Home The problem of fouling in submerged membrane bioreactors – Model validation and experimental evidence
Article
Licensed
Unlicensed Requires Authentication

The problem of fouling in submerged membrane bioreactors – Model validation and experimental evidence

  • Irene Tsibranska EMAIL logo , Serafim Vlaev and Bartosz Tylkowski
Published/Copyright: January 5, 2018
Become an author with De Gruyter Brill

Abstract

Integrating biological treatment with membrane separation has found a broad area of applications and industrial attention. Submerged membrane bioreactors (SMBRs), based on membrane modules immersed in the bioreactor, or side stream ones connected in recycle have been employed in different biotechnological processes for separation of thermally unstable products. Fouling is one of the most important challenges in the integrated SMBRs. A number of works are devoted to fouling analysis and its treatment, especially exploring the opportunity for enhanced fouling control in SMBRs. The main goal of the review is to provide a comprehensive yet concise overview of modeling the fouling in SMBRs in view of the problematics of model validation, either by real system measurements at different scales or by analysis of the obtained theoretical results. The review is focused on the current state of research applying computational fluid dynamics (CFD) modeling techniques.

Funding statement: This work was financially supported by the National Science Fund at the Bulgarian Ministry of Education and Science, Contract No DN 07/11/15.12.2016.

References

[1] Brannock MWD, De Wever H, Wang Y, Leslie G. CFD Simulations of MBRs: inside submerged versus outside submerged membranes. Desalination. 2009;236:244–51.10.1016/j.desal.2007.10.073Search in Google Scholar

[2] He Y, Bagley DM, Leung KT, Liss SN, Liao B-Q. Recent advances in membrane technologies for biorefining and bioenergy production. Biotechnol Adv. 2012;30:817–58.10.1016/j.biotechadv.2012.01.015Search in Google Scholar PubMed

[3] Wibisono Y, Cornelissen ER, Kemperman AJB, Van Der Meer WGJ, Nijmeijer K. Two-phase flow in membrane processes: a technology with a future. J Memb Sci. 2014;453:566–602.10.1016/j.memsci.2013.10.072Search in Google Scholar

[4] Judd S. The status of membrane bioreactor technology. Trends Biotechnol. 2008;26(2):109–16.10.1016/j.tibtech.2007.11.005Search in Google Scholar PubMed

[5] Mutamim NSA, Noor ZZ, Hassan MAA, Yuniarto A, Olsson G. Membrane bioreactor: applications and limitations in treating high strength industrial wastewater. Chem Eng J. 2013;225:109–19.10.1016/j.cej.2013.02.131Search in Google Scholar

[6] Mutamim NSA, Noor ZZ, Hassan MAA, Olsson G. Application of membrane bioreactor technology in treating high strength industrial wastewater: a performance review. Desalination. 2012;305:1–11.10.1016/j.desal.2012.07.033Search in Google Scholar

[7] Tambosi J, De Sena R, Favier M, Gebhardt W, José H, Schröder H, et al. Removal of pharmaceutical compounds in membrane bioreactors (MBR) applying submerged membranes. Desalination. 2010;261:148–56.10.1016/j.desal.2010.05.014Search in Google Scholar

[8] Nguyen LN, Hai FI, Kang J, Price WE, Nghiem LD. Removal of emerging trace organic contaminants by MBR-based hybrid treatment processes. Int Biodeterior Biodegradation. 2013;85:474–82.10.1016/j.ibiod.2013.03.014Search in Google Scholar

[9] Bakonyi P, Nemestóthy N, Simon V, Bélafi-Bakó K. Fermentative hydrogen production in anaerobic membrane bioreactors: a review. Bioresour Technol. 2014;156:357–63.10.1016/j.biortech.2014.01.079Search in Google Scholar PubMed

[10] Mohammadmahdi M, Stickel J, Wickramasinghe SR. Investigation of a submerged membrane reactor for continuous biomass hydrolysis. Food Bioprod Process. 2015;96:189–97.10.1016/j.fbp.2015.07.001Search in Google Scholar

[11] Jiang H, Qu Z, Li Y, Huang J, Chen R, Xing W. One-step semi-continuous cyclohexanone production via hydrogenation of phenol in a submerged ceramic membrane reactor. Chem Eng J. 2016;284:724–32.10.1016/j.cej.2015.09.037Search in Google Scholar

[12] Dosta J, Nieto JM, Vila J, Grifoll M, Mata-Álvarez J. Phenol removal from hypersaline wastewaters in a membrane biological reactor (MBR): operation and microbiological characterisation. Bioresour Technol. 2011;102(5):4013–20.10.1016/j.biortech.2010.11.123Search in Google Scholar PubMed

[13] Andrić P, Meyer AS, Jensen PA, Dam-Johansen K. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis II. Quantification of inhibition and suitability of membrane reactors. Biotechnol Adv. 2010;28:407–25.10.1016/j.biotechadv.2010.02.005Search in Google Scholar PubMed

[14] Sengur R, Deveci G, Kaya R, Turken T, Guclu S, Imer DY, et al. CFD modeling of submerged membrane bioreactors (sMBRs): a review. Desalinat Water Treatment. 2015;55(7):1747–61.10.1080/19443994.2014.934737Search in Google Scholar

[15] Naessens W, Maere T, Ratkovich N, Vedantam S, Nopens I. Critical review of membrane bioreactor models – Part 2: hydrodynamic and integrated models. Bioresour Technol. 2012;122:107–18.10.1016/j.biortech.2012.05.071Search in Google Scholar PubMed

[16] Boyle-Gotla A, Jensen PD, Yap SD, Pidou M, Wang Y, Batstone DJ. Dynamic multidimensional modelling of submerged membrane bioreactor fouling. J Memb Sci. 2014;467:153–61.10.1016/j.memsci.2014.05.028Search in Google Scholar

[17] Ndinisa NV, Fane AG, Wiley DE, Fletcher DF. Fouling control in a submerged flat sheet membrane system: part II—two‐phase flow characterization and CFD simulations. Sep Sci Technol. 2006;41(7):1411–45.10.1080/01496390600633915Search in Google Scholar

[18] Vargas A, Moreno-Andrade I, Buitrón G. Controlled backwashing in a membrane sequencing batch reactor used for toxic wastewater treatment. J Memb Sci. 2008;320(1):185–90.10.1016/j.memsci.2008.03.073Search in Google Scholar

[19] Trad Z, Vial C, Fontaine JP, Larroche C. Modeling of hydrodynamics and mixing in a submerged membrane bioreactor. Chem Eng J. 2015;282:77–90.10.1016/j.cej.2015.04.119Search in Google Scholar

[20] Yan X, Wu Q, Sun J, Liang P, Zhang X, Xiao K, et al. Hydrodynamic optimization of membrane bioreactor by horizontal geometry modification using computational fluid dynamics. Bioresour Technol. 2016;200:328–34.10.1016/j.biortech.2015.10.050Search in Google Scholar PubMed

[21] Cui ZF, Chang S, Fane AG. The use of gas bubbling to enhance membrane processes. J Memb Sci. 2003;221(1):1–35.10.1016/S0376-7388(03)00246-1Search in Google Scholar

[22] Braak E, Alliet M, Schetrite S, Albasi C. Aeration and hydrodynamics in submerged membrane bioreactors. J Memb Sci. 2011;379(1):1–18.10.1016/j.memsci.2011.06.004Search in Google Scholar

[23] Wei P, Zhang K, Gao W, Kong L, Field R. CFD modeling of hydrodynamic characteristics of slug bubble flow in a flat sheet membrane bioreactor. J Memb Sci. 2013;445:15–24.10.1016/j.memsci.2013.05.036Search in Google Scholar

[24] Qi C, Wang J, Lin Y. New insight into influence of mechanical stirring on membrane fouling of membrane bioreactor: mixed liquor properties and hydrodynamic conditions. Bioresour Technol. 2016;211:654–63.10.1016/j.biortech.2016.03.143Search in Google Scholar PubMed

[25] Liu X, Wang Y, Waite TD, Leslie G. Fluid structure interaction analysis of lateral fibre movement in submerged membrane reactors. J Memb Sci. 2016;504:240–50.10.1016/j.memsci.2015.12.056Search in Google Scholar

[26] Du X, Qu FS, Liang H, Li K, Bai LM, Li GB. Control of submerged hollow fiber membrane fouling caused by fine particles in photocatalytic membrane reactors using bubbly flow: shear stress and particle forces analysis. Separation Purif Technol. 2017;172:130–39.10.1016/j.seppur.2016.08.011Search in Google Scholar

[27] Meng L, Cheng JC, Jiang H, Yang C, Xing WH, Jin WQ. Design and analysis of a submerged membrane reactor by CFD simulation. Chem Eng Technol. 2013;36(11):1874–82.10.1002/ceat.201300206Search in Google Scholar

[28] Vlaev SD, Tsibranska I. Shear stress generated by radial flow impellers at bioreactor-integrated membranes. Theor Foundations Chem Eng. 2016;50(6):959–68.10.1134/S004057951606018XSearch in Google Scholar

[29] Brannock M, Wang Y, Leslie G. Mixing characterisation of full-scale membrane bioreactors: CFD modelling with experimental validation. Water Res. 2010;44(10):3181–91.10.1016/j.watres.2010.02.029Search in Google Scholar PubMed

[30] Chen C, Bin L, Tang B, Huang S, Fu F, Chen Q, et al. Cultivating granular sludge directly in a continuous-flow membrane bioreactor with internal circulation. Chem Eng J. 2017;309:108–17.10.1016/j.cej.2016.10.034Search in Google Scholar

[31] Le-Clech P, Chen V, Fane TA. Fouling in membrane bioreactors used in wastewater treatment. J Memb Sci. 2006;284(1):17–53.10.1016/j.memsci.2006.08.019Search in Google Scholar

[32] Wicklein E, Batstone DJ, Ducoste J, Laurent J, Griborio A, Wicks J, et al. Good modelling practice in applying computational fluid dynamics for WWTP modelling. Water Sci Technol. 2016;73(5):969–82.10.2166/wst.2015.565Search in Google Scholar PubMed

[33] Bentzen TR, Ratkovich N, Rasmussen MR, Madsen S, Jensen JC, Bak SN Numerical modelling of non-Newtonian fluid in a rotational cross-flow MBR. In: 6th IWA Specialist Conference on Membrane Technology for Water and Wastewater Treatment, 2011.Search in Google Scholar

[34] Karpinska AM, Bridgeman J. CFD-aided modelling of activated sludge systems–A critical review. Water Res. 2016;88:861–79.10.1016/j.watres.2015.11.008Search in Google Scholar PubMed

[35] Liu X, Wang Y, Waite TD, Leslie G. Numerical simulation of bubble induced shear in membrane bioreactors: effects of mixed liquor rheology and membrane configuration. Water Res. 2015;75:131–45.10.1016/j.watres.2015.02.009Search in Google Scholar PubMed

[36] Judd SJ, Le-Clech P, Taha T, Cui ZF. Theoretical and experimental representation of a submerged membrane bio-reactor system. Membr Technol. 2001;135:4–9.10.1016/S0958-2118(01)80232-9Search in Google Scholar

[37] Yang J, Vedantam S, Spanjers H, Nopens I, Van Lier JB. Analysis of mass transfer characteristics in a tubular membrane using CFD modeling. Water Res. 2012;46:4705–12.10.1016/j.watres.2012.06.028Search in Google Scholar PubMed

[38] Yang M, Yu D, Liu M, Zheng L, Zheng X, Wei Y, et al. Optimization of MBR hydrodynamics for cake layer fouling control through CFD simulation and RSM design. Bioresour Technol. 2017;227:102–11.10.1016/j.biortech.2016.12.027Search in Google Scholar PubMed

[39] Kurita T, Kimura K, Watanabe Y. Energy saving in the operation of submerged MBRs by the insertion of baffles and the introduction of granular materials. Separation Purif Technol. 2015;141:207–13.10.1016/j.seppur.2014.11.025Search in Google Scholar

[40] Ding A, Liang H, Li G, Derlon N, Szivak I, Morgenroth E, et al. Impact of aeration shear stress on permeate flux and fouling layer properties in a low pressure membrane bioreactor for the treatment of grey water. J Memb Sci. 2016;510:382–90.10.1016/j.memsci.2016.03.025Search in Google Scholar

[41] Praneeth K, Moulik S, Vadthya P, Bhargava SK, Tardio J, Sridhar S. Performance assessment and hydrodynamic analysis of a submerged membrane bioreactor for treating dairy industrial effluent. J Hazard Mater. 2014;274:300–13.10.1016/j.jhazmat.2014.04.030Search in Google Scholar PubMed

[42] Shimizu Y, Uryu K, Okuno YI, Watanabe A. Cross-flow microfiltration of activated sludge using submerged membrane with air bubbling. J Ferment Bioeng. 1996;81(1):55–60.10.1016/0922-338X(96)83120-5Search in Google Scholar

[43] Böhm L, Drews A, Prieske H, Bérubé PR, Kraume M. The importance of fluid dynamics for MBR fouling mitigation. Bioresour Technol. 2012;122:50–61.10.1016/j.biortech.2012.05.069Search in Google Scholar PubMed

[44] Ghidossi R, Veyret D, Moulin P. Computational fluid dynamics applied to membranes: state of the art and opportunities. Chem Eng Process. 2006;45:437–54.10.1016/j.cep.2005.11.002Search in Google Scholar

[45] Germain E, Stephenson T, Pearce P. Biomass characteristics and membrane aeration: toward a better understanding of membrane fouling in submerged membrane bioreactors (MBRs). Biotechnol Bioeng. 2005;90:316–22.10.1002/bit.20411Search in Google Scholar

[46] Sofia A, Ng WJ, Ong SL. Engineering design approaches for minimum fouling in submerged MBR. Desalination. 2004;160:67–74.10.1016/S0011-9164(04)90018-5Search in Google Scholar

[47] Hong H, Zhang M, He Y, Chen J, Lin H. Fouling mechanisms of gel layer in a submerged membrane bioreactor. Bioresour Technol. 2014;166:295–302.10.1016/j.biortech.2014.05.063Search in Google Scholar PubMed

[48] Wu J, He C, Jiang X, Zhang M. Modeling of the submerged membrane bioreactor fouling by the combined pore constriction, pore blockage and cake formation mechanisms. Desalination. 2011;279(1):127–34.10.1016/j.desal.2011.05.069Search in Google Scholar

[49] Zhang M, Peng W, Chen J, He Y, Ding L, Wang A, et al. A new insight into membrane fouling mechanism in submerged membrane bioreactor: osmotic pressure during cake layer filtration. Water Res. 2013;47(8):2777–86.10.1016/j.watres.2013.02.041Search in Google Scholar PubMed

[50] Zarragoitia-González A, Schetrite S, Alliet M, Jáuregui-Haza U, Albasi C. Modelling of submerged membrane bioreactor: conceptual study about link between activated slugde biokinetics, aeration and fouling process. J Memb Sci. 2008;325(2):612–24.10.1016/j.memsci.2008.08.037Search in Google Scholar

[51] Li X, Mo Y, Li J, Guo W, Ngo HH. In-situ monitoring techniques for membrane fouling and local filtration characteristics in hollow fiber membrane processes: a critical review. J Memb Sci. 2017;528:187–200.10.1016/j.memsci.2017.01.030Search in Google Scholar

[52] Aslam M, Charfi A, Lesage G, Heran M, Kim J. Membrane bioreactors for wastewater treatment: a review of mechanical cleaning by scouring agents to control membrane fouling. Chem Eng J. 2017;307:897–913.10.1016/j.cej.2016.08.144Search in Google Scholar

[53] Fane AG. Submerged membranes. In: Li NN, Fane AG, Ho WS, Matsuura T, editors.. Advanced membrane technology and applications. New Jersey: Wiley, 2008: 239–70.10.1002/9780470276280.ch10Search in Google Scholar

[54] Menniti A, Kang S, Elimelech M, Morgenroth E. Influence of shear on production of extracellular polymeric substances in membrane bioreactors. Water Res. 2009;43(17):4305–15.10.1016/j.watres.2009.06.052Search in Google Scholar PubMed

[55] Parvareh A, Rahimi M, Madaeni SS, Alsairafi AA. Experimental and CFD study on the role of fluid flow pattern on membrane permeate flux. Chin J Chem Eng. 2011;19(1):18–25.10.1016/S1004-9541(09)60171-3Search in Google Scholar

[56] Meng F, Zhang S, Oh Y, Zhou Z, Shin HS, Chae SR. Fouling in membrane bioreactors: an updated review. Water Res. 2017;114:151–80.10.1016/j.watres.2017.02.006Search in Google Scholar PubMed

[57] Ratkovich N, Hunze M, Nopens I. Hydrodynamic study of a hollow fiber membrane system using experimentally and numerically derived surface shear stresses. Multiphase Sci Technol. 2012;24(1):47–66.10.1615/MultScienTechn.v24.i1.20Search in Google Scholar

[58] Ratkovich N, Bentzen TR. Comparison of four types of membrane bioreactor systems in terms of shear stress over the membrane surface using computational fluid dynamics. Water Sci Technol. 2013;68(12):2534–44.10.2166/wst.2013.515Search in Google Scholar PubMed

[59] Duc ENC, Fournier L, Levecq C, Lesjean B, Grelier P, Tazi-Pain A. Local hydrodynamic investigation of the aeration in a submerged hollow fibre membranes cassette. J Memb Sci. 2008;321:264–71.10.1016/j.memsci.2008.05.001Search in Google Scholar

[60] Khalili A, Mehrnia MR, Mostoufi N, Sarrafzadeh MH. Analyze and control fouling in an airlift membrane bioreactor: CFD simulation and experimental studies. Process Biochem. 2011;46:1138–45.10.1016/j.procbio.2011.01.036Search in Google Scholar

[61] Jafarkhani M, Moraveji MK, Davarnejad R, Moztarzadeh F, Mozafari M. Three-dimensional simulation of turbulent flow in a membrane tube filled with semi-circular baffles. Desalination. 2012;294:8–16.10.1016/j.desal.2012.02.031Search in Google Scholar

[62] Ahmed S, Seraji MT, Jahedi J, Hashib MA. CFD simulation of turbulence promoters in a tubular membrane channel. Desalination. 2011;276:191–98.10.1016/j.desal.2011.03.045Search in Google Scholar

[63] Prieske H, Drews A, Kraume M. Prediction of the circulation velocity in a membrane bioreactor. Desalination. 2008;231:219–26.10.1016/j.desal.2007.12.010Search in Google Scholar

[64] Marcos B, Moresoli C, Skorepova J, Vaughan B. CFD modeling of a transient hollow fiber ultrafiltration system for protein concentration. J Memb Sci. 2009;337(1–2):136–44.10.1016/j.memsci.2009.03.036Search in Google Scholar

[65] Liang YY, Fimbres-Weihs G, Setiawan R, Wiley D. CFD modelling of unsteady electro-osmotic permeate flux enhancement in membrane systems. Chem Eng Sci. 2016;146:189–98.10.1016/j.ces.2016.02.028Search in Google Scholar

[66] Ameur H, Sahel D. Effect of the baffle design and orientation on the efficiency of a membrane tube. Chem Eng Res Des. 2017;117:500–08.10.1016/j.cherd.2016.11.005Search in Google Scholar

[67] Ratkovich N, Chan CCV, Berube PR, Nopens I. Experimental study and CFD modelling of a two-phase slug flow for an airlift tubular membrane. Chem Eng Sci. 2009;64:3545–720.10.1016/j.ces.2009.04.048Search in Google Scholar

[68] Faridirad F, Zourmand Z, Kasiri N, Moghaddam MK, Mohammadi T. Modeling of suspension fouling in nanofiltration. Desalination. 2014;346:80–90.10.1016/j.desal.2014.05.014Search in Google Scholar

[69] Du X, Qu F, Liang H, Li K, Chang H, Li G. Cake properties in ultrafiltration of TiO2 fine particles combined with HA: in situ measurement of cake thickness by fluid dynamic gauging and CFD calculation of imposed shear stress for cake controlling. Environ Sci Pollut Res. 2016;23(9):8806–18.10.1007/s11356-015-5984-3Search in Google Scholar PubMed

[70] Ghidossi R, Carretier E, Veyret D, Dhaler D, Moulin P. Optimizing the compacity of ceramic membranes. J Memb Sci. 2010;360:483–92.10.1016/j.memsci.2010.05.050Search in Google Scholar

[71] Rahimi M, Madaeni SS, Abolhasani M, Alsairafi AA. CFD and experimental studies of fouling of a microfiltration membrane. Chem Eng Processing: Intensification. 2009;48:1405–13.10.1016/j.cep.2009.07.008Search in Google Scholar

[72] Alexiadis A, Wiley DE, Vishnoi A, Lee RHK, Fletcher DF, Bao J. CFD modelling of reverse osmosis membrane flow and validation with experimental results. Desalination. 2007;217(1–3):242–50.10.1016/j.desal.2007.02.014Search in Google Scholar

[73] Liang YY, Chapman MB, Weihs GAF GA, Wiley DE. CFD modelling of electro-osmotic permeate flux enhancement on the feed side of a membrane module. J Memb Sci. 2014;470:378–88.10.1016/j.memsci.2014.07.039Search in Google Scholar

[74] Willems P, Deen NG, Kemperman AJB, Lammertink RGH, Wessling M, Van Sint Annaland M, et al. van der Meer WGJ. Use of particle imaging velocimetry to measure liquid velocity profiles in liquid and liquid/gas flows through spacer filled channels. J Memb Sci. 2010;362:143–53.10.1016/j.memsci.2010.06.029Search in Google Scholar

[75] Lee K-J, Wu R-M. Simulation of resistance of cross-flow microfiltration and force analysis on membrane surface. Desalination. 2008;233(1–3):239–46.10.1016/j.desal.2007.09.048Search in Google Scholar

[76] Karabelas AJ, Kostoglou M, Koutsou CP. Modeling of spiral wound membrane desalination modules and plants – review and research priorities. Desalination. 2015;356:165–86.10.1016/j.desal.2014.10.002Search in Google Scholar

[77] Li M, Bui T, Chao S. Three-dimensional CFD analysis of hydrodynamics and concentration polarization in an industrial RO feed channel. Desalination. 2016;397:194–204.10.1016/j.desal.2016.07.005Search in Google Scholar

[78] Zhuang L, Guo H, Da G, Xu Z-L. Effect of the inlet manifold on the performance of a hollow fiber membrane module- A CFD study. J Memb Sci. 2017;526:73–93.10.1016/j.memsci.2016.12.018Search in Google Scholar

[79] Kaya R, Deveci G, Turken T, Sengur R, Guclu S, Koseoglu-Imer DY, et al. Analysis of wall shear stress on the outside-in type hollow fiber membrane modules by CFD simulation. Desalination. 2014;351:109–19.10.1016/j.desal.2014.07.033Search in Google Scholar

[80] Fimbres-Weihs GA, Wiley DE. Review of 3D CFD modeling of flow and mass transfer in narrow spacer-filled channels in membrane modules. Chem Eng Processing: Intensification. 2010;49(7):759–81.10.1016/j.cep.2010.01.007Search in Google Scholar

[81] Li Y-L, Tung K-L. CFD simulation of fluid flow through spacer-filled membrane module: selecting suitable cell types for periodic boundary conditions. Desalination. 2008;233(1–3):351–58.10.1016/j.desal.2007.09.061Search in Google Scholar

[82] Vinther F, Pinelo M, Brøns M, Jonsson G, Meyer AS. Predicting optimal back-shock times in ultrafiltration hollow fiber modules II: effect of inlet flow and concentration dependent viscosity. J Memb Sci. 2015;493:486–95.10.1016/j.memsci.2015.06.029Search in Google Scholar

[83] Setiawan R, Ratnayake P, Bao J, Fimbres-Weihs GA, Wiley DE. Reduced-order model for the analysis of mass transfer enhancement in membrane channel using electro-osmosis. Chem Eng Sci. 2015;122:86–96.10.1016/j.ces.2014.09.008Search in Google Scholar

[84] Zourmand Z, Faridirad F, Kasiri N, Mohammadi T. Mass transfer modeling of desalination through an electrodialysis cell. Desalination. 2015;359:41–51.10.1016/j.desal.2014.12.008Search in Google Scholar

[85] Xie P, Murdoch LC, Ladner DA. Hydrodynamics of sinusoidal spacers for improved reverse osmosis performance. J Memb Sci. 2014;453:92–99.10.1016/j.memsci.2013.10.068Search in Google Scholar

[86] Kawachale N, Kirpalani DM, Kumar A. A mass transport and hydrodynamic evaluation of membrane separation cell. Chem Eng Processing: Intensification. 2010;49:680–88.10.1016/j.cep.2009.08.001Search in Google Scholar

[87] Amokrane M, Sadaoui D, Koutsou CP, Karabelas AJ, Dudeck M. A study of flow field and concentration polarization evolution in membrane channels with two-dimensional spacers during water desalination. J Memb Sci. 2015;477(1):139–50.10.1016/j.memsci.2014.11.029Search in Google Scholar

[88] Sarkar D, Datta D, Sen D, Bhattacharjee C. Simulation of continuous stirred rotating disk-membrane module: an approach based on surface renewal theory. Chem Eng Sci. 2011;66(12):2554–67.10.1016/j.ces.2011.02.056Search in Google Scholar

[89] Krzeminski P, Leverette L, Malamis S, Katsou E. Membrane bioreactors–a review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects. J Memb Sci. 2017;527:207–27.10.1016/j.memsci.2016.12.010Search in Google Scholar

[90] Pimentel GA, Almeida P, Hantson AL, Rapaport A, Wouwe AV. Experimental validation of a simple dynamic model of a laboratory scale recirculating aquaculture system fitted with a submerged membrane bioreactor. Biochem Eng J. 2017;122:1–12.10.1016/j.bej.2017.02.005Search in Google Scholar

[91] Robles A, Ruano MV, Ribes J, Seco A, Ferrer J. A filtration model applied to submerged anaerobic MBRs (SAnMBRs). J Memb Sci. 2013;444:139–47.10.1016/j.memsci.2013.05.021Search in Google Scholar

[92] Kang C, Hua J, Lou J, Liu W, Jordan E. Bridging the gap between membrane bio-reactor (MBR) pilot and plant studies. J Memb Sci. 2008;325:861–71.10.1016/j.memsci.2008.09.016Search in Google Scholar

[93] Liu X, Wang Y, Waite TD, Leslie G. Numerical simulations of impact of membrane module design variables on aeration patterns in membrane bioreactors. J Memb Sci. 2016;520:201–13.10.1016/j.memsci.2016.07.011Search in Google Scholar

[94] Oberkampf WL, Trucano TG, Hirsch C. Verification, validation, and predictive capability in computational engineering and physics. Appl Mechanics Rev. 2004;57(5):345–84.10.1115/1.1767847Search in Google Scholar

[95] Stern F, Wilson RV, Coleman HW, Paterson EG. Comprehensive approach to verification and validation of CFD simulations-Part 1: methodology and procedures. Trans-Am Soc Mech Engi J Fluids Eng. 2001;123(4):793–802.10.1115/1.1412235Search in Google Scholar

[96] Fimbres Weihs GA, Wiley DE. CFD analysis of tracer response technique under cake-enhanced osmotic pressure. J Memb Sci. 2014;449:38–49.10.1016/j.memsci.2013.08.015Search in Google Scholar

[97] Monfared MA, Kasiri N, Salahi A, Mohammadi T. CFD simulation of baffles arrangement for gelatin-water ultrafiltration in rectangular channel. Desalination. 2012;284:288–96.10.1016/j.desal.2011.09.014Search in Google Scholar

[98] Abbasi Monfared M, Kasiri N, Salahi A, Mohammadi T. Modeling ultrafiltration of gelatin–water suspension by computational fluid dynamics. Chemichal Eng Res Des. 2012;90(8):1098–104.10.1016/j.cherd.2011.11.010Search in Google Scholar

[99] Brannock MWD, Wang Y, Leslie G. Evaluation of full-scale membrane bioreactor mixing performance and the effect of membrane configuration. J Memb Sci. 2010;350:101–08.10.1016/j.memsci.2009.12.016Search in Google Scholar

[100] Koutsou CP, Yiantsios SG, Karabelas AJ. Effects of spacer geometrical characteristics and Schmidt number. J Memb Sci. 2009;326:234–51.10.1016/j.memsci.2008.10.007Search in Google Scholar

[101] Martinelli L, Guigui C, Line A. Characterisation of hydrodynamics induced by air injection related to membrane fouling behavior. Desalination. 2010;250:587–91.10.1016/j.desal.2009.09.029Search in Google Scholar

[102] Fortunato L, Jeong S, Wang Y, Behzad AR, Leiknes T. Integrated approach to characterize fouling on a flat sheet membrane gravity driven submerged membrane bioreactor. Bioresour Technol. 2016;222:335–43.10.1016/j.biortech.2016.09.127Search in Google Scholar PubMed

[103] Fortunato L, Leiknes T. In-situ biofouling assessment in spacer filled channels using optical coherence tomography (OCT): 3D biofilm thickness mapping. Bioresour Technol. 2017;229:231–35.10.1016/j.biortech.2017.01.021Search in Google Scholar PubMed

[104] Reiss LP, Hanratty TJ. An experimental study of the unsteady nature of the viscous sublayer. AIChE J. 1963;9:154–60.10.1002/aic.690090204Search in Google Scholar

[105] Vlaev SD, Nikov I, Martinov M. Shear and skin friction on particles in power-law fluids agitated by flat-blade and fluid foil impellers. Chem Eng Sci. 2006;61:5455–67.10.1016/j.ces.2006.02.031Search in Google Scholar

[106] Koutsou CP, Karabelas AJ. Shear stresses and mass transfer at the base of a stirred filtration cell and corresponding conditions in narrow channels with spacers. J Memb Sci. 2012;399-400:60–72.10.1016/j.memsci.2012.01.029Search in Google Scholar

[107] Chan CCV, Bérubé PR, Hall ER. Shear profiles inside gas sparged submerged hollow fiber membrane modules. J Memb Sci. 2007;297(1):104–20.10.1016/j.memsci.2007.03.032Search in Google Scholar

[108] Böhm L, Kraume M. Fluid dynamics of bubble swarms rising in Newtonian and non-Newtonian liquids in flat sheet membrane systems. J Memb Sci. 2015;475:533–44.10.1016/j.memsci.2014.11.003Search in Google Scholar

[109] Vlaev SD, Tsibranska I, Dzhonova D, Georgiev D. Preconditions of separations in STR with integrated membrane for energy-saving by recovery of value-added materials. Machines, Technologies, Materials, Int Sci J. 2016;9:22–25.Search in Google Scholar

[110] Wang Y, Brannock M, Cox S, Leslie G. CFD simulation of membrane filtration zone in a submerged hollow fibre membrane bioreactor using porous media approach. J Memb Sci. 2010;363(1-2):57–66.10.1016/j.memsci.2010.07.008Search in Google Scholar

Published Online: 2018-1-5
Published in Print: 2018-1-26

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/psr-2017-0143/pdf
Scroll to top button