Home Synergistic visible light photoredox catalysis
Article
Licensed
Unlicensed Requires Authentication

Synergistic visible light photoredox catalysis

  • Kirsten Zeitler ORCID logo EMAIL logo and Matthias Neumann
Published/Copyright: December 6, 2019
Become an author with De Gruyter Brill

Abstract

Within the last decade the combination of photoredox catalysis and other catalytic modes of activation has become a powerful tool for organic synthesis to enable transformations that are not possible using single catalyst systems and hence are complementary to traditional methodology. Especially reactions proceeding via synergistic catalysis where co-catalyst and photocatalyst simultaneously and separately activate different reaction partners greatly benefit from the special properties of molecules and transition metal complexes in their excited state being oxidizing and reducing in nature at the same time. Apart from allowing for the generation of radical (open-shell) reactive intermediates by SET under mild conditions from bench-stable, abundant precursors, the photocatalyst often acts to interweave the distinct catalytic cycles by interaction at multiple points of the reaction mechanism to provide overall redox-neutral processes by shuttling electrons within in this complex network of elementary reaction steps. Synergistic strategies moreover may allow to performing such reactions with enantioselectivity, while mostly the selectivity is achieved by the chiral co-catalyst. The merger of photocatalysis has been achieved with a broad range of alternative modes of catalysis including organocatalysis, Brønstedt and Lewis acid and base catalysis, enzyme catalysis as well as in the context of cross-coupling transition metal catalysis overcoming challenging steps in this methodology and therefore has contributed to considerably expand the repertoire of suitable coupling partners. While only selected examples will be discussed, this chapter will highlight various dual catalytic platforms focusing on the photocatalytically generated intermediates, but also illustrating the diverse roles of photocatalysts in the context of such synergistic multicatalysis reactions.

References

[1] (a) Röper M. Homogene Katalyse in der Chemischen Industrie. Selektivität, Aktivität und Standzeit. Chem Unserer Zeit. 2006;40:126; (b) Schüth F. Heterogene Katalyse. Schlüsseltechnologie der chemischen Industrie. Chem unserer Zeit. 2006;40:92.10.1002/ciuz.200600373Search in Google Scholar

[2] Tietze LF, Brasche G, Gericke KM. Domino reactions in organic synthesis. Weinheim: Wiley-VCH, 2006.10.1002/9783527609925Search in Google Scholar

[3] Fogg DE, Dos Santos EN. Tandem catalysis: a taxonomy and illustrative review. Coord Chem Rev. 2004;248:2365.10.1016/j.ccr.2004.05.012Search in Google Scholar

[4] Walji AM, MacMillan DW. Strategies to bypass the taxol problem. Enantioselective cascade catalysis, a new approach for the efficient construction of molecular complexity. Synlett. 2007;1477.10.1002/chin.200736251Search in Google Scholar

[5] Hayashi Y. Pot economy and one-pot synthesis. Chem Sci. 2016;7:866–80.10.1039/C5SC02913ASearch in Google Scholar PubMed PubMed Central

[6] Allen AE, MacMillan DW. Synergistic catalysis: a powerful synthetic strategy for new reaction development. Chem Sci. 2012;3:633.10.1039/c2sc00907bSearch in Google Scholar PubMed PubMed Central

[7] (a) Wende RC, Schreiner P. Evolution of asymmetric organocatalysis: multi- and retrocatalysis. Green Chem. 2012;14:1821. (b) Inamdar SM, Shinde VS, Patil NT. Enantioselective cooperative catalysis. Org Biomol Chem. 2015;13:8116–62. (c) Peters R, editor. Cooperative catalysis - designing efficient catalysts for synthesis. Weinheim: Wiley-VCH, 2015.Search in Google Scholar

[8] (a) Nicewicz DA, MacMillan DW. Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. Sci. 2008;322:77. (b) Ischay MA, Anzovino ME, Du J, Yoon TP. Efficient visible light photocatalysis of [2+2] enone cycloadditions. J Am Chem Soc. 2008;130:12886–7. (c) Narayanam JM, Tucker JW, Stephenson CR. Electron-transfer photoredox catalysis: development of a tin-free reductive dehalogenation reaction. J Am Chem Soc. 2009;131:8756–7.10.1126/science.1161976Search in Google Scholar PubMed PubMed Central

[9] (a) Prier CK, Rankic DA, MacMillan DW. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem Rev. 2013;113:5322–63. (b) Special Issue Chemical Reviews issue 17/2016. Photochemistry in organic synthesis. Chem Rev. 2016;116:9629–10342. (c) Stephenson CR, Yoon TP, MacMillan DW, editors. Visible light photocatalysis in organic chemistry. Weinheim: Wiley-VCH, 2018. (d) Marzo L, Pagire SK, Reiser O, König B. Visible-light photocatalysis: does it make a difference in organic synthesis? Angew Chem Int Ed. 2018;57:10034–72. (e) Teplý F. Collect Czech Chem Commun. 2011;76:859.10.1021/cr300503rSearch in Google Scholar PubMed PubMed Central

[10] (a) Narayanam JM, Stephenson CR. Visible light photoredox catalysis: applications in organic synthesis. Chem Soc Rev. 2011;40:102. (b) Xuan J, Xiao WJ. Visible-light photoredox catalysis. Angew Chem Int Ed. 2012;51:6828. (c) Tucker JW, Stephenson CR. Shining light on photoredox catalysis: theory and synthetic applications. J Org Chem. 2012;77:1617. (d) Yoon TP, Ischay MA, Du J. Visible light photocatalysis as a greener approach to photochemical synthesis. Nat Chem. 2010;2:527. (e) Zeitler K. Photoredox catalysis with visible light. Angew Chem Int Ed. 2009;48:9785.Search in Google Scholar

[11] Recent reviews: (a) Milligan JA, Phelan JP, Badir SO, Molander GA. Alkyl carbon–carbon bond formation by nickel/photoredox cross-coupling. Angew Chem Int Ed. 2019;58:6152–63. (b) Twilton J, Le CC, Zhang P, Shaw MH, Evans RW, MacMillan DW. The merger of transition metal and photocatalysis. Nat Rev Chem. 2017;1:0052. (c) Skubi KL, Blum TR, Yoon TP. Dual catalysis strategies in photochemical synthesis. Chem Rev. 2016;116:10035–74. (d) Levin MD, Kim S, Toste FD. Photoredox catalysis unlocks single-electron elementary steps in transition metal catalyzed cross-coupling. ACS Cent Sci. 2016;2:293–301. (e) Hopkinson MN, Sahoo B, Li JL, Glorius F. Dual catalysis see the light: combining photoredox with organo-, acid, and transition-metal catalysis. Chem Eur J. 2014;20:3874–86.10.1002/anie.201809431Search in Google Scholar PubMed PubMed Central

[12] (a) Yoo WJ, Li CJ. Cross-dehydrogenative coupling reactions of sp3-hybridized C-H bonds. Top Curr Chem. 2010;292:281. (b) Li CJ. Cross-Dehydrogenative Coupling (CDC): exploring C-C Bond formations beyond functional group transformations. Acc Chem Res. 2008;42:335.10.1007/128_2009_17Search in Google Scholar PubMed

[13] Li Z, Bohle DS, Li CJ. Cu-catalyzed cross-dehydrogenative coupling: a versatile strategy for C-C bond formations via the oxidative activation of sp3 C-H bonds. P Proc Nat Acad Sci USA. 2006;103:8928.10.1073/pnas.0601687103Search in Google Scholar PubMed PubMed Central

[14] Basle O, Li CJ. Copper-catalyzed aerobic phosphonation of sp3 C–H bonds. Chem Commun. 2009;4124.10.1039/b905275eSearch in Google Scholar PubMed

[15] Condie AG, González-Gómez JC, Stephenson CR. Visible-Light Photoredox Catalysis: Aza-Henry reactions via C−H functionalization. J Am Chem Soc. 2010;132:1464.10.1021/ja909145ySearch in Google Scholar PubMed

[16] Mayr H, Kempf B, Ofial AR. π-nucleophilicity in carbon–carbon bond-forming reactions. Acc Chem Res. 2002;36:66.10.1021/ar020094cSearch in Google Scholar PubMed

[17] Liu Q, Li YN, Zhang HH, Chen B, Tung CH, Wu LZ. Reactivity and mechanistic insight into visible-light-induced aerobic cross-dehydrogenative coupling reaction by organophotocatalysts. Chem Eur J. 2012;18:620.10.1002/chem.201102299Search in Google Scholar PubMed

[18] Bartling H, Eisenhofer A, König B, Gschwind RM. The photocatalyzed Aza-Henry reaction of N-aryltetrahydroisoquinolines: comprehensive mechanism, H- versus H+-abstraction, and background reactions. J Am Chem Soc. 2016;138:11860–71.10.1021/jacs.6b06658Search in Google Scholar PubMed

[19] (a) Shi L, Xia W. Photoredox functionalization of C–H bonds adjacent to a nitrogen atom. Chem Soc Rev. 2012;41:7687–97. (b) Kohls P, Jadhav D, Pandey G, Reiser O. Visible light photoredox catalysis: generation and addition of N-aryltetrahydroisoquinoline-derived α-amino radicals to michael acceptors. Org Lett. 2012;14:672–5. (c) Miyake Y, Nakajima K, Nishibayashi Y. Visible-light-mediated utilization of α-aminoalkyl radicals: addition to electron-deficient alkenes using photoredox catalyst. J Am Chem Soc. 2012;134:3338–41. (d) Espelt LR; Wiensch EM, Yoon TP. Brønsted acid cocatalysts in photocatalytic radical addition of α-amino C–H bonds across michael acceptors. J Org Chem. 2013;78:4107–14.10.1039/c2cs35203fSearch in Google Scholar PubMed

[20] (a) Hari DP, König B. Eosin Y catalyzed visible light oxidative C-C and C-P bond Formation. Org Lett. 2011;13:3852. (b) Pan Y, Wang S, Kee CW, Dubuisson E, Yang Y, Loh KP, Tan CH. Graphene oxide and Rose Bengal: oxidative C-H functionalisation of tertiary amines using visible light. Green Chem. 2011;13:3341. (c) Rueping M, Zhu S, Koenigs RM. Visible-light photoredox catalyzed oxidative strecker reaction. Chem Commun. 2011;47:12709.10.1021/ol201376vSearch in Google Scholar PubMed

[21] Rueping M, Zhu S, Koenigs RM. Photoredox catalyzed C–P bond forming reactions—visible light mediated oxidative phosphonylations of amines. Chem Commun. 2011;47:8679.10.1039/c1cc12907dSearch in Google Scholar PubMed

[22] (a) Xuan J, Feng ZJ, Duan SW, Xiao WJ. Room temperature synthesis of isoquino[2,1-a][3,1]oxazine and isoquino[2,1-a]pyrimidine derivatives via visible light photoredox catalysis. RSC Adv. 2012;2:4065. (b) Xuan J, Cheng Y, An J, Lu LQ, Zhang XX, Xiao WJ. Visible light-induced intramolecular cyclization reactions of diamines: a new strategy to construct tetrahydroimidazoles. Chem Commun. 2011;47:8337.10.1039/c2ra20403gSearch in Google Scholar

[23] (a) Rueping M, Leonori D, Poisson T. Visible light mediated azomethine ylide formation–photoredox catalyzed [3+2] cycloadditions. Chem Commun. 2011;47:9615. (b) Zou YQ, Lu LQ, Fu L, Chang NJ, Rong J, Chen JR, Xiao et al. Visible-light-induced oxidation/[3+2] cycloaddition/oxidative aromatization sequence: a photocatalytic strategy to construct pyrrolo[2,1-a]isoquinolines. Angew Chem Int Ed. 2011;50:7171.10.1039/c1cc13660gSearch in Google Scholar PubMed

[24] Pan Y, Kee CW, Chen L, Tan CH. Dehydrogenative coupling reactions catalysed by Rose Bengal using visible light irradiation. Green Chem. 2011;13:2682.10.1039/c1gc15489cSearch in Google Scholar

[25] Möhlmann L, Baar M, Rieß J, Antonietti M, Wang X, Blechert S. Carbon nitride‐catalyzed photoredox C-C bond formation with N‐Aryltetrahydroisoquinolines. Adv Synth Catal. 2012;354:1909.10.1002/adsc.201100894Search in Google Scholar

[26] (a) Cherevatskaya M, Neumann M, Füldner S, Harlander C, Kümmel S, Dankesreiter S. et al. Visible-Light-promoted stereoselective alkylation by combining heterogeneous photocatalysis with organocatalysis. Angew Chem Int Ed. 2012;51:4062. (b) Mitkina T, Stanglmair C, Setzer W, Gruber M, Kisch, König B. Visible light mediated homo- and heterocoupling of benzyl alcohols and benzyl amines on polycrystalline cadmium sulfide. Org Biomol Chem. 2012;10:3556. (c) Rueping M, Zoller J, Fabry DC, Poscharny K, Koenigs RM, Weirich TE, et al. Light-mediated heterogeneous cross dehydrogenative coupling reactions: metal oxides as efficient, recyclable, photoredox catalysts in C-C bond-forming reactions. Chem Eur J. 2012;18:3478.10.1002/anie.201108721Search in Google Scholar PubMed

[27] (a) Wang C, Xie Z, deKrafft KE, Lin W. Doping metal–organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J Am Chem Soc. 2011;133:13445. (b) Xie Z, Wang C, deKrafft KE, Lin W. Highly stable and porous cross-linked polymers for efficient photocatalysis. J Am Chem Soc. 2011;133:2056.10.1021/ja203564wSearch in Google Scholar PubMed

[28] Rueping M, Vila C, Koenigs RM, Poscharny K, Fabry DC. Dual catalysis: combining photoredox and Lewis base catalysis for direct Mannich reactions. Chem Commun. 2011;47:2360.10.1039/C0CC04539JSearch in Google Scholar PubMed

[29] Sud A, Sureshkumar D, Klussmann M. Oxidative coupling of amines and ketones by combined vanadium- and organocatalysis. Chem Commun. 2009;3169.10.1039/b901282fSearch in Google Scholar PubMed

[30] Yang Q, Zhang L, Ye C, Luo S, Wu LZ, Tung CH. Visible-light-promoted asymmetric cross-dehydrogenative coupling of tertiary amines to ketones by synergistic multiple catalysis. Angew Chem Int Ed. 2017;56:3694–8.10.1002/anie.201700572Search in Google Scholar PubMed

[31] Hou H, Zhu S, Atodiresei I, Rueping M. Asymmetric organocatalysis and photoredox catalysis for the α-functionalization of tetrahydroisoquinolines. Eur J Org Chem. 2018;1277–80.10.1002/ejoc.201800117Search in Google Scholar

[32] Bergonzini G, Schindler CS, Wallentin CJ, Jacobsen EN, Stephenson CR. Photoredox activation and anion binding catalysis in the dual catalytic enantioselective synthesis of β-amino esters. Chem Sci. 2014;5:112–6.10.1039/C3SC52265BSearch in Google Scholar PubMed PubMed Central

[33] (a) Feng ZJ, Xuan J, Xia XD, Ding W, Guo W, Chen JR. et al. Direct sp3 C–H acroleination of N-aryl-tetrahydroisoquinolines by merging photoredox catalysis with nucleophilic catalysis. Org Biomol Chem. 2014;12:2037–40. (b) Wei G, Chenhao Zhang C, Bureš F, Ye X, Tan CH, Jiang Z. Enantioselective aerobic oxidative C(sp3)–H olefination of amines via cooperative photoredox and asymmetric catalysis. ACS Catal. 2016;6:3708–12.10.1039/C3OB42453GSearch in Google Scholar PubMed

[34] Rueping M, Koenigs RM, Poscharny K, Fabry DC, Leonori D, Vila C. Dual catalysis: combination of photocatalytic aerobic oxidation and metal catalyzed alkynylation reactions–C-C bond formation using visible light. Chem Eur J. 2012;18:5170.10.1002/chem.201200050Search in Google Scholar PubMed

[35] Freeman DB, Furst L, Condie AG, Stephenson CR. Functionally diverse nucleophilic trapping of iminium intermediates generated utilizing visible light. Org Lett. 2011;14:94.10.1021/ol202883vSearch in Google Scholar PubMed PubMed Central

[36] Franz JF, Kraus WB, Zeitler K. No photocatalyst required – versatile, visible light mediated transformations with polyhalomethanes. Chem Commun. 2015;51:8280–3.10.1039/C4CC10270CSearch in Google Scholar

[37] Perepichka I, Kundu S, Hearne Z, Li CJ. Efficient merging of copper and photoredox catalysis for the asymmetric cross-dehydrogenative-coupling of alkynes and tetrahydroisoquinolines. Org Biomol Chem. 2015;13:447–51.10.1039/C4OB02138JSearch in Google Scholar

[38] (a) Bugaut X, Glorius F. Organocatalytic umpolung: N-heterocyclic carbenes and beyond. Chem Soc Rev. 2012;41:3511. (b) Seebach D. Methods of reactivity umpolung. Angew Chem Int Ed. 1979;18:239.10.1039/c2cs15333eSearch in Google Scholar PubMed

[39] DiRocco DA, Rovis T. Asymmetric Benzoin and Stetter Reactions. Sci Synth. 2011;835–63.10.1002/chin.201140200Search in Google Scholar

[40] (a) Zeitler K. Angew Chem Int Ed. 2005;44:7506. (b) Enders D, Niemeier O, Henseler A. Organocatalysis by N-Heterocyclic carbenes. Chem Rev. 2007;107:5606. (c) Biju AT, Kuhl N, Glorius F. Extending NHC-catalysis: coupling aldehydes with unconventional reaction partners. Acc Chem Res. 2011;44:1182. (d) Flanigan DM, Romanov- Michailidis F, White NA, Rovis T. Organocatalytic reactions enabled by N-heterocyclic carbenes. Chem Rev. 2015;115:9307–87. (e) Chen XY, Li S, Vetica F, Kumar M, Enders D. N-heterocyclic-carbene-catalyzed domino reactions via two or more activation modes. iScience. 2018;2:1–26. (f) Wang MH, Scheidt KA. Cooperative catalysis and activation with N-heterocyclic carbenes. Angew Chem Int Ed 2016;55:14912–22.10.1002/anie.200502617Search in Google Scholar PubMed

[41] (a) Grossmann A, Enders D. N-Heterocyclic carbene catalyzed domino reactions. Angew Chem Int Ed. 2012;51:314. (b) Fuchs PJW, Zeitler K. Nitroalkenes as latent 1,2-biselectrophiles - A multicatalytic approach for the synthesis of 1,4-diketones and their application in a 4-step one-pot reaction to polysubstituted pyrroles. J Org Chem. 2017;82:7796–805 (c) Fuchs PJW, Zeitler K. An N‑heterocyclic carbene-mediated, enantioselective and multicatalytic strategy to access dihydropyranones in a sequential three-component one-pot reaction. Org Lett. 2017;19:6076–9.10.1002/anie.201105415Search in Google Scholar PubMed

[42] Cohen DT, Scheidt KA. Cooperative Lewis acid/N-heterocyclic carbene catalysis. Chem Sci. 2012;3:53.10.1039/C1SC00621ESearch in Google Scholar PubMed PubMed Central

[43] (a) Ozboya KE, Rovis T. Enamine/carbene cascade catalysis in the diastereo- and enantioselective synthesis of functionalized cyclopentanones. Chem Sci. 2011;2:1835. (b) Lathrop SP, Rovis T. Asymmetric synthesis of functionalized cyclopentanones via a multicatalytic secondary amine/N-Heterocyclic carbene catalyzed cascade sequence. J Am Chem Soc. 2009;131:13628.10.1039/c1sc00175bSearch in Google Scholar

[44] DiRocco DA, Rovis T. Catalytic Asymmetric α-Acylation of Tertiary Amines Mediated by a Dual Catalytic asymmetric α-Acylation of tertiary amines mediated by a dual catalysis mode: N-Heterocyclic carbene and photoredox catalysis. J Am Chem Soc. 2012;134:8094.10.1021/ja3030164Search in Google Scholar PubMed PubMed Central

[45] (a) Fukuzumi S, Mochizuki S, Tanaka T. Photocatalytic reduction of phenacyl halides by 9,10-dihydro-10-methylacridine: control between the reductive and oxidative quenching pathways of tris(bipyridine)ruthenium complex utilizing an acid catalysis. J Phys Chem. 1990;94:722. (b) Goren Z, Willner I. Photochemical and chemical reduction of vicinal dibromides via phase transfer of 4,4'-bipyridinium radical: the role of radical disproportionation. J Am Chem Soc. 1983;105:7764. (c) Hironaka K, Fukuzumi S, Tanaka T. J Chem Soc. Perkin Trans 2. 1984;1705. (d) Maidan R, Goren Z, Becker JY, Willner I. J Am Chem Soc. 1984;106:6217. (e) Mashraqui SH, Kellogg RM. 3-Methyl-2,3-dihydrobenzothiazoles as reducing agents. Dye enhanced photoreactions. Tetrahedron Lett. 1985;26:1453. (f) Willner i, Tsfania T, Eichen Y. Photocatalyzed and electrocatalyzed reduction of vicinal dibromides and activated ketones using ruthenium(I) tris(bipyridine) as electron-transfer mediator. J Org Chem. 1990;55:2656.10.1021/j100365a039Search in Google Scholar

[46] (a) Cano-Yelo H, Deronzier A. Photocatalysis of the Pschorr reaction by tris-(2,2′-bipyridyl)ruthenium(II) in the phenanthrene series. J Chem Soc Perkin Trans. 1984;2:1093. (b) Cano-Yelo H, Deronzier A. Photo-oxidation of some carbinols by the Ru(II) polypyridyl complex-aryl diazonium salt system. Tetrahedron Lett. 1984;25:5517. (c) Cano-Yelo H, Deronzier A. Photooxidation of α-phenyl alcohols by the system ruthenium polypyridyl complexes-aromatic diazonium salts. Comparison with electrochemical redox catalysis. New J Chem. 1987;11:479. (c) Hari DP, Hering T, König B. Synthetic applications of aryl diazonium salts enabled by visible light photoredox catalysis. Chim Oggi. 2013;31:59–63.10.1039/P29840001093Search in Google Scholar

[47] Wessig P, Muehling O. Spin-center shift (SCS) – A versatile concept in biological and synthetic chemistry. Eur J Org Chem. 2007;2219–32.10.1002/ejoc.200600915Search in Google Scholar

[48] Alba AN, Viciano M, Rios R. The holy grail of organocatalysis: intermolecular α-Alkylation of aldehydes. Chem Cat Chem. 2009;1:437.10.1002/cctc.200900196Search in Google Scholar

[49] Beeson TD, Mastracchio A, Hong JB, Ashton K, MacMillan DW. Enantioselective organocatalysis using SOMO activation. Science 2007;316:582.10.1126/science.1142696Search in Google Scholar

[50] Nagib DA, Scott ME, MacMillan DW. Enantioselective α-Trifluoromethylation of aldehydes via photoredox organocatalysis. J Am Chem Soc. 2009;131:10875.10.1021/ja9053338Search in Google Scholar PubMed PubMed Central

[51] Shih HW, Vander Wal MN, Grange RL, MacMillan DW. Enantioselective α-Benzylation of aldehydes via photoredox organocatalysis. J Am Chem Soc. 2010;132:13600.10.1021/ja106593mSearch in Google Scholar PubMed PubMed Central

[52] Welin ER, Warkentin AA, Conrad JC, MacMillan DW. Enantioselective α-Alkylation of aldehydes by photoredox organocatalysis: rapid access to pharmacophore fragments from β-Cyanoaldehydes. Angew Chem Int Ed. 2015;54:9668–72.10.1002/anie.201503789Search in Google Scholar PubMed PubMed Central

[53] Rausch A, Homeier H, Yersin H. Organometallic Pt(II) and Ir(III) triplet emitters for OLED applications and the role of spin-orbit coupling: a study based on high-resolution optical spectroscopy. Top Organomet Chem. 2010;29:193.10.1007/3418_2009_6Search in Google Scholar

[54] Flamigni L, Barbieri A, Sabatini C, Ventura B, Barigelletti F. Photochemistry and photophysics of coordination compounds: iridium. Top Curr Chem. 2007;281:143.10.1007/128_2007_131Search in Google Scholar

[55] Neumann M, Füldner S, König B, Zeitler K. Metal-free, cooperative asymmetric organophotoredox catalysis with visible light. Angew Chem Int Ed. 2011;50:951.10.1002/anie.201002992Search in Google Scholar PubMed

[56] (a) Zou YQ, Hoermann FM, Bach T. Iminium and enamine catalysis in enantioselective photochemical reactions. Chem Soc Rev. 2018;47:278–90. (b) For an example using Rose Bengal as photocatalyst, see: Fidaly K, Ceballos C, Falguières A, Sylla-Iyarreta Veitia M, Guy A, et al. Visible light photoredox organocatalysis: a fully transition metal-free direct asymmetric α-Alkylation of aldehydes. Green Chem. 2012;14:1293–7.10.1039/C7CS00509ASearch in Google Scholar

[57] (a) Arceo E, Jurberg ID, Alvarez-Fernández A, Melchiorre P. Photochemical activity of a key donor–acceptor complex can drive stereoselective catalytic α-alkylation of aldehydes. Nat Chem. 2013;5 750–6. (b) Filippini G, Silvi M, Melchiorre P. Enantioselective formal α-methylation and α-benzylation of aldehydes by means of photo-organocatalysis. Angew Chem Int Ed. 2017;56:4447–51. (c) Arceo E, Bahamonde A, Bergonzini G, Melchiorre P. Enantioselective direct α-alkylation of cyclic ketones by means of photo-organocatalysis. Chem Sci. 2014;5:2438–42.10.5151/chempro-15bmos-BMOS2013_201381913549Search in Google Scholar

[58] Silvi M, Melchiorre P. Enhancing the potential of enantioselective organocatalysis with light. Nature. 2018;554:41–9.10.1038/nature25175Search in Google Scholar PubMed

[59] Bahamonde A, Melchiorre P. Mechanism of the stereoselective α-alkylation of aldehydes driven by the photochemical activity of enamines. J Am Chem Soc. 2016;138:8019–30.10.1021/jacs.6b04871Search in Google Scholar PubMed PubMed Central

[60] Emmanuel MA, Greenberg NR, Oblinsky DG, Hyster TK. Accessing non-natural reactivity by irradiating nicotinamide-dependent enzymes with light. Nature. 2016;540:414–7.10.1038/nature20569Search in Google Scholar PubMed

[61] (a) Cambié D, Bottecchia C, Straathof NJ, Hessel V, Noël T. Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment. Chem Rev. 2016;116:10276–341. (b) Plutschack MB, Pieber B, Gilmore K, Seeberger PH. The Hitchhiker’s Guide to Flow Chemistry. Chem Rev. 2017;117:11796–893.10.1021/acs.chemrev.5b00707Search in Google Scholar PubMed

[62] Neumann M, Zeitler K. Application of Microflow Conditions to Visible Light Photoredox Catalysis. Org Lett. 2012;14:2658.10.1021/ol3005529Search in Google Scholar PubMed

[63] Speckmeier E, Fuchs PJ, Zeitler K. A synergistic LUMO lowering strategy using lewis acid catalysis in water to enable photoredox catalytic, functionalizing C-C cross-coupling of styrenes. Chem Sci. 2018;9:7096–103.10.1039/C8SC02106FSearch in Google Scholar

[64] (a) Chiusoli GP, Catellani M, Costa M, Motti E, Della Ca’ N, Maestri G. Catalytic C–C coupling through C-H arylation of arenes or heteroarenes. Coord Chem Rev. 2010;254:456. (b) Daugulis O. Palladium and copper catalysis in regioselective, intermolecular coupling of C-H and C-Hal bonds. Top Curr Chem. 2010;292:57. (c) Lyons TW, Sanford MS. Palladium-Catalyzed Ligand-Directed C-H Functionalization Reactions. Chem Rev. 2010;110:1147.10.1016/j.ccr.2009.07.023Search in Google Scholar

[65] Kalyani D, McMurtrey KB, Neufeldt SR, Sanford MS. Room-Temperature C–H Arylation: Merger of Pd-Catalyzed C–H Functionalization and Visible-Light Photocatalysis. J Am Chem Soc. 2011;133:18566.10.1021/ja208068wSearch in Google Scholar PubMed PubMed Central

[66] Yu WY, Sit WN, Zhou Z, Chan AS. Palladium-catalyzed decarboxylative Arylation of C−H bonds by Aryl acylperoxides. Org Lett. 2009;11:3174.10.1021/ol900756gSearch in Google Scholar PubMed

[67] (a) Milligan JA, Phelan JP, Badir SO, Molander GA. Alkyl carbon-carbon bond formation by nickel/photoredox cross-coupling. Angew Chem Int Ed. 2019;58:6152–63. (b) Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. The merger of transition metal and photocatalysis. Nature Rev Chem. 2017;1:0052. (c) Tellis JC, Kelly CB, Primer DN, Jouffroy M, Patel NR, Molander GA. Single-electron transmetalation via photoredox/nickel dual catalysis: unlocking a new paradigm for sp3–sp2 cross-coupling. Acc Chem Res. 2016;49:1429–39.10.1002/anie.201809431Search in Google Scholar PubMed PubMed Central

[68] Ye Y, Sanford MS. Merging visible-light photocatalysis and transition-metal catalysis in the copper-catalyzed trifluoromethylation of boronic acids with CF3I. J Am Chem Soc. 2012;134:9034.10.1021/ja301553cSearch in Google Scholar PubMed PubMed Central

[69] Yang S, Chen M, Tang P. Visible-light photoredox-catalyzed and copper-promoted trifluoromethoxylation of arenediazonium tetrafluoroborates. Angew Chem Int Ed. 2019;58:7840–4.10.1002/anie.201901447Search in Google Scholar PubMed

[70] (a) Fürstner A, Davies PW. Catalytic carbophilic activation: catalysis by platinum and gold π-acids. Angew Chem Int Ed. 2007;46:3410–49. (b) Li Z, Brouwer C, He C, Chem Rev. 2008;108:3239–65.10.1002/anie.200604335Search in Google Scholar PubMed

[71] (a) Hopinson MN, Tlahuext-Aca M, Glorius F. Merging visible light photoredox and gold catalysis. Acc Chem Res. 2016;49:2261–72. (b) Akram MO, Banerjee S,. Saswade SS, Bedib V, Pati NTP. Oxidant-free oxidative gold catalysis: the new paradigm in cross-coupling reactions Chem Commun. 2018;4:11069–83. (c) Zidan M, Rohe S, McCallum T, Barriault L. Recent advances in mono and binuclear gold photoredox catalysis. Catal Sci Technol. 2018;8:6019–28.Search in Google Scholar

[72] Shu XZ, Zhang M, He Y, Frei H, Toste FD. Dual visible light photoredox and gold-catalyzed arylative ring expansion. J Am Chem Soc. 2014;136:5844–7.10.1021/ja500716jSearch in Google Scholar PubMed PubMed Central

[73] Sahoo B, Hopkinson MN, Glorius F. Combining gold and photoredox catalysis: visible light-mediated oxy- and aminoarylation of alkenes. J Am Chem Soc. 2013;135:5505–8.10.1021/ja400311hSearch in Google Scholar PubMed

[74] Yan M, Lo JC, Edwards JT, Baran PS. Radicals: reactive intermediates with translational potential. J Am Chem Soc. 2016;138:12692–714.10.1021/jacs.6b08856Search in Google Scholar

[75] Minisci F, Bernardi R, Bertini F, Galli R, Perchinummo M. Nucleophilic character of alkyl radicals. VI. New convenient selective alkylation of heteroaromatic bases. Tetrahedron. 1971;27:3575–9.10.1016/S0040-4020(01)97768-3Search in Google Scholar

[76] Giese B. Formation of CC Bonds by addition of free radicals to alkenes. Angew Chem Int Ed. 1983;22:753–65.10.1002/anie.198307531Search in Google Scholar

[77] (a) Brimioulle R, Lenhart D, Maturi MM, Bach T. Enantioselective catalysis of photochemical reactions. Angew Chem Int Ed. 2015;54:3872–90. (b) Garrido-Castro AF, Maestro MC, Alemán J. Asymmetric induction in photocatalysis – discovering a new side to light-driven chemistryTetrahedron Lett. 2018;59:1286–94. (c) Meggers E. Asymmetric catalysis activated by visible light. Chem Commun. 2015, 51:3290–301.10.1002/anie.201411409Search in Google Scholar PubMed

[78] Lee KN, Ngai MY. Recent developments in transition-metal photoredox-catalysed reactions of carbonyl derivatives. Chem Commun. 2017;53:13093–112.10.1039/C7CC06287GSearch in Google Scholar

[79] Gentry EC, Knowles RR. Synthetic applications of proton-coupled electron transfer. Acc Chem Res. 2016;49:1546–56.10.1021/acs.accounts.6b00272Search in Google Scholar PubMed PubMed Central

[80] Neumann M, Zeitler K. A cooperative hydrogen-bond-promoted organophotoredox catalysis strategy for highly diastereoselective, reductive enone cyclization. Chem Eur J. 2013;19:6950–5.10.1002/chem.201204573Search in Google Scholar PubMed

[81] (a) Tarantino KT, Liu P, Knowles RR. Catalytic Ketyl-Olefin cyclizations enabled by proton-coupled electron transfer. J Am Chem Soc. 2013;135:10022–5. (b) Rono LJ, Yayla HG, Wang DY, Armstrong MF, Knowles RR. Enantioselective photoredox catalysis enabled by proton-coupled electron transfer: development of an asymmetric aza-pinacol cyclization. J Am Chem Soc. 2013;135:17735–8.10.1021/ja404342jSearch in Google Scholar PubMed

[82] Du J, Espelt LR, Guzei IA, Yoon TP. Photocatalytic reductive cyclizations of enones: divergent reactivity of photogenerated radical and radical anion intermediates. Chem Sci. 2011;2:2115–9.10.1039/c1sc00357gSearch in Google Scholar PubMed PubMed Central

[83] (a) Yoon TP. Visible light photocatalysis: the development of photocatalytic radical ion cycloadditions. ACS Catal. 2013;3:895–902. (b) Yoon TP. Photochemical stereocontrol using tandem photoredox-chiral lewis acid catalysis. Acc Chem Res. 2013;49:2307–15.10.1021/cs400088eSearch in Google Scholar PubMed PubMed Central

[84] Du JN, Skubi KL, Schultz DM, Yoon TP. A dual-catalysis approach To enantioselective 2+2 photocycloadditions using visible light. Science 2014;344:392–6.10.1126/science.1251511Search in Google Scholar PubMed PubMed Central

[85] Amador AG, Sherbrook EM, Yoon TP. Enantioselective photocatalytic 3+2 cycloadditions of aryl cyclopropyl ketones. J Am Chem Soc. 2016;138:4722–5.10.1021/jacs.6b01728Search in Google Scholar PubMed PubMed Central

[86] Lee KN, Lei Z, Ngai MY. β-Selective reductive coupling of alkenylpyridines with aldehydes and imines via synergistic lewis acid/photoredox catalysis. J Am Chem Soc. 2017;139:5003–6.10.1021/jacs.7b01373Search in Google Scholar PubMed PubMed Central

[87] Leifert D, Studer A. The persistent radical effect in organic synthesis. Angew Chem Int Ed. 2019;58. DOI: 10.1002/anie.201903726.Search in Google Scholar PubMed

[88] Liu Y, Liu X, Li J, Zhao X, Quiao B, Jiang Z. Catalytic enantioselective radical coupling of activated ketones with N-aryl glycines. Chem Sci. 2018;9:8094–8.10.1039/C8SC02948BSearch in Google Scholar

[89] Nakajima K, Miyake Y, Nishibayashi Y. Synthetic utilization of α-Aminoalkyl radicals and related species in visible light photoredox catalysis. Acc Chem Res. 2016;49:1946–56.10.1021/acs.accounts.6b00251Search in Google Scholar PubMed

[90] Bahamonde A, Murphy JJ, Savarese M, Brémond É, Cavalli A, Melchiorre P. Studies on the enantioselective iminium Ion trapping of radicals triggered by an electron-relay mechanism. J Am Chem Soc. 2017;139:4559–67.10.1021/jacs.7b01446Search in Google Scholar PubMed PubMed Central

[91] Espelt LR, McPherson IS, Wiensch EM, Yoon TP. Enantioselective conjugate additions of α-amino radicals via cooperative photoredox and lewis acid catalysis. J Am Chem Soc. 2017;137:2452–5.10.1021/ja512746qSearch in Google Scholar PubMed PubMed Central

[92] (a) Pirnot MT, Rankic DA, Martin DB, MacMillan DW. Photoredox activation for the direct β-arylation of ketones and aldehydes. Sci 2013;339:1593–6. (b) Jeffrey JL. Petronijević FR, MacMillan DW. Selective radical−radical cross-couplings: design of a formal β-mannich reaction. J Am Chem Soc. 2015;137:8404–7.10.1126/science.1232993Search in Google Scholar PubMed PubMed Central

[93] Petronijević FR, Nappi M, MacMillan DW. Direct β-functionalization of cyclic ketones with aryl ketones via the merger of photoredox and organocatalysis. J Am Chem Soc. 2013;135:18323–6.10.1021/ja410478aSearch in Google Scholar PubMed PubMed Central

[94] Terrett JA, Clift MD, MacMillan DW. Direct β-alkylation of aldehydes via photoredox organocatalysis. J Am Chem Soc. 2014;136:6858–61.10.1021/ja502639eSearch in Google Scholar PubMed PubMed Central

[95] Matsui JK, Lang SB, Heitz DR, Molander GA. Photoredox-mediated routes to radicals: the value of catalytic radical generation in synthetic methods development. ACS Catal. 2017;7:2563–75.10.1021/acscatal.7b00094Search in Google Scholar PubMed PubMed Central

[96] Tellis JC, Primer DN, Molander GA. Single-electron transmetalation in organoboron cross-coupling by photoredox/nickel dual catalysis. Science 2014;345:433–6.10.1126/science.1253647Search in Google Scholar PubMed PubMed Central

[97] Zuo Z, Ahneman DT, Chut L, Terrett JA, Doyle AG, MacMillan DW. Merging photoredox with nickel catalysis: coupling of α-Carboxyl sp3-carbons with aryl halides. Science 2014;345:437–40.10.1002/chin.201502039Search in Google Scholar

[98] Gutierrez O, Tellis JC, Primer DN, Molander GA, Kozlowski MC. Nickel-catalyzed cross-coupling of photoredox-generated radicals: uncovering a general manifold for stereoconvergence in nickel-catalyzed cross-couplings. J Am Chem Soc. 2015;137:4896–9.10.1021/ja513079rSearch in Google Scholar PubMed PubMed Central

[99] (a) Ahneman DT, AG D. C–H functionalization of amines with aryl halides by nickel-photoredox catalysis. Chem Sci. 2016;7:7002–6. (b) Shaw MH, Shurtleff VW, Terrett JA, Cuthbertson JD, MacMillan DW. Native functionality in triple catalytic cross-coupling: sp3 C–H bonds as latent nucleophiles. Science 2016;352:1304–1308.10.1039/C6SC02815BSearch in Google Scholar PubMed PubMed Central

[100] (a) Shields BJ, Doyle AG. Direct C(sp3)−H cross coupling enabled by catalytic generation of chlorine radicals. J Am Chem Soc. 2016;138:12719–22. (b) Nielsen MK, Shields BJ, Liu J, Williams MJ, Zacuto MJ, Doyle AG. Mild, redox-neutral formylation of aryl chlorides via photocatalytic generation of chlorine radicals. Angew Chem Int Ed. 2017;56:7191–4.10.1021/jacs.6b08397Search in Google Scholar PubMed PubMed Central

[101] (a) Paul A, Smith MD, Vannucci AK. Photoredox-assisted reductive cross-coupling: mechanistic insight into catalytic aryl–alkyl cross-couplings. J Org Chem. 2017;82:1996–2003. (b) Peng L, Li Z, Yin G. Photochemical nickel-catalyzed reductive migratory cross-coupling of alkyl bromides with aryl bromides. Org Lett. 2018;20:1880–3. (c) Duan Z, Li W, Lei A. Nickel-catalyzed reductive cross-coupling of aryl bromides with alkyl bromides: Et3N as the terminal reductant. Org Lett. 2016;18:4012–5.10.1021/acs.joc.6b02830Search in Google Scholar PubMed

[102] Yi J, Badir SO, Kammer LM, Ribagorda M, Molander GA. Deaminative reductive arylation enabled by nickel/photoredox dual catalysis. Org Lett. 2019;21:3346–51.10.1021/acs.orglett.9b01097Search in Google Scholar PubMed PubMed Central

[103] Strieth-Kalthoff F, James MJ, Teders M, Pitzer L, Glorius F. Energy transfer catalysis mediated by visible light: principles, applications, directions. Chem Soc Rev. 2018;47:7190–202.10.1039/C8CS00054ASearch in Google Scholar

[104] Capaldo L, Ravelli D. Hydrogen atom transfer (HAT): A versatile strategy for substrate activation in photocatalyzed organic synthesis. Eur J Org Chem. 2017;2056–71.10.1002/ejoc.201601485Search in Google Scholar PubMed PubMed Central

[105] Yin Y, Dai Y, Jia H, Li J, Bu L, Qiao B. et al. Conjugate addition-enantioselective protonation of N-aryl glycines to alpha-branched 2-vinylazaarenes via cooperative photoredox and asymmetric catalysis. J Am Chem Soc. 2018;140:6083–7.10.1021/jacs.8b01575Search in Google Scholar PubMed

[106] (a) Studer A, Curran DP. Catalysis of radical reactions: a radical chemistry perspective Angew Chem Int Ed. 2016;55:58–102. (b) Buzzetti L, Crisenza GE, Melchiorre P. Mechanistic studies in photocatalysis. Angew Chem Int Ed. 2019;58:3730–47. (c) Cismesia MA, Yoon TP. Chem Sci. 2015;6:5426–34.10.1002/anie.201505090Search in Google Scholar PubMed

Published Online: 2019-12-06

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/psr-2017-0173/html?lang=en
Scroll to top button