Home Innovative reactor design for the preparation of polymer electrolyte membranes for vanadium flow batteries from preirradiation induced graft copolymerization of acrylic acid and AMPS on PVDF
Article
Licensed
Unlicensed Requires Authentication

Innovative reactor design for the preparation of polymer electrolyte membranes for vanadium flow batteries from preirradiation induced graft copolymerization of acrylic acid and AMPS on PVDF

  • Maria Stehle , Torben Lemmermann , Fabian Grasser , Claudia Adolfs , Marco Drache , Uwe Gohs EMAIL logo , Armin Lohrengel EMAIL logo , Ulrich Kunz EMAIL logo and Sabine Beuermann EMAIL logo
Published/Copyright: January 31, 2024
Become an author with De Gruyter Brill

Abstract

An innovative reactor concept is reported that allows for efficient mass transfer from the liquid phase to the base material and compensates for the growth of the material throughout the synthesis of polymer electrolyte membranes (PEM). The novel reactor allows for the synthesis of PEMs with high reproducibility of their dimensions and properties. PEMs are synthesized via graft copolymerization of the monomers acrylic acid and 2-acrylamido-2-methylpropane sulfonic acid on poly(vinylidene fluoride) films serving as base material, which was activated by electron beam treatment. Both monomers are already containing protogenic groups; thus, follow-up functionalization reactions are avoided. The PEMs were characterized with respect to their electrochemical properties (area specific resistance, recharge current, and ion exchange capacity) relevant for application in vanadium flow batteries and compared to commercially available PEMs.


Corresponding authors: Uwe Gohs, Faculty of Agriculture/Environment/Chemistry, University of Applied Sciences Dresden, Friedrich-List-Platz 1, D-01069 Dresden, Germany, E-mail: ; Armin Lohrengel, Institute of Mechanical Engineering, Clausthal University of Technology, Robert-Koch-Str. 32, 38678 Clausthal-Zellerfeld, Germany, E-mail: ; Ulrich Kunz, Institute of Chemical and Electrochemical Process Engineering, Clausthal University of Technology, Leibnizstr. 17, 38678 Clausthal-Zellerfeld, Germany; and Research Center Energy Storage Technologies, Clausthal University of Technology, Am Stollen 19A, 38640 Goslar, Germany, E-mail: ; and Sabine Beuermann, Institute of Technical Chemistry, Clausthal University of Technology, Arnold-Sommerfeld-Str. 4, 38678, Clausthal-Zellerfeld, Germany, E-mail:

Award Identifier / Grant number: 411688235

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: The authors are grateful for financial support provided by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under grant number 411688235.

  5. Data availability: Not applicable.

References

1. Soloveichik, G. L. Chem. Rev. 2015, 115, 11533–11558; https://doi.org/10.1021/cr500720t.Search in Google Scholar PubMed

2. Mauritz, K. A., Moore, R. B. Chem. Rev. 2004, 104, 4535–4585; https://doi.org/10.1021/cr0207123.Search in Google Scholar PubMed

3. Sharma, J., Kulshrestha, V. Results Chem. 2023, 5, 100892; https://doi.org/10.1016/j.rechem.2023.100892.Search in Google Scholar

4. Tempelman, C. H. L., Jacobs, J. F., Balzer, R. M., Degirmenci, V. J. Energy Storage 2020, 32, 101754; https://doi.org/10.1016/j.est.2020.101754.Search in Google Scholar

5. Gubler, L. Curr. Opin. Electrochem. 2019, 18, 31–36; https://doi.org/10.1016/j.coelec.2019.08.007.Search in Google Scholar

6. Dürrkop, D., Widdecke, H., Schilde, C., Kunz, U., Schmiemann, A. Membranes 2021, 11, 214; https://doi.org/10.3390/membranes11030214.Search in Google Scholar PubMed PubMed Central

7. Holmberg, S., Lehtinen, T., Näsman, J., Ostrovskii, D., Paronen, M., Serimaa, R., Sundholm, F., Sundholm, G., Torell, L., Torkkeli, M. J. Mater. Chem. 1996, 6, 1309–1317; https://doi.org/10.1039/jm9960601309.Search in Google Scholar

8. Henkensmeier, D., Ben youcef, H., Wallasch, F., Gubler, L. J. Membr. Sci. 2013, 447, 228–235; https://doi.org/10.1016/j.memsci.2013.07.034.Search in Google Scholar

9. Li, X., Drache, M., Gohs, U., Beuermann, S. J. Membr. Sci. 2015, 495, 20–28; https://doi.org/10.1016/j.memsci.2015.07.056.Search in Google Scholar

10. Bogar, M. S., Beuermann, S., Dmitrieva, E., Drache, M., Gohs, U., Kunz, U., Lemmermann, T., Rosenkranz, M., Stehle, M., Zschech, C. Radiat. Phys. Chem. 2021, 184, 109421.Search in Google Scholar

11. Ke, X., Zhang, Y., Gohs, U., Drache, M., Beuermann, S. Polymers 2019, 11, 1175; https://doi.org/10.3390/polym11071175.Search in Google Scholar PubMed PubMed Central

12. Lutz, C., Breuckmann, M., Hampel, S., Kreyenschmidt, M., Ke, X., Beuermann, S., Schafner, K., Turek, T., Kunz, U., Guilherme Buzanich, A., Radtke, M., Fittschen, U. E. A. Membranes 2021, 11, 576.10.3390/membranes11080576Search in Google Scholar PubMed PubMed Central

13. Stehle, M., Adolfs, C., Huse, N., Drache, M., Beuermann, S., Lemmermann, T., Kunz, U., Bogar, M. S., Gohs, U. Tagungsband 4. Niedersächsisches Symposium Materialtechnik; Clausthal-Zellerfeld: Clausthaler Zentrum für Materialtechnik, 2021.Search in Google Scholar

14. Li, X., Drache, M., Ke, X., Gohs, U., Beuermann, S. Macromol. Mater. Eng. 2016, 301, 56–64; https://doi.org/10.1002/mame.201500207.Search in Google Scholar

15. Bogar, M. S., Beuermann, S., Dmitrieva, E., Drache, M., Gohs, U., Kunz, U., Lemmermann, T., Rosenkranz, M., Stehle, M., Zschech, C. Radiat. Phys. Chem. 2021, 184, 109421; https://doi.org/10.1016/j.radphyschem.2021.109421.Search in Google Scholar

16. Li, X., dos Santos, A. R., Drache, M., Ke, X., Gohs, U., Turek, T., Becker, M., Kunz, U., Beuermann, S. J. Membr. Sci. 2017, 524, 419–427; https://doi.org/10.1016/j.memsci.2016.10.053.Search in Google Scholar

17. Lemmermann, T., Becker, M., Stehle, M., Drache, M., Beuermann, S., Bogar, M. S., Gohs, U., Fittschen, U. E. A., Turek, T., Kunz, U. J. Power Sources 2022, 533, 231343; https://doi.org/10.1016/j.jpowsour.2022.231343.Search in Google Scholar

18. Becker, M., Turek, T. J. Power Sources 2020, 446, 227349; https://doi.org/10.1016/j.jpowsour.2019.227349.Search in Google Scholar

19. Sun, B., Skyllas-Kazacos, M. Electrochim. Acta 1992, 37, 1253–1260; https://doi.org/10.1016/0013-4686(92)85064-r.Search in Google Scholar

20. Lutz, C., Hampel, S., Ke, X., Beuermann, S., Turek, T., Kunz, U., Guilherme Buzanich, A., Radtke, M., Fittschen, U. E. A. J. Power Sources 2021, 483, 229176; https://doi.org/10.1016/j.jpowsour.2020.229176.Search in Google Scholar

21. Lutz, C., Hampel, X., Beuermann, S., Turek, T., Kunz, U., Garrevoet, J., Falkenberg, G., Fittschen, U. E. A. J. Synchrotron Radiat. 2021, 28, 1865–1873; https://doi.org/10.1107/s160057752100905x.Search in Google Scholar PubMed PubMed Central

22. Schafner, K., Becker, M., Turek, T. J. Appl. Electrochem. 2021, 51, 1217–1228; https://doi.org/10.1007/s10800-021-01572-y.Search in Google Scholar

23. Oelßner, W., Berthold, F., Guth, U. Mater. Corros. 2006, 57, 455–466; https://doi.org/10.1002/maco.200603982.Search in Google Scholar

24. Schmidt, V. M. Elektrochemische Verfahrenstechnik: Grundlagen, Reaktionstechnik, Prozeßoptimierung; Wiley-VCH: Weinheim, 2003.10.1002/3527602143Search in Google Scholar

25. Vetter, K. J. Elektrochemische Kinetik, 1st ed.; Springer: Berlin-Göttingen-Heidelberg, 1961.10.1007/978-3-642-86547-3_2Search in Google Scholar

26. Bender, B., Gericke, K., Eds. Pahl/Beitz Konstruktionslehre. Methoden und Anwendung erfolgreicher Produktentwicklung; Springer: Berlin Heidelberg, 2021.10.1007/978-3-662-57303-7Search in Google Scholar

27. Verein Deutscher Ingenieure e.V. Entwicklung technischer Produkte und Systeme. In Modell der Produktentwicklung; Beuth Verlag GmbH: Berlin, 2019.Search in Google Scholar

28. Verein Deutscher Ingenieure e.V. Entwicklung technischer Produkte und Systeme. In Gestaltung individueller Produktentwicklungsprozesse; Beuth Verlag GmbH: Berlin, 2019.Search in Google Scholar

29. Roth, K. Konstruieren mit Konstruktionskatalogen. Band 3: Verbindungen und Verschlüsse, Lösungsfindung; Springer: Berlin Heidelberg, 1996.10.1007/978-3-642-87219-8Search in Google Scholar

30. Roth, K. Konstruieren mit Konstruktionskatalogen; Springer: Berlin, Heidelberg, New York, Barcelona, Hongkong, London, Mailand, Paris, Singapur, Tokio, 2000.10.1007/978-3-642-17466-7Search in Google Scholar

31. Roth, K. Konstruieren mit Konstruktionskatalogen. Band 2: Kataloge; Springer: Berlin Heidelberg, 2001.10.1007/978-3-642-17467-4Search in Google Scholar

32. Eyerer, P., Domininghaus, H., Eds. VDI-Buch; Springer: Berlin, Heidelberg, 2005.Search in Google Scholar

33. Lacík, I., Beuermann, S., Buback, M. Macromol. Chem. Phys. 2004, 205, 1080–1087; https://doi.org/10.1002/macp.200300251.Search in Google Scholar

34. Beuermann, S., Buback, M., Hesse, P., Junkers, T., Lacík, I. Macromolecules 2006, 39, 509–516.10.1021/ma051187nSearch in Google Scholar

35. Scott, A. J., Duever, T. A., Penlidis, A. Polymer 2019, 177, 214–230; https://doi.org/10.1016/j.polymer.2019.06.006.Search in Google Scholar

36. Tang, Z., Svoboda, R., Lawton, J. S., Aaron, D. S., Papandrew, A. B., Zawodzinski, T. A. J. Electrochem. Soc. 2013, 160, F1040; https://doi.org/10.1149/2.083309jes.Search in Google Scholar

37. Lemmermann, T., Becker, M., Stehle, M., Drache, M., Beuermann, S., Gohs, U., Fittschen, U. E. A., Turek, T., Kunz, U. submitted to J. Power Sources, preprint available at SSRN: https://ssrn.com/abstract=4580119 or https://doi.org/10.1016/j.jpowsour.2023.233983.Search in Google Scholar

38. Darling, R. M., Weber, A. Z., Tucker, M. C., Perry, M. L. J. Electrochem. Soc. 2016, 163, A6014–A5022.10.1149/2.0031601jesSearch in Google Scholar

Received: 2023-09-26
Accepted: 2023-12-27
Published Online: 2024-01-31
Published in Print: 2024-03-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2023-0216/pdf
Scroll to top button