Innovative reactor design for the preparation of polymer electrolyte membranes for vanadium flow batteries from preirradiation induced graft copolymerization of acrylic acid and AMPS on PVDF
-
Maria Stehle
, Torben Lemmermann , Fabian Grasser , Claudia Adolfs , Marco Drache , Uwe Gohs, Armin Lohrengel
, Ulrich Kunz
and Sabine Beuermann
Abstract
An innovative reactor concept is reported that allows for efficient mass transfer from the liquid phase to the base material and compensates for the growth of the material throughout the synthesis of polymer electrolyte membranes (PEM). The novel reactor allows for the synthesis of PEMs with high reproducibility of their dimensions and properties. PEMs are synthesized via graft copolymerization of the monomers acrylic acid and 2-acrylamido-2-methylpropane sulfonic acid on poly(vinylidene fluoride) films serving as base material, which was activated by electron beam treatment. Both monomers are already containing protogenic groups; thus, follow-up functionalization reactions are avoided. The PEMs were characterized with respect to their electrochemical properties (area specific resistance, recharge current, and ion exchange capacity) relevant for application in vanadium flow batteries and compared to commercially available PEMs.
Funding source: Deutsche Forschungsgemeinschaft
Award Identifier / Grant number: 411688235
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: The authors are grateful for financial support provided by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under grant number 411688235.
-
Data availability: Not applicable.
References
1. Soloveichik, G. L. Chem. Rev. 2015, 115, 11533–11558; https://doi.org/10.1021/cr500720t.Search in Google Scholar PubMed
2. Mauritz, K. A., Moore, R. B. Chem. Rev. 2004, 104, 4535–4585; https://doi.org/10.1021/cr0207123.Search in Google Scholar PubMed
3. Sharma, J., Kulshrestha, V. Results Chem. 2023, 5, 100892; https://doi.org/10.1016/j.rechem.2023.100892.Search in Google Scholar
4. Tempelman, C. H. L., Jacobs, J. F., Balzer, R. M., Degirmenci, V. J. Energy Storage 2020, 32, 101754; https://doi.org/10.1016/j.est.2020.101754.Search in Google Scholar
5. Gubler, L. Curr. Opin. Electrochem. 2019, 18, 31–36; https://doi.org/10.1016/j.coelec.2019.08.007.Search in Google Scholar
6. Dürrkop, D., Widdecke, H., Schilde, C., Kunz, U., Schmiemann, A. Membranes 2021, 11, 214; https://doi.org/10.3390/membranes11030214.Search in Google Scholar PubMed PubMed Central
7. Holmberg, S., Lehtinen, T., Näsman, J., Ostrovskii, D., Paronen, M., Serimaa, R., Sundholm, F., Sundholm, G., Torell, L., Torkkeli, M. J. Mater. Chem. 1996, 6, 1309–1317; https://doi.org/10.1039/jm9960601309.Search in Google Scholar
8. Henkensmeier, D., Ben youcef, H., Wallasch, F., Gubler, L. J. Membr. Sci. 2013, 447, 228–235; https://doi.org/10.1016/j.memsci.2013.07.034.Search in Google Scholar
9. Li, X., Drache, M., Gohs, U., Beuermann, S. J. Membr. Sci. 2015, 495, 20–28; https://doi.org/10.1016/j.memsci.2015.07.056.Search in Google Scholar
10. Bogar, M. S., Beuermann, S., Dmitrieva, E., Drache, M., Gohs, U., Kunz, U., Lemmermann, T., Rosenkranz, M., Stehle, M., Zschech, C. Radiat. Phys. Chem. 2021, 184, 109421.Search in Google Scholar
11. Ke, X., Zhang, Y., Gohs, U., Drache, M., Beuermann, S. Polymers 2019, 11, 1175; https://doi.org/10.3390/polym11071175.Search in Google Scholar PubMed PubMed Central
12. Lutz, C., Breuckmann, M., Hampel, S., Kreyenschmidt, M., Ke, X., Beuermann, S., Schafner, K., Turek, T., Kunz, U., Guilherme Buzanich, A., Radtke, M., Fittschen, U. E. A. Membranes 2021, 11, 576.10.3390/membranes11080576Search in Google Scholar PubMed PubMed Central
13. Stehle, M., Adolfs, C., Huse, N., Drache, M., Beuermann, S., Lemmermann, T., Kunz, U., Bogar, M. S., Gohs, U. Tagungsband 4. Niedersächsisches Symposium Materialtechnik; Clausthal-Zellerfeld: Clausthaler Zentrum für Materialtechnik, 2021.Search in Google Scholar
14. Li, X., Drache, M., Ke, X., Gohs, U., Beuermann, S. Macromol. Mater. Eng. 2016, 301, 56–64; https://doi.org/10.1002/mame.201500207.Search in Google Scholar
15. Bogar, M. S., Beuermann, S., Dmitrieva, E., Drache, M., Gohs, U., Kunz, U., Lemmermann, T., Rosenkranz, M., Stehle, M., Zschech, C. Radiat. Phys. Chem. 2021, 184, 109421; https://doi.org/10.1016/j.radphyschem.2021.109421.Search in Google Scholar
16. Li, X., dos Santos, A. R., Drache, M., Ke, X., Gohs, U., Turek, T., Becker, M., Kunz, U., Beuermann, S. J. Membr. Sci. 2017, 524, 419–427; https://doi.org/10.1016/j.memsci.2016.10.053.Search in Google Scholar
17. Lemmermann, T., Becker, M., Stehle, M., Drache, M., Beuermann, S., Bogar, M. S., Gohs, U., Fittschen, U. E. A., Turek, T., Kunz, U. J. Power Sources 2022, 533, 231343; https://doi.org/10.1016/j.jpowsour.2022.231343.Search in Google Scholar
18. Becker, M., Turek, T. J. Power Sources 2020, 446, 227349; https://doi.org/10.1016/j.jpowsour.2019.227349.Search in Google Scholar
19. Sun, B., Skyllas-Kazacos, M. Electrochim. Acta 1992, 37, 1253–1260; https://doi.org/10.1016/0013-4686(92)85064-r.Search in Google Scholar
20. Lutz, C., Hampel, S., Ke, X., Beuermann, S., Turek, T., Kunz, U., Guilherme Buzanich, A., Radtke, M., Fittschen, U. E. A. J. Power Sources 2021, 483, 229176; https://doi.org/10.1016/j.jpowsour.2020.229176.Search in Google Scholar
21. Lutz, C., Hampel, X., Beuermann, S., Turek, T., Kunz, U., Garrevoet, J., Falkenberg, G., Fittschen, U. E. A. J. Synchrotron Radiat. 2021, 28, 1865–1873; https://doi.org/10.1107/s160057752100905x.Search in Google Scholar PubMed PubMed Central
22. Schafner, K., Becker, M., Turek, T. J. Appl. Electrochem. 2021, 51, 1217–1228; https://doi.org/10.1007/s10800-021-01572-y.Search in Google Scholar
23. Oelßner, W., Berthold, F., Guth, U. Mater. Corros. 2006, 57, 455–466; https://doi.org/10.1002/maco.200603982.Search in Google Scholar
24. Schmidt, V. M. Elektrochemische Verfahrenstechnik: Grundlagen, Reaktionstechnik, Prozeßoptimierung; Wiley-VCH: Weinheim, 2003.10.1002/3527602143Search in Google Scholar
25. Vetter, K. J. Elektrochemische Kinetik, 1st ed.; Springer: Berlin-Göttingen-Heidelberg, 1961.10.1007/978-3-642-86547-3_2Search in Google Scholar
26. Bender, B., Gericke, K., Eds. Pahl/Beitz Konstruktionslehre. Methoden und Anwendung erfolgreicher Produktentwicklung; Springer: Berlin Heidelberg, 2021.10.1007/978-3-662-57303-7Search in Google Scholar
27. Verein Deutscher Ingenieure e.V. Entwicklung technischer Produkte und Systeme. In Modell der Produktentwicklung; Beuth Verlag GmbH: Berlin, 2019.Search in Google Scholar
28. Verein Deutscher Ingenieure e.V. Entwicklung technischer Produkte und Systeme. In Gestaltung individueller Produktentwicklungsprozesse; Beuth Verlag GmbH: Berlin, 2019.Search in Google Scholar
29. Roth, K. Konstruieren mit Konstruktionskatalogen. Band 3: Verbindungen und Verschlüsse, Lösungsfindung; Springer: Berlin Heidelberg, 1996.10.1007/978-3-642-87219-8Search in Google Scholar
30. Roth, K. Konstruieren mit Konstruktionskatalogen; Springer: Berlin, Heidelberg, New York, Barcelona, Hongkong, London, Mailand, Paris, Singapur, Tokio, 2000.10.1007/978-3-642-17466-7Search in Google Scholar
31. Roth, K. Konstruieren mit Konstruktionskatalogen. Band 2: Kataloge; Springer: Berlin Heidelberg, 2001.10.1007/978-3-642-17467-4Search in Google Scholar
32. Eyerer, P., Domininghaus, H., Eds. VDI-Buch; Springer: Berlin, Heidelberg, 2005.Search in Google Scholar
33. Lacík, I., Beuermann, S., Buback, M. Macromol. Chem. Phys. 2004, 205, 1080–1087; https://doi.org/10.1002/macp.200300251.Search in Google Scholar
34. Beuermann, S., Buback, M., Hesse, P., Junkers, T., Lacík, I. Macromolecules 2006, 39, 509–516.10.1021/ma051187nSearch in Google Scholar
35. Scott, A. J., Duever, T. A., Penlidis, A. Polymer 2019, 177, 214–230; https://doi.org/10.1016/j.polymer.2019.06.006.Search in Google Scholar
36. Tang, Z., Svoboda, R., Lawton, J. S., Aaron, D. S., Papandrew, A. B., Zawodzinski, T. A. J. Electrochem. Soc. 2013, 160, F1040; https://doi.org/10.1149/2.083309jes.Search in Google Scholar
37. Lemmermann, T., Becker, M., Stehle, M., Drache, M., Beuermann, S., Gohs, U., Fittschen, U. E. A., Turek, T., Kunz, U. submitted to J. Power Sources, preprint available at SSRN: https://ssrn.com/abstract=4580119 or https://doi.org/10.1016/j.jpowsour.2023.233983.Search in Google Scholar
38. Darling, R. M., Weber, A. Z., Tucker, M. C., Perry, M. L. J. Electrochem. Soc. 2016, 163, A6014–A5022.10.1149/2.0031601jesSearch in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material Properties
- Effect of titanium diboride on the rheological characteristics of silica-based polyethylene glycol shear thickening fluid
- Influence of different dimensional nanoparticles on the properties of poly(β-hydroxybutyrate-co-valerate) nanocomposites
- Preparation and Assembly
- Multifunctional hydrogels for wound healing
- Stiff, strong, and tear-resistant physical hydrogels with widely tunable toughness by post-treatments
- Study on the adhesion of PTFE/PI composite films by interlocking synergistic effects
- Physically cross-linked scaffold composed of hydroxyapatite-chitosan-alginate-polyamide has potential to trigger bone regeneration in craniofacial defect
- Engineering and Processing
- Influence of CNTs on the gradient phase structure formed by the layered resin structure used to model the interlaminar region of interleaved FRPs
- Innovative reactor design for the preparation of polymer electrolyte membranes for vanadium flow batteries from preirradiation induced graft copolymerization of acrylic acid and AMPS on PVDF
Articles in the same Issue
- Frontmatter
- Material Properties
- Effect of titanium diboride on the rheological characteristics of silica-based polyethylene glycol shear thickening fluid
- Influence of different dimensional nanoparticles on the properties of poly(β-hydroxybutyrate-co-valerate) nanocomposites
- Preparation and Assembly
- Multifunctional hydrogels for wound healing
- Stiff, strong, and tear-resistant physical hydrogels with widely tunable toughness by post-treatments
- Study on the adhesion of PTFE/PI composite films by interlocking synergistic effects
- Physically cross-linked scaffold composed of hydroxyapatite-chitosan-alginate-polyamide has potential to trigger bone regeneration in craniofacial defect
- Engineering and Processing
- Influence of CNTs on the gradient phase structure formed by the layered resin structure used to model the interlaminar region of interleaved FRPs
- Innovative reactor design for the preparation of polymer electrolyte membranes for vanadium flow batteries from preirradiation induced graft copolymerization of acrylic acid and AMPS on PVDF