Home Influence of different dimensional nanoparticles on the properties of poly(β-hydroxybutyrate-co-valerate) nanocomposites
Article
Licensed
Unlicensed Requires Authentication

Influence of different dimensional nanoparticles on the properties of poly(β-hydroxybutyrate-co-valerate) nanocomposites

  • Jianxiang Chen ORCID logo EMAIL logo , Liqiang Deng and Qianqian Chen
Published/Copyright: January 31, 2024
Become an author with De Gruyter Brill

Abstract

In order to study the effect of nanoparticle dimensions on the thermodynamic properties of PHBV and PHBV blends, one-dimensional cellulose nanocrystals (CNC), two-dimensional graphene, and zero-dimensional hydrophobic nano-silica were selected to regulate the crystallization and mechanical properties of poly(β-hydroxybutyrate-co-valerate) (PHBV) and PHBV blends. The morphology, crystallization process, mechanical property and rheological response of PHBV nanomaterials were analyzed. Experimental results show that the three selected nanomaterials all hinder the crystallization process of PHBV, among which two-dimensional graphene exhibits the most obvious hindrance. At the same time, two-dimensional graphene can improve the tensile strength and impact strength of PHBV. However, in the rheological response of PHBV nanocomposites, zero-dimensional hydrophobic nano-silica and one-dimensional cellulose nanocrystals show more obvious regulatory effects than two-dimensional graphene.


Corresponding author: Jianxiang Chen, Department of Chemistry & Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, China, E-mail:

Acknowledgments

Jianxiang Chen wishes to acknowledge Professor Defeng Wu (Yangzhou University) for the help with testing.

  1. Research ethics: Not applicable.

  2. Author contributions: Jianxiang Chen: Conceptualization, Methodology, Investigation, Writing – Original Draft, Writing – Review & Editing. Liqiang Deng: Validation, Writing – Review & Editing. Qianqian Chen: Formal analysis, Investigation.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Ma, P. M., Jiang, L., Yu, M. M., Dong, W. F., Chen, M. Q. ACS Sustain. Chem. Eng. 2016, 4, 6417; https://doi.org/10.1021/acssuschemeng.6b01106.Search in Google Scholar

2. Wang, H. T., Yang, X., Fu, Z. A., Zhao, X. W., Li, Y. J., Li, J. Y. Macromolecules 2017, 50, 9494; https://doi.org/10.1021/acs.macromol.7b02143.Search in Google Scholar

3. Yoshida, S., Trifkovic, M. Macromolecules 2019, 52, 7678; https://doi.org/10.1021/acs.macromol.9b01437.Search in Google Scholar

4. Dil, E. J., Arjmand, M., Navas, I. O., Sundararaj, U., Favis, B. D. Macromolecules 2020, 53 (22), 10267; https://doi.org/10.1021/acs.macromol.0c01525.Search in Google Scholar

5. Ashori, A., Jonoobi, M., Ayrilmis, N., Shahreki, A., Fashapoyeh, M. A. Int. J. Biol. Macromol. 2019, 136, 1119; https://doi.org/10.1016/j.ijbiomac.2019.06.181.Search in Google Scholar PubMed

6. Yang, J., Zhu, H. J., Zhao, Y., Jiang, Q. H., Chen, H. M., Liu, G. M., Chen, P., Wang, D. J. Eur. Polym. J. 2017, 91, 81; https://doi.org/10.1016/j.eurpolymj.2017.03.017.Search in Google Scholar

7. Chen, J. X., Yang, R. M., Ou, J. F., Tang, C., Xiang, M., Wu, D. F., Tang, J. T., Tam, K. C. Carbohydr. Polym. 2020, 242, 116399; https://doi.org/10.1016/j.carbpol.2020.116399.Search in Google Scholar PubMed

8. Malmir, S., Barral, L., Bouza, R., Esperanza, M., Seoane, M., Bandίn, S. F., Lago, F. Cellulose 2019, 26, 2333; https://doi.org/10.1007/s10570-018-2216-2.Search in Google Scholar

9. Qiu, Z. B., Fujinami, S., Komura, M., Nakajima, K., Ikehara, T., Nishi, T. Polymer 2004, 45, 4355; https://doi.org/10.1016/j.polymer.2004.04.054.Search in Google Scholar

10. Tan, S. M., Ismail, J., Kummerlöwe, C., Kammer, H. W. J. Appl. Polym. Sci. 2006, 101, 2776; https://doi.org/10.1002/app.21921.Search in Google Scholar

11. Chan, C. H., Kummerlöwe, C., Kammer, H. W. Macromol. Chem. Phys. 2004, 205, 664; https://doi.org/10.1002/macp.200300062.Search in Google Scholar

12. Zhao, H. B., Cui, Z. X., Sun, X. F., Turng, L. S., Peng, X. F. Ind. Eng. Chem. Res. 2013, 52, 2569; https://doi.org/10.1021/ie301573y.Search in Google Scholar

13. Hosoda, N., Lee, E. H., Tsujimoto, T., Uyama, H. Ind. Eng. Chem. Res. 2013, 52, 1548; https://doi.org/10.1021/ie3011275.Search in Google Scholar

14. Tsui, A., Frank, C. W. Ind. Eng. Chem. Res. 2014, 53, 15896; https://doi.org/10.1021/ie5021766.Search in Google Scholar

15. Chun, Y. S., Kim, W. N. Polymer 2000, 41, 2305; https://doi.org/10.1016/s0032-3861(99)00534-0.Search in Google Scholar

16. Mofokeng, J. P., Luyt, A. S. Thermochim. Acta 2005, 613, 41; https://doi.org/10.1016/j.tca.2015.05.019.Search in Google Scholar

17. Burak, B., Tugluca, I. B., Koc, N., Isoglu, I. A. Mater. Res. Expr. 2019, 6, 065411; https://doi.org/10.1088/2053-1591/ab0eaa.Search in Google Scholar

18. Chen, J. X., Wang, Y. K., Yin, Z. R., Tam, K. C., Wu, D. F. Carbohydr. Polym. 2017, 174, 217; https://doi.org/10.1016/j.carbpol.2017.06.053.Search in Google Scholar PubMed

19. Yu, H. Y., Qin, Z. Y., Sun, B., Yang, X. G., Yao, J. M. Compos. Sci. Technol. 2014, 94, 96; https://doi.org/10.1016/j.compscitech.2014.01.018.Search in Google Scholar

20. Chandar, J. V., Mutharasu, D., Mohamed, K., Marsilla, K. I. K., Shanmugan, S., Azlan, A. A. Polym. Plast. Tech. Mat. 2021, 60, 1273.10.1080/25740881.2021.1888990Search in Google Scholar

21. Li, F., Yu, H. Y., Wang, Y. Y., Zhou, Y., Zhang, H., Yao, J. M., Abdalkarim, S. Y. H., Tam, K. C. J. Agric. Food Chem. 2019, 67, 10954; https://doi.org/10.1021/acs.jafc.9b03110.Search in Google Scholar PubMed

22. Zheng, T., Clemons, C. M., Pilla, S. ACS Sustain. Chem. Eng. 2020, 8, 814; https://doi.org/10.1021/acssuschemeng.9b04867.Search in Google Scholar

23. Hu, L. M., Han, Y. Y., Rong, C. Y., Wang, X. K., Wang, H. T., Li, Y. J. ACS Appl. Mater. Interf. 2022, 14, 11016; https://doi.org/10.1021/acsami.1c24817.Search in Google Scholar PubMed

24. Samir, M. A. S. A., Alloin, F., Dufresne, A. Biomacromolecules 2005, 6, 612; https://doi.org/10.1021/bm0493685.Search in Google Scholar PubMed

25. Alain, D.. Curr. Opin. Colloid Interf. 2017, 29, 1.Search in Google Scholar

26. Jun, D., Zhao, G. M., Pan, M. Z., Zhuang, L. L., Li, D. G., Zhang, R. Carbohydr. Polym. 2017, 168, 255; https://doi.org/10.1016/j.carbpol.2017.03.076.Search in Google Scholar PubMed

27. Montanheiro, T. L. A., Montagna, L. S., Patrulea, V., Jordan, O., Borchard, G., Lobato, G. M. M., Catalani, L. H., Lemes, A. P. J. Mater. Sci. 2019, 54, 7198; https://doi.org/10.1007/s10853-019-03398-8.Search in Google Scholar

28. Yu, H. Y., Qin, Z. Y., Liu, Y. N., Chen, L., Liu, N., Zhou, Z. Carbohydr. Polym. 2012, 89, 971; https://doi.org/10.1016/j.carbpol.2012.04.053.Search in Google Scholar PubMed

29. Chen, J. X., Xu, C. J., Wu, D. F., Pan, K. R., Qian, A. W., Sha, Y. L., Wang, L., Tong, W. Carbohydr. Polym. 2015, 134, 508; https://doi.org/10.1016/j.carbpol.2015.08.023.Search in Google Scholar PubMed

30. Zhang, B. B., Huang, C. X., Zhao, H., Wang, J., Yin, C., Zhang, L. Y., Zhao, Y. Polymers 2019, 11, 2063; https://doi.org/10.3390/polym11122063.Search in Google Scholar PubMed PubMed Central

31. David, G., Michel, J., Gastaldi, E., Gontard, N., Angellier-Coussy, H. Int. J. Mol. Sci. 2020, 21, 228; https://doi.org/10.3390/ijms21010228.Search in Google Scholar PubMed PubMed Central

32. Guo, Y., Wang, L., Chen, Y. X., Luo, P. P., Chen, T. Polymers 2019, 11, 1765; https://doi.org/10.3390/polym11111765.Search in Google Scholar PubMed PubMed Central

33. Ten, E., Jiang, L., Wolcott, M. P. Carbohydr. Polym. 2013, 92, 206; https://doi.org/10.1016/j.carbpol.2012.09.033.Search in Google Scholar PubMed

34. Montanheiro, T. L. A., Campos, T. M. B., Montagna, L. S., Silva, A. P., Ribas, R. G., Menezes, B. R. C., Passador, F. R., Thim, G. P. Mater. Res. Express 2019, 6, 105375; https://doi.org/10.1088/2053-1591/ab42ed.Search in Google Scholar

35. Luo, J. Y., Sun, W. B., Zhou, H. F., Zhang, Y. X., Wen, B. Y., Xin, C. L. ACS Sustain. Chem. Eng. 2021, 9, 10785; https://doi.org/10.1021/acssuschemeng.1c02064.Search in Google Scholar

36. Montagna, L. S., Montanheiro, T. L. A., Machado, J. P. B., Passador, F. R., Lemes, A. P., Rezende, M. C. Int. J. Polym. Sci. 2017, 2017, 1; https://doi.org/10.1155/2017/9316761.Search in Google Scholar

37. Miao, Y. S., Fang, C. X., Shi, D., Li, Y. G., Wang, Z. B. Polymer 2022, 252, 124967; https://doi.org/10.1016/j.polymer.2022.124967.Search in Google Scholar

38. Öner, M., Kızıl, G., Keskin, G., Celine, P. B., Bechelany, M. Nanomaterials 2018, 8, 940; https://doi.org/10.3390/nano8110940.Search in Google Scholar PubMed PubMed Central

39. Javadi, A., Srithep, Y., Pilla, S., Clemons, C. C., Gong, S. Q., Turng, L. S. Polym. Eng. Sci. 2011, 51, 1815; https://doi.org/10.1002/pen.21972.Search in Google Scholar

40. Ciou, C. Y., Li, S. Y., Wu, T. M. Eur. Polym. J. 2014, 59, 136; https://doi.org/10.1016/j.eurpolymj.2014.07.018.Search in Google Scholar

41. Hasan, K. S. M., Zainuddin, S., Turner, A. J., Hosur, M. V., Jeelani, S. J. Compos. Mater. 2022, 56, 4069; https://doi.org/10.1177/00219983221127062.Search in Google Scholar

42. Lee, C. G., Wei, X. D., Kysar, J. W., Hone, J. Science 2008, 321, 385; https://doi.org/10.1126/science.1157996.Search in Google Scholar PubMed

43. Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguyen, S. B. T., Ruoff, R. S. Nature 2006, 442, 282; https://doi.org/10.1038/nature04969.Search in Google Scholar PubMed

44. Abdalkarim, S. Y. H., Yu, H. Y., Wang, D. C., Yao, Y. M. Cellulose 2017, 24, 2925; https://doi.org/10.1007/s10570-017-1303-0.Search in Google Scholar

45. Bakare, R. A., Bhan, C., Raghavan, D. Biomacromolecules 2014, 15, 423; https://doi.org/10.1021/bm401686v.Search in Google Scholar PubMed

46. Beatriz, M. R., Kelly, J. F. L., Andrea, B., Ramón, M. M., Luis, C., Sergio, T. G., Jose, M. L. Nanomaterials 2019, 9, 227.Search in Google Scholar

47. Duan, B., Cheung, W. L., Wang, M. Biofabrication 2011, 3, 015001; https://doi.org/10.1088/1758-5082/3/1/015001.Search in Google Scholar PubMed

48. Szegda, D., Duangphet, S., Song, J., Tarverdi, K. J. Cell. Plast. 2014, 50, 145; https://doi.org/10.1177/0021955x13505249.Search in Google Scholar

49. Mazur, K., Singh, R., Friedrich, R. P., Genç, H., Unterweger, H., Sałasińska, K., Bogucki, R., Kuciel, S., Cicha, I. Macromol. Mater. Eng. 2020, 305, 2000244; https://doi.org/10.1002/mame.202000244.Search in Google Scholar

50. Caruso, F., Caruso, R. A., Möhwald, H. Science 1998, 282, 1111; https://doi.org/10.1126/science.282.5391.1111.Search in Google Scholar PubMed

51. Zou, H., Wu, S. S., Shen, J. Chem. Rev. 2008, 108, 3893; https://doi.org/10.1021/cr068035q.Search in Google Scholar PubMed

Received: 2023-10-10
Accepted: 2023-12-25
Published Online: 2024-01-31
Published in Print: 2024-03-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2023-0233/pdf
Scroll to top button