Abstract
In order to study the effect of nanoparticle dimensions on the thermodynamic properties of PHBV and PHBV blends, one-dimensional cellulose nanocrystals (CNC), two-dimensional graphene, and zero-dimensional hydrophobic nano-silica were selected to regulate the crystallization and mechanical properties of poly(β-hydroxybutyrate-co-valerate) (PHBV) and PHBV blends. The morphology, crystallization process, mechanical property and rheological response of PHBV nanomaterials were analyzed. Experimental results show that the three selected nanomaterials all hinder the crystallization process of PHBV, among which two-dimensional graphene exhibits the most obvious hindrance. At the same time, two-dimensional graphene can improve the tensile strength and impact strength of PHBV. However, in the rheological response of PHBV nanocomposites, zero-dimensional hydrophobic nano-silica and one-dimensional cellulose nanocrystals show more obvious regulatory effects than two-dimensional graphene.
Acknowledgments
Jianxiang Chen wishes to acknowledge Professor Defeng Wu (Yangzhou University) for the help with testing.
-
Research ethics: Not applicable.
-
Author contributions: Jianxiang Chen: Conceptualization, Methodology, Investigation, Writing – Original Draft, Writing – Review & Editing. Liqiang Deng: Validation, Writing – Review & Editing. Qianqian Chen: Formal analysis, Investigation.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Ma, P. M., Jiang, L., Yu, M. M., Dong, W. F., Chen, M. Q. ACS Sustain. Chem. Eng. 2016, 4, 6417; https://doi.org/10.1021/acssuschemeng.6b01106.Search in Google Scholar
2. Wang, H. T., Yang, X., Fu, Z. A., Zhao, X. W., Li, Y. J., Li, J. Y. Macromolecules 2017, 50, 9494; https://doi.org/10.1021/acs.macromol.7b02143.Search in Google Scholar
3. Yoshida, S., Trifkovic, M. Macromolecules 2019, 52, 7678; https://doi.org/10.1021/acs.macromol.9b01437.Search in Google Scholar
4. Dil, E. J., Arjmand, M., Navas, I. O., Sundararaj, U., Favis, B. D. Macromolecules 2020, 53 (22), 10267; https://doi.org/10.1021/acs.macromol.0c01525.Search in Google Scholar
5. Ashori, A., Jonoobi, M., Ayrilmis, N., Shahreki, A., Fashapoyeh, M. A. Int. J. Biol. Macromol. 2019, 136, 1119; https://doi.org/10.1016/j.ijbiomac.2019.06.181.Search in Google Scholar PubMed
6. Yang, J., Zhu, H. J., Zhao, Y., Jiang, Q. H., Chen, H. M., Liu, G. M., Chen, P., Wang, D. J. Eur. Polym. J. 2017, 91, 81; https://doi.org/10.1016/j.eurpolymj.2017.03.017.Search in Google Scholar
7. Chen, J. X., Yang, R. M., Ou, J. F., Tang, C., Xiang, M., Wu, D. F., Tang, J. T., Tam, K. C. Carbohydr. Polym. 2020, 242, 116399; https://doi.org/10.1016/j.carbpol.2020.116399.Search in Google Scholar PubMed
8. Malmir, S., Barral, L., Bouza, R., Esperanza, M., Seoane, M., Bandίn, S. F., Lago, F. Cellulose 2019, 26, 2333; https://doi.org/10.1007/s10570-018-2216-2.Search in Google Scholar
9. Qiu, Z. B., Fujinami, S., Komura, M., Nakajima, K., Ikehara, T., Nishi, T. Polymer 2004, 45, 4355; https://doi.org/10.1016/j.polymer.2004.04.054.Search in Google Scholar
10. Tan, S. M., Ismail, J., Kummerlöwe, C., Kammer, H. W. J. Appl. Polym. Sci. 2006, 101, 2776; https://doi.org/10.1002/app.21921.Search in Google Scholar
11. Chan, C. H., Kummerlöwe, C., Kammer, H. W. Macromol. Chem. Phys. 2004, 205, 664; https://doi.org/10.1002/macp.200300062.Search in Google Scholar
12. Zhao, H. B., Cui, Z. X., Sun, X. F., Turng, L. S., Peng, X. F. Ind. Eng. Chem. Res. 2013, 52, 2569; https://doi.org/10.1021/ie301573y.Search in Google Scholar
13. Hosoda, N., Lee, E. H., Tsujimoto, T., Uyama, H. Ind. Eng. Chem. Res. 2013, 52, 1548; https://doi.org/10.1021/ie3011275.Search in Google Scholar
14. Tsui, A., Frank, C. W. Ind. Eng. Chem. Res. 2014, 53, 15896; https://doi.org/10.1021/ie5021766.Search in Google Scholar
15. Chun, Y. S., Kim, W. N. Polymer 2000, 41, 2305; https://doi.org/10.1016/s0032-3861(99)00534-0.Search in Google Scholar
16. Mofokeng, J. P., Luyt, A. S. Thermochim. Acta 2005, 613, 41; https://doi.org/10.1016/j.tca.2015.05.019.Search in Google Scholar
17. Burak, B., Tugluca, I. B., Koc, N., Isoglu, I. A. Mater. Res. Expr. 2019, 6, 065411; https://doi.org/10.1088/2053-1591/ab0eaa.Search in Google Scholar
18. Chen, J. X., Wang, Y. K., Yin, Z. R., Tam, K. C., Wu, D. F. Carbohydr. Polym. 2017, 174, 217; https://doi.org/10.1016/j.carbpol.2017.06.053.Search in Google Scholar PubMed
19. Yu, H. Y., Qin, Z. Y., Sun, B., Yang, X. G., Yao, J. M. Compos. Sci. Technol. 2014, 94, 96; https://doi.org/10.1016/j.compscitech.2014.01.018.Search in Google Scholar
20. Chandar, J. V., Mutharasu, D., Mohamed, K., Marsilla, K. I. K., Shanmugan, S., Azlan, A. A. Polym. Plast. Tech. Mat. 2021, 60, 1273.10.1080/25740881.2021.1888990Search in Google Scholar
21. Li, F., Yu, H. Y., Wang, Y. Y., Zhou, Y., Zhang, H., Yao, J. M., Abdalkarim, S. Y. H., Tam, K. C. J. Agric. Food Chem. 2019, 67, 10954; https://doi.org/10.1021/acs.jafc.9b03110.Search in Google Scholar PubMed
22. Zheng, T., Clemons, C. M., Pilla, S. ACS Sustain. Chem. Eng. 2020, 8, 814; https://doi.org/10.1021/acssuschemeng.9b04867.Search in Google Scholar
23. Hu, L. M., Han, Y. Y., Rong, C. Y., Wang, X. K., Wang, H. T., Li, Y. J. ACS Appl. Mater. Interf. 2022, 14, 11016; https://doi.org/10.1021/acsami.1c24817.Search in Google Scholar PubMed
24. Samir, M. A. S. A., Alloin, F., Dufresne, A. Biomacromolecules 2005, 6, 612; https://doi.org/10.1021/bm0493685.Search in Google Scholar PubMed
25. Alain, D.. Curr. Opin. Colloid Interf. 2017, 29, 1.Search in Google Scholar
26. Jun, D., Zhao, G. M., Pan, M. Z., Zhuang, L. L., Li, D. G., Zhang, R. Carbohydr. Polym. 2017, 168, 255; https://doi.org/10.1016/j.carbpol.2017.03.076.Search in Google Scholar PubMed
27. Montanheiro, T. L. A., Montagna, L. S., Patrulea, V., Jordan, O., Borchard, G., Lobato, G. M. M., Catalani, L. H., Lemes, A. P. J. Mater. Sci. 2019, 54, 7198; https://doi.org/10.1007/s10853-019-03398-8.Search in Google Scholar
28. Yu, H. Y., Qin, Z. Y., Liu, Y. N., Chen, L., Liu, N., Zhou, Z. Carbohydr. Polym. 2012, 89, 971; https://doi.org/10.1016/j.carbpol.2012.04.053.Search in Google Scholar PubMed
29. Chen, J. X., Xu, C. J., Wu, D. F., Pan, K. R., Qian, A. W., Sha, Y. L., Wang, L., Tong, W. Carbohydr. Polym. 2015, 134, 508; https://doi.org/10.1016/j.carbpol.2015.08.023.Search in Google Scholar PubMed
30. Zhang, B. B., Huang, C. X., Zhao, H., Wang, J., Yin, C., Zhang, L. Y., Zhao, Y. Polymers 2019, 11, 2063; https://doi.org/10.3390/polym11122063.Search in Google Scholar PubMed PubMed Central
31. David, G., Michel, J., Gastaldi, E., Gontard, N., Angellier-Coussy, H. Int. J. Mol. Sci. 2020, 21, 228; https://doi.org/10.3390/ijms21010228.Search in Google Scholar PubMed PubMed Central
32. Guo, Y., Wang, L., Chen, Y. X., Luo, P. P., Chen, T. Polymers 2019, 11, 1765; https://doi.org/10.3390/polym11111765.Search in Google Scholar PubMed PubMed Central
33. Ten, E., Jiang, L., Wolcott, M. P. Carbohydr. Polym. 2013, 92, 206; https://doi.org/10.1016/j.carbpol.2012.09.033.Search in Google Scholar PubMed
34. Montanheiro, T. L. A., Campos, T. M. B., Montagna, L. S., Silva, A. P., Ribas, R. G., Menezes, B. R. C., Passador, F. R., Thim, G. P. Mater. Res. Express 2019, 6, 105375; https://doi.org/10.1088/2053-1591/ab42ed.Search in Google Scholar
35. Luo, J. Y., Sun, W. B., Zhou, H. F., Zhang, Y. X., Wen, B. Y., Xin, C. L. ACS Sustain. Chem. Eng. 2021, 9, 10785; https://doi.org/10.1021/acssuschemeng.1c02064.Search in Google Scholar
36. Montagna, L. S., Montanheiro, T. L. A., Machado, J. P. B., Passador, F. R., Lemes, A. P., Rezende, M. C. Int. J. Polym. Sci. 2017, 2017, 1; https://doi.org/10.1155/2017/9316761.Search in Google Scholar
37. Miao, Y. S., Fang, C. X., Shi, D., Li, Y. G., Wang, Z. B. Polymer 2022, 252, 124967; https://doi.org/10.1016/j.polymer.2022.124967.Search in Google Scholar
38. Öner, M., Kızıl, G., Keskin, G., Celine, P. B., Bechelany, M. Nanomaterials 2018, 8, 940; https://doi.org/10.3390/nano8110940.Search in Google Scholar PubMed PubMed Central
39. Javadi, A., Srithep, Y., Pilla, S., Clemons, C. C., Gong, S. Q., Turng, L. S. Polym. Eng. Sci. 2011, 51, 1815; https://doi.org/10.1002/pen.21972.Search in Google Scholar
40. Ciou, C. Y., Li, S. Y., Wu, T. M. Eur. Polym. J. 2014, 59, 136; https://doi.org/10.1016/j.eurpolymj.2014.07.018.Search in Google Scholar
41. Hasan, K. S. M., Zainuddin, S., Turner, A. J., Hosur, M. V., Jeelani, S. J. Compos. Mater. 2022, 56, 4069; https://doi.org/10.1177/00219983221127062.Search in Google Scholar
42. Lee, C. G., Wei, X. D., Kysar, J. W., Hone, J. Science 2008, 321, 385; https://doi.org/10.1126/science.1157996.Search in Google Scholar PubMed
43. Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguyen, S. B. T., Ruoff, R. S. Nature 2006, 442, 282; https://doi.org/10.1038/nature04969.Search in Google Scholar PubMed
44. Abdalkarim, S. Y. H., Yu, H. Y., Wang, D. C., Yao, Y. M. Cellulose 2017, 24, 2925; https://doi.org/10.1007/s10570-017-1303-0.Search in Google Scholar
45. Bakare, R. A., Bhan, C., Raghavan, D. Biomacromolecules 2014, 15, 423; https://doi.org/10.1021/bm401686v.Search in Google Scholar PubMed
46. Beatriz, M. R., Kelly, J. F. L., Andrea, B., Ramón, M. M., Luis, C., Sergio, T. G., Jose, M. L. Nanomaterials 2019, 9, 227.Search in Google Scholar
47. Duan, B., Cheung, W. L., Wang, M. Biofabrication 2011, 3, 015001; https://doi.org/10.1088/1758-5082/3/1/015001.Search in Google Scholar PubMed
48. Szegda, D., Duangphet, S., Song, J., Tarverdi, K. J. Cell. Plast. 2014, 50, 145; https://doi.org/10.1177/0021955x13505249.Search in Google Scholar
49. Mazur, K., Singh, R., Friedrich, R. P., Genç, H., Unterweger, H., Sałasińska, K., Bogucki, R., Kuciel, S., Cicha, I. Macromol. Mater. Eng. 2020, 305, 2000244; https://doi.org/10.1002/mame.202000244.Search in Google Scholar
50. Caruso, F., Caruso, R. A., Möhwald, H. Science 1998, 282, 1111; https://doi.org/10.1126/science.282.5391.1111.Search in Google Scholar PubMed
51. Zou, H., Wu, S. S., Shen, J. Chem. Rev. 2008, 108, 3893; https://doi.org/10.1021/cr068035q.Search in Google Scholar PubMed
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material Properties
- Effect of titanium diboride on the rheological characteristics of silica-based polyethylene glycol shear thickening fluid
- Influence of different dimensional nanoparticles on the properties of poly(β-hydroxybutyrate-co-valerate) nanocomposites
- Preparation and Assembly
- Multifunctional hydrogels for wound healing
- Stiff, strong, and tear-resistant physical hydrogels with widely tunable toughness by post-treatments
- Study on the adhesion of PTFE/PI composite films by interlocking synergistic effects
- Physically cross-linked scaffold composed of hydroxyapatite-chitosan-alginate-polyamide has potential to trigger bone regeneration in craniofacial defect
- Engineering and Processing
- Influence of CNTs on the gradient phase structure formed by the layered resin structure used to model the interlaminar region of interleaved FRPs
- Innovative reactor design for the preparation of polymer electrolyte membranes for vanadium flow batteries from preirradiation induced graft copolymerization of acrylic acid and AMPS on PVDF
Articles in the same Issue
- Frontmatter
- Material Properties
- Effect of titanium diboride on the rheological characteristics of silica-based polyethylene glycol shear thickening fluid
- Influence of different dimensional nanoparticles on the properties of poly(β-hydroxybutyrate-co-valerate) nanocomposites
- Preparation and Assembly
- Multifunctional hydrogels for wound healing
- Stiff, strong, and tear-resistant physical hydrogels with widely tunable toughness by post-treatments
- Study on the adhesion of PTFE/PI composite films by interlocking synergistic effects
- Physically cross-linked scaffold composed of hydroxyapatite-chitosan-alginate-polyamide has potential to trigger bone regeneration in craniofacial defect
- Engineering and Processing
- Influence of CNTs on the gradient phase structure formed by the layered resin structure used to model the interlaminar region of interleaved FRPs
- Innovative reactor design for the preparation of polymer electrolyte membranes for vanadium flow batteries from preirradiation induced graft copolymerization of acrylic acid and AMPS on PVDF