chen H-Y, Sachtler WM. On the nature of active sites in Fe/ZSM-5 catalysts for NOx abatement. Appl Catal B. 1998;19:279–87.10.1016/S0926-3373(98)00082-4Search in Google Scholar

[111] Battiston AA, Bitter JH, Koningsberger DC. XAFS characterization of the binuclear iron complex in overexchanged Fe-ZSM-5 - structure and reactivity. Catal Lett. 2000;66:75–9.10.1023/A:1019079002486Search in Google Scholar

[112] Marturano P, Drozdova L, Pirngruber D, Kogelbauer A, Prins R. The mechanism of formation of the Fe species in Fe/ZSM-5 prepared by CVD. Phys Chem Chem Phys. 2001;3:5585–95.10.1039/b107266hSearch in Google Scholar

[113] Heinrich F, Schmidt C, Löffler E, Menzel M, Grünert W. Fe-ZSM-5 catalysts for the selective catalytic reduction of NO with isobutane - the problem of the active sites. J Catal. 2002;212:157–72.10.1006/jcat.2002.3775Search in Google Scholar

[114] Marturano P, Drozdova L, Kogelbauer A, Prins R. Fe/ZSM-5 prepared by sublimation of FeCl3: the structure of the fe species as determined by IR, 27Al-NMR and EXAFS spectroscopy. J Catal. 2000;192:236–47.10.1006/jcat.2000.2837Search in Google Scholar

[115] Battiston AA, Bitter JH, de Groot FM, Overweg AR, Stephan O, van Bokhoven JA, et al. Evolution of Fe species during the synthesis of over-exchanged Fe/ZSM5 obtained by chemical vapor deposition of FeCl3. J Catal. 2003;213:251–71.10.1016/S0021-9517(02)00051-9Search in Google Scholar

[116] Heijboer WM, Koningsberger DC, Weckhuysen BM, de Groot FM. New frontiers in X-ray spectroscopy in heterogeneous catalysis: using Fe/ZSM-5 as test-system. Catal Today. 2005;110:238–48.10.1016/j.cattod.2005.09.038Search in Google Scholar

[117] Pirngruber GD, Roy PK, Prins R. On determining the nuclearity of iron sites in Fe-ZSM-5 - a critical evaluation. Phys Chem Chem Phys. 2006;8:3939–50.10.1039/B606205ASearch in Google Scholar

[118] Padmalekha KG, Huang H, Ellmers I, Velez RP, van Leusen J, Brückner A, et al. DeNO(x) active iron sites in iron loaded ZSM-5-a multitechnique analysis of a complex heterogeneous catalyst based on Mössbauer spectroscopy. Hyperfine Interact. 2017;238:Art. No. 8010.1007/s10751-017-1444-4Search in Google Scholar

[119] Boubnov A, Carvalho HW, Doronkin DE, Gunter T, Gallo E, Atkins AJ, et al. Selective catalytic reduction of NO Over Fe-ZSM-5: mechanistic insights by operando HERFD-XANES and valence-to-core X-ray emission spectroscopy. J Am Chem Soc. 2014;136:13006–15.10.1021/ja5062505Search in Google Scholar PubMed

[120] Stöhr J. NEXAFS spectroscopy. Berlin/ Heidelberg: Springer Nature, 1992.10.1007/978-3-662-02853-7Search in Google Scholar

[121] Singh J, Lamberti C, van Bokhoven JA. Advanced X-ray absorption and emission spectroscopy: in situ catalytic studies. Chem Soc Rev. 2010;39:4754–66.10.1039/c0cs00054jSearch in Google Scholar PubMed

[122] Hämäläinen K, Siddons DP, Hastings JB, Berman LE. Elimination of the inner-shell lifetime broadening in X-ray-absorption spectroscopy. Phys Rev Lett. 1991;67 Art. No. 2850.10.1103/PhysRevLett.67.2850Search in Google Scholar PubMed

[123] Glatzel P, Bergmann U. High resolution 1s core hole X-ray spectroscopy in 3d transition metal complexes - electronic and structural information. Coord Chem Rev. 2005;249:65–95.10.1016/j.ccr.2004.04.011Search in Google Scholar

[124] Carra P, Fabrizio M, Thole BT. High resolution X-ray resonant Raman scattering. Phys Rev Lett. 1995;74 Art. No. 3700.10.1103/PhysRevLett.74.3700Search in Google Scholar PubMed

[125] Günter T, Carvalho HW, Doronkin DE, Sheppard T, Glatzel P, Atkins AJ, et al. Structural snapshots of the SCR reaction mechanism on Cu-SSZ-13. Chem Comm. 2015;51:9227–30.10.1039/C5CC01758KSearch in Google Scholar

[126] Bauer M. HERFD-XAS and valence-to-core-XES: new tools to push the limits in research with hard X-rays ? Phys Chem Chem Phys. 2014;16:13827–37.10.1039/C4CP00904ESearch in Google Scholar PubMed

[127] Szlachetko J, Nachtegaal M, Sá J, Dousse J-C, Hoszowska J, Kleymenov E, et al. High energy resolution off-resonant spectroscopy at sub-second time resolution: (Pt(acac)2) decomposition. Chem Comm. 2012;48:10898–900.10.1039/c2cc35086fSearch in Google Scholar PubMed

[128] Blachucki W, Hoszowska J, Dousse J-C, Kayser Y, Stachura R, Tyrala K, et al. High energy resolution off-resonant spectroscopy: a review. Spectrochim Acta B Atomic Spectrosc. 2017;136:23–33.10.1016/j.sab.2017.08.002Search in Google Scholar

[129] Kavčič M, Žitnik M, Bučar K, Mihelič A, Marolt B, Szlachetko L, et al. Hard X-ray absorption spectroscopy for pulsed sources. Phys Rev B. 2013;87 Art. No. 075106.10.1103/PhysRevB.87.075106Search in Google Scholar

[130] Błachucki W, Szlachetko J, Hoszowska J, Dousse J-C, Kayser Y, Nachtegaal M, et al. High energy resolution off-resonant spectroscopy for X-Ray absorption spectra free of self-absorption effects. Phys Rev Lett. 2014;112:Art. No. 173003.10.1103/PhysRevLett.112.173003Search in Google Scholar PubMed

[131] Visser H, Anxolabéhère-Mallart E, Bergmann U, Glatzel P, Robblee JH, Cramer SP, et al. Mn K-Edge XANES and Kβ XES studies of two Mn-Oxo binuclear complexes: investigation of three different oxidation states relevant to the oxygen-evolving complex of photosystem II. J Am Chem Soc. 2001;123:7031–9.10.1021/ja004306hSearch in Google Scholar PubMed PubMed Central

[132] Heijboer WM, Glatzel P, Sawant KR, Lobo RF, Bergmann U, Barrea RA, et al. Kβ-Detected XANES of framework-substituted FeZSM-5 zeolites. J Phys Chem B. 2004;108:10002–11.10.1021/jp048368wSearch in Google Scholar

[133] Safonov VA, Vykhodtseva LN, Polukarov YM, Safonova OV, Smolentsev G, Sikora M, et al. Valence-to-core X-ray emission spectroscopy identification of carbide compounds in nanocrystalline Cr coatings deposited from Cr(III) electrolytes containing organic substances. J Phys Chem B. 2006;110:23192–6.10.1021/jp064569jSearch in Google Scholar PubMed

[134] Klementiev K, Preda I, Carlson S, Sigfridsson K, Norén K. High performance emission spectrometer at Balder/MAX IV beamline. J Phys Conf Ser. 2016;712:012018.10.1088/1742-6596/712/1/012018Search in Google Scholar

[135] van Bokhoven JA, Lamberti C, editors. X-Ray absorption and X-Ray emission spectroscopy: theory and applications. Chichester (UK): John Wiley & Sons Ltd., 2016.10.1002/9781118844243Search in Google Scholar

Published Online: 2020-03-05

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/psr-2017-0181/html?lang=en
Scroll to top button