Abstract
Manganese dioxide (MnO2) nanoparticles were modified by graphitic carbon nitride (GCN) and polylpyrrole (Ppy) to enhance their electrochemical performance. The surface influence, crystalline structure, and electrochemical performance of the Ppy/GCN/MnO2 material were characterized and compared with those of pristine MnO2. It is found that surface modification can improve the structural stability of MnO2 without decreasing its available specific capacitance. The electrochemical properties of synthesized Ppy/GCN/MnO2 electrode were evaluated using cyclic voltammetry (CV) and AC impedance techniques in 5 M KOH electrolyte. Specific capacitances of 486, 815, 921, and 1377 F/g were obtained for MnO2, Ppy/MnO2, GCN/MnO2, and Ppy/GCN/MnO2, respectively, at 5 A/g. This improvement is attributed to the synergistic effect of GCN and Ppy in the Ppy/GCN/MnO2 electrode material. The Ppy/GCN/MnO2 electrode in KOH has average specific energy and specific power densities of 172 Wh kg−1 and 2065 W kg−1, respectively. Only 2 % of the capacitance’s initial value is lost after 10,000 cycles. The resulting Ppy/GCN/MnO2 nanocomposite had very stable and porous layered structures. This work demonstrates that Ppy/GCN/MnO2 nanomaterials exhibit good structural stability and electrochemical performance and are good materials for supercapacitor applications.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The author states no conflict of interest.
-
Research funding: None declared.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Sarno, M.; Galvagno, S.; Piscitelli, R.; Portofino, S.; Ciambelli, P. Supercapacitor Electrodes Made of Exhausted Activated Carbon-Derived SiC Nanoparticles Coated by Graphene. Ind. Eng. Chem. Res. 2016, 55, 6025–6035; https://doi.org/10.1021/acs.iecr.6b00737.Search in Google Scholar
2. Simon, P.; Gogotsi, Y.; Dunn, B. Where Do Batteries End and Supercapacitors Begin? Science 2014, 343, 1210–1211; https://doi.org/10.1126/science.1249625.Search in Google Scholar PubMed
3. Ansari, S. A. Graphene Quantum Dots: Novel Properties and Their Applications for Energy Storage Devices. Nanomaterials 2022, 12, 3814; https://doi.org/10.3390/nano12213814.Search in Google Scholar PubMed PubMed Central
4. Rostami, M. S.; Khodaei, M. M. Recent Advances of Chitosan-Based Nanocomposites for Supercapacitor Applications: Key Challenges and Future Research Directions. J. Energy Storage 2023, 72, 108344; https://doi.org/10.1016/j.est.2023.108344.Search in Google Scholar
5. Chang, Y. L.; Tsai, M. D.; Shen, C. H.; Huang, C. W.; Wang, Y. C.; Kung, C. W. Cerium-Based Metal-Organic Framework-Conducting Polymer Nanocomposites for Supercapacitors. Mater. Today Sustainability 2023, 23, 100449; https://doi.org/10.1016/j.mtsust.2023.100449.Search in Google Scholar
6. Li, L.; Meng, J.; Zhang, M.; Liu, T.; Zhang, C. Recent Advances in Conductive Polymer Hydrogel Composites and Nanocomposites for Flexible Electrochemical Supercapacitors. Chem. Commun. 2022, 58, 185–207; https://doi.org/10.1039/d1cc05526g.Search in Google Scholar PubMed
7. Idumah, C. I.; Ezeani, E. O.; Nwuzor, I. C. A Review: Advancements in Conductive Polymers Nanocomposites. Polym. Plast. Technol. Mater. 2021, 60, 756–783; https://doi.org/10.1080/25740881.2020.1850783.Search in Google Scholar
8. Kshetri, T.; Tran, D. T.; Le, H. T.; Nguyen, D. C.; Van Hoa, H.; Kim, N. H.; Lee, J. H. Recent Advances in MXene-Based Nanocomposites for Electrochemical Energy Storage Applications. Prog. Mater. Sci. 2021, 117, 100733; https://doi.org/10.1016/j.pmatsci.2020.100733.Search in Google Scholar
9. Vinodhini, S. P.; Xavier, J. R. Novel Synthesis of Layered MoS2/TiO2/CNT Nanocomposite as a Potential Electrode for High-Performance Supercapacitor Applications. Int. J. Energy Res. 2022, 46, 14088–14104; https://doi.org/10.1002/er.8125.Search in Google Scholar
10. Liu, P.; Yan, J.; Guang, Z.; Huang, Y.; Li, X.; Huang, W. Recent Advancements of Polyaniline-Based Nanocomposites for Supercapacitors. J. Power Sources 2019, 424, 108–130; https://doi.org/10.1016/j.jpowsour.2019.03.094.Search in Google Scholar
11. Ansari, S. A.; Parveen, N.; Al Saleh Al-Othoum, M.; Ansari, M. O. Inside–outside OH – Incursion Involved in the Fabrication of Hierarchical Nanoflake Assembled Three-Dimensional Flower-like α-Co(OH)2 for Use in High-Performance Aqueous Symmetric Supercapacitor Applications. J. Adv. Res. 2023, 50, 107–116; https://doi.org/10.1016/j.jare.2022.10.009.Search in Google Scholar PubMed PubMed Central
12. Qiao, Y.; He, J.; Zhou, Y.; Wu, S.; Li, X.; Jiang, G.; Jiang, G.; Demir, M.; Ma, P. Flexible All-Solid-State Asymmetric Supercapacitors Based on PPy-Decorated SrFeO3−δ Perovskites on Carbon Cloth. ACS Appl. Mater. Interfaces 2023, 15, 52381–52391; https://doi.org/10.1021/acsami.3c10189.Search in Google Scholar PubMed
13. Xavier, J. R. Evaluation of Reduced Graphene oxide/WO3/WS2 Hybrids for High Performance Supercapacitor Electrode. J. Alloys Compd. 2023, 947, 169483; https://doi.org/10.1016/j.jallcom.2023.169483.Search in Google Scholar
14. Nikkhah Amirabad, T.; Ensafi, A. A.; Mousaabadi, K. Z.; Rezaei, B.; Demir, M. Binder-free Engineering Design of Ni-MOF Ultrathin Sheet-like Grown on PANI@GO Decorated Nickel Foam as an Electrode for in Hydrogen Evolution Reaction and Asymmetric Supercapacitor. Int. J. Hydrogen Energy 2023, 48, 29471–29484; https://doi.org/10.1016/j.ijhydene.2023.04.159.Search in Google Scholar
15. Chandraraj, S. S.; Xavier, J. R. Facile Synthesis of Graphene Based Mixed Metal Sulphide Nanocomposite for Energy Storage Applications. Surf. Interfaces 2023, 36, 102515; https://doi.org/10.1016/j.surfin.2022.102515.Search in Google Scholar
16. Ding, W.; Wang, X.; Yang, C.; Wang, P.; Tian, W.; Zhao, K.; Zhang, K. Interfacial Photo-Reduction of Graphene Oxide on Defective WO3-X for Multifunctional Applications in Sensor, Catalyst and Supercapacitor. Appl. Surf. Sci. 2022, 606, 154877; https://doi.org/10.1016/j.apsusc.2022.154877.Search in Google Scholar
17. Xavier, J. R. Graphene Oxide/metal Sulfide and Oxide Nanocomposite Electrodes for High Electrochemical Performance Supercapacitor Applications. J. Mater. Eng. Perform. 2024, 33, 1772–1785; https://doi.org/10.1007/s11665-023-08120-z.Search in Google Scholar
18. Zhu, H.; Zhang, J. Self-assembled Co-Al LDH and TiO2 Nanocomposites as a Novel Electrode for Supercapacitors. Inorg. Chem. Commun. 2022, 145, 110027; https://doi.org/10.1016/j.inoche.2022.110027.Search in Google Scholar
19. Tu, D.; Yang, W.; Yan, J.; Yang, Y.; Xu, J.; Chua, D. H. Highly Densed BCN Nanofiber Core with MoS2 Shell for Enhanced Hydrogen Evolution Reaction and Supercapacitance Applications. Appl. Surf. Sci. 2023, 615, 156400; https://doi.org/10.1016/j.apsusc.2023.156400.Search in Google Scholar
20. Huang, Y.; Li, H.; Wang, Z.; Zhu, M.; Pei, Z.; Xue, Q.; Huang, Y.; Zhi, C. Nanostructured Polypyrrole as a Flexible Electrode Material of Supercapacitor. Nano Energy 2016, 22, 422–438; https://doi.org/10.1016/j.nanoen.2016.02.047.Search in Google Scholar
21. Xu, J.; Wang, D.; Fan, L.; Yuan, Y.; Wei, W.; Liu, R.; Gu, S.; Xu, W. Fabric Electrodes Coated with Polypyrrole Nanorods for Flexible Supercapacitor Application Prepared via a Reactive Self-Degraded Template. Org. Electron. 2015, 26, 292–299; https://doi.org/10.1016/j.orgel.2015.07.054.Search in Google Scholar
22. Chen, G.-F.; Liu, Z.-Q.; Lin, J.-M.; Li, N.; Su, Y.-Z. Hierarchical Polypyrrole Based Composites for High Performance Asymmetric Supercapacitors. J. Power Sources 2015, 283, 484–493; https://doi.org/10.1016/j.jpowsour.2015.02.103.Search in Google Scholar
23. Karthikeyan, G.; Sahoo, S.; Nayak, G. C.; Das, C. K. Investigations on Doping of Poly(3-Methyl-Thiophene) Composites for Supercapacitor Applications. Macromol. Res. 2012, 20, 351–357; https://doi.org/10.1007/s13233-012-0020-7.Search in Google Scholar
24. Zhang, L.; Song, X.; Tan, L.; Ma, H.; Guo, D.; Pang, H.; Wang, X. Fabrication of Double-Shell Hollow NiO@ NC Nanotubes for a High-Performance Supercapacitor. New J. Chem. 2019, 43, 13457–13462; https://doi.org/10.1039/c9nj02626f.Search in Google Scholar
25. Vinodhini, S. P.; Xavier, J. R. Synthesis and Characterization of Reduced Graphene Oxide Wrapped MoO3/TiS2 Nanocomposite for High Performance Energy Storage Applications. Mater. Sci. Eng. B 2023, 291, 116375; https://doi.org/10.1016/j.mseb.2023.116375.Search in Google Scholar
26. Setayeshmehr, M.; Haghighi, M.; Mirabbaszadeh, K. A Review of Tin Disulfide (SnS2) Composite Electrode Materials for Supercapacitors. Energy Storage 2022, 4, e295; https://doi.org/10.1002/est2.295.Search in Google Scholar
27. Aydın, H.; Kurtan, U.; Demir, M.; Karakuş, S. Synthesis and Application of a Self-Standing Zirconia-Based Carbon Nanofiber in a Supercapacitor. Energy Fuels 2022, 36, 2212–2219; https://doi.org/10.1021/acs.energyfuels.1c04208.Search in Google Scholar
28. Mudila, H., Rana, S., Zaidi, M. G. H. Electrochemical Performance of Zirconia/graphene Oxide Nanocomposites Cathode Designed for High Power Density Supercapacitor. J. Anal. Sci. Technol. 2016, 7, 1–11; https://doi.org/10.1186/s40543-016-0084-7.Search in Google Scholar
29. Wang, H.; Wang, J.; Liang, M.; He, Z.; Li, K.; Song, W.; Tian, S.; Duan, W.; Zhao, Y.; Miao, Z. Novel Dealloying-Fabricated NiS/NiO Nanoparticles with Superior Cycling Stability for Supercapacitors. ACS Omega 2021, 6, 17999–18007; https://doi.org/10.1021/acsomega.1c01717.Search in Google Scholar PubMed PubMed Central
30. Huang, Y.; Shi, T.; Jiang, S.; Cheng, S.; Tao, X.; Zhong, Y.; Liao, G.; Tang, Z. Enhanced Cycling Stability of NiCo2S4@ NiO Core-Shell Nanowire Arrays for All-Solid-State Asymmetric Supercapacitors. Sci. Rep. 2016, 6, 38620; https://doi.org/10.1038/srep38620.Search in Google Scholar PubMed PubMed Central
31. Kumar, Y.; Chopra, S.; Gupta, A.; Kumar, Y.; Uke, S. J.; Mardikar, S. P. Low Temperature Synthesis of MnO2 Nanostructures for Supercapacitor Application. Mater. Sci. Energy Technol. 2020, 3, 566–574; https://doi.org/10.1016/j.mset.2020.06.002.Search in Google Scholar
32. Liu, C.-S.; Huang, C.-L.; Fang, H.-C.; Hung, K.-Y.; Su, C.-A.; Li, Y.-Y. MnO2-based Carbon Nanofiber Cable for Supercapacitor Applications. J. Energy Storage 2021, 33, 102130; https://doi.org/10.1016/j.est.2020.102130.Search in Google Scholar
33. Chahal, P.; Madaswamy, S. L.; Lee, S. C.; Wabaidur, S. M.; Dhayalan, V.; Ponnusamy, V. K.; Dhanusuraman, R. Novel Manganese Oxide Decorated Polyaniline/graphitic Carbon Nitride Nanohybrid Material for Efficient Supercapacitor Application. Fuel 2022, 330, 125531; https://doi.org/10.1016/j.fuel.2022.125531.Search in Google Scholar
34. Zhou, H.; Yan, Z.; Yang, X.; Lv, J.; Kang, L.; Liu, Z.-H. RGO/MnO2/polypyrrole Ternary Film Electrode for Supercapacitor. Mater. Chem. Phys. 2016, 177, 40–47; https://doi.org/10.1016/j.matchemphys.2016.03.035.Search in Google Scholar
35. Wu, Y. Z.; Chen, M.; Yan, X. H.; Ren, J.; Dai, Y.; Wang, J. J.; Pan, J. M.; Wang, Y. P.; Cheng, X. N. Hydrothermal Synthesis of Fe3O4 Nanorods/graphitic C3N4 Composite with Enhanced Supercapacitive Performance. Mater. Lett. 2017, 198, 114–117; https://doi.org/10.1016/j.matlet.2017.04.010.Search in Google Scholar
36. Li, X.-G.; Li, A.; Huang, M.-R.; Liao, Y.; Lu, Y.-G. Efficient and Scalable Synthesis of Pure Polypyrrole Nanoparticles Applicable for Advanced Nanocomposites and Carbon Nanoparticles. J. Phys. Chem. C 2010, 114, 19244–19255; https://doi.org/10.1021/jp107435b.Search in Google Scholar
37. Ganesan, R.; Xavier, J. R. Fabrication of Polythiophene/graphitic Carbon nitride/V2O5 Nanocomposite for High-Performance Supercapacitor Electrode. Mater. Sci. Eng. B 2024, 300, 117101; https://doi.org/10.1016/j.mseb.2023.117101.Search in Google Scholar
38. Xavier, J. R. Investigation of Anticorrosion, Flame Retardant and Mechanical Properties of Polyurethane/GO Nanocomposites Coated AJ62 Mg Alloy for Aerospace/automobile Components. Diamond Relat. Mater. 2023, 136, 110025; https://doi.org/10.1016/j.diamond.2023.110025.Search in Google Scholar
39. Xavier, J. R.; Dhanalakshmi, C.; Chandraraj, S. S.; Vinodhini, S. P. Bionanocomposites Containing SnO2 with Improved Chemical Resistance and Hydrophobic Behaviours for Applications in Food Packaging Industry. Trans. Nonferrous Met. Soc. China 2023, 33, 2136–2154; https://doi.org/10.1016/s1003-6326(23)66249-1.Search in Google Scholar
40. Xavier, J. R., Bhaskar, R., Subramanian, S. Multifunctional Graphitic Carbon Nitride/manganese Dioxide/epoxy Nanocomposite Coating on Steel for Enhanced Anticorrosion, Flame Retardant, Mechanical, and Hydrophobic Properties. J. Ind. Eng. Chem. 2024, 134, 514–536; https://doi.org/10.1016/j.jiec.2024.01.015.Search in Google Scholar
41. Xavier, J. R.; Vinodhini, S. P. Fabrication of Reduced Graphene Oxide Encapsulated MnO2/MnS2 Nanocomposite for High Performance Electrochemical Devices. J. Porous Mater. 2023, 30, 1897–1910; https://doi.org/10.1007/s10934-023-01473-9.Search in Google Scholar
42. Saha, S.; Maji, P.; Pethsangave, D. A.; Roy, A.; Ray, A.; Some, S.; Das, S. Effect of Morphological Ordering on the Electrochemical Performance of MnO2-Graphene Oxide Composite. Electrochim. Acta 2019, 317, 199–210; https://doi.org/10.1016/j.electacta.2019.05.148.Search in Google Scholar
43. Xavier, J. R.; Vinodhini, S. P. Flexible and High-Energy Density Asymmetrical Supercapacitors Based on polyindole/GCN/MnO2 Nanocomposite for Energy Storage Applications. J. Mater. Sci. 2023, 58, 18147–18168; https://doi.org/10.1007/s10853-023-09176-x.Search in Google Scholar
44. Humayun, H.; Begum, B.; Bilal, S.; Shah, A. H. A.; Röse, P. Polyindole Embedded Nickel/zinc Oxide Nanocomposites for High-Performance Energy Storage Applications. Nanomaterials 2023, 13, 618; https://doi.org/10.3390/nano13030618.Search in Google Scholar PubMed PubMed Central
45. Xavier, J. R. Studies on Improved Stability and Electrochemical Activity of Metal Oxides/sulfides-Based Polymer Nanocomposites for Energy Storage Applications. Polym. Eng. Sci. 2024, 1–22; https://doi.org/10.1002/pen.26716.Search in Google Scholar
46. Vinodhini, S. P.; Xavier, J. R. Electrochemical Evaluation and Structural Characterization of Polythiophene Surfaces Modified with PbO/PbS for Energy Storage Applications. Mater. Chem. Phys. 2024, 318, 129233; https://doi.org/10.1016/j.matchemphys.2024.129233.Search in Google Scholar
47. Reghunath, B. S.; Rajasekaran, S.; KR, S. D.; Saravanakumar, B.; William, J. J.; Pinheiro, D.; Govindarajan, D.; Kheawhom, S. Fabrication of Bismuth Ferrite/graphitic Carbon nitride/N-Doped Graphene Quantum Dots Composite for High-Performance Supercapacitors. J. Phys. Chem. Solids 2022, 171, 110985; https://doi.org/10.1016/j.jpcs.2022.110985.Search in Google Scholar
48. Xavier, J. R. Effect of the Integration of Tin Oxide/tin Sulphide Nanoparticles on the Properties of Polythiophene Films for Supercapacitor Applications. J. Appl. Electrochem. 2024; https://doi.org/10.1007/s10800-024-02109-9.Search in Google Scholar
49. Wu, K.; Zhao, J.; Wu, R.; Ruan, B.; Liu, H.; Wu, M. The Impact of Fe3+ Doping on the Flexible Polythiophene Electrodes for Supercapacitors. J. Electroanal. Chem. 2018, 823, 527–530; https://doi.org/10.1016/j.jelechem.2018.06.052.Search in Google Scholar
50. Xavier, J. R.; Vinodhini, S. P. Facile Synthesis of Graphitic Carbon nitride@polypyrrole/Ta2O5 Nanocomposite as Supercapacitor with Improved Electrochemical Performance for Energy Storage Applications. J. Mater. Eng. Perform. 2024. https://doi.org/10.1007/s11665-024-09391-w.Search in Google Scholar
51. Baruah, K.; Sarmah, D.; Kumar, A. Ternary Hybrid Nanocomposites of Polypyrrole Nanotubes with 2D Self-Assembled Heterostructures of Protonated g-C3N4-rGO as Supercapacitor Electrodes. Ionics 2021, 27, 3153–3168; https://doi.org/10.1007/s11581-021-04069-y.Search in Google Scholar
52. Xavier, J. R. Synthesis and Characterization of Polypyrrole/Graphitic Carbon Nitride/niobium Pentoxide Nanocomposite for High-Performance Energy Storage Applications. J. Appl. Polym. Sci. 2024, 141, e55211; https://doi.org/10.1002/app.55211.Search in Google Scholar
53. Dinesh, A.; Ramadas, A.; Anantha, M. S.; Umesh, M. K.; Venkatesh, K.; Kundu, M.; Muralidhara, H. B.; Kumar, K. Y. Synergistic Behavior of Vanadium Pentoxide-Carbon Sphere Electrocatalyst towards Iron-Based Redox Flow Battery and Supercapacitor Applications. J. Energy Storage 2022, 55, 105487; https://doi.org/10.1016/j.est.2022.105487.Search in Google Scholar
54. Xavier, J. R. Synthesis and Electrochemical Performance of rGO Wrapped Mixed Metal Oxide and Sulfide Nanocomposite for Superior Energy Storage Applications. Fullerenes, Nanotubes Carbon Nanostruct. 2023, 31, 652–666; https://doi.org/10.1080/1536383x.2023.2198228.Search in Google Scholar
55. Munir, S.; Aadil, M.; Warsi, M. F.; Somaily, H. H.; Ul Ain, N.; Shahid, M. Synergistic Effect of Noble Metal Doping and Composite Formation to Boost the Electrochemical Properties of Vanadium Pentoxide. Ceram. Int. 2022, 48, 33306–33314; https://doi.org/10.1016/j.ceramint.2022.07.273.Search in Google Scholar
56. Xavier, J. R.; Vinodhini, S. P.; Chandraraj, S. S. Synthesis and Electrochemical Characterization of CNTs-Based Multi Metal Sulphide Nanocomposite for Supercapacitor Applications. J. Clust. Sci. 2023, 34, 1805–1817; https://doi.org/10.1007/s10876-022-02352-0.Search in Google Scholar
57. Parveen, N.; Alsulaim, G. M.; Alsharif, S. A.; Almutairi, H. H.; Alali, H. A.; Ansari, S. A.; Ahmad, M. M. Renewable Biopolymer-Derived Carbon-Nickel Oxide Nanocomposite as an Emerging Electrode Material for Energy Storage Applications. J. Sci.: Adv. Mater. Devices 2023, 8, 100591; https://doi.org/10.1016/j.jsamd.2023.100591.Search in Google Scholar
58. Parveen, N.; Ansari, M. O.; Ansari, S. A.; Kumar, P. Nanostructured Titanium Nitride and its Composites as High-Performance Supercapacitor Electrode Material. Nanomaterials 2023, 13, 105; https://doi.org/10.3390/nano13010105.Search in Google Scholar PubMed PubMed Central
59. Liu, G.; Liu, L.; Li, G.; Wu, S.; He, J.; Zhou, Y.; Demir, M.; Ma, P. Temperature-dependent Electrochemical Performance of Ta-Substituted SrCoO3 Perovskite for Supercapacitors. Chem. Eur. J. 2024, 30, e202303267; https://doi.org/10.1002/chem.202303267.Search in Google Scholar PubMed
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/polyeng-2024-0025).
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material Properties
- Enhanced interlaminar structure and dynamic mechanical properties of Tectona grandis fiber (TGF)/polypropylene fiber (PPF)/carbon nanotube (CNT) nano composite prepared solid dipping coating process
- Molecular dynamics study on friction of polymer material polyoxymethylene (POM)
- The effect of clay modification on the structure, dielectric behaviour and mechanical properties of PVDF/PMMA/CTAMag polymer nanocomposites as potential flexible performance materials
- Preparation and Assembly
- Preparing conductive polymer-based adsorbent with better cupric ion adsorption efficiency by monomer precursor cross-linking method
- Facile synthesis and electrochemical investigation of graphitic carbon nitride/manganese dioxide incorporated polypyrrole nanocomposite for high-performance energy storage applications
- Preparation and properties of acrylate/polyvinyl alcohol self-healing hydrogels based on hydrogen bonds and coordination bonds
- Engineering and Processing
- Study on the photodegradation behaviors of liquid crystal display (LCD) used optical cellulose triacetate films
Articles in the same Issue
- Frontmatter
- Material Properties
- Enhanced interlaminar structure and dynamic mechanical properties of Tectona grandis fiber (TGF)/polypropylene fiber (PPF)/carbon nanotube (CNT) nano composite prepared solid dipping coating process
- Molecular dynamics study on friction of polymer material polyoxymethylene (POM)
- The effect of clay modification on the structure, dielectric behaviour and mechanical properties of PVDF/PMMA/CTAMag polymer nanocomposites as potential flexible performance materials
- Preparation and Assembly
- Preparing conductive polymer-based adsorbent with better cupric ion adsorption efficiency by monomer precursor cross-linking method
- Facile synthesis and electrochemical investigation of graphitic carbon nitride/manganese dioxide incorporated polypyrrole nanocomposite for high-performance energy storage applications
- Preparation and properties of acrylate/polyvinyl alcohol self-healing hydrogels based on hydrogen bonds and coordination bonds
- Engineering and Processing
- Study on the photodegradation behaviors of liquid crystal display (LCD) used optical cellulose triacetate films