Preparation and property evaluation of poly(ε-caprolactone)/polylactic acid/perlite biodegradable composite film
Abstract
The feasibility of perlite particles used in poly(ε-caprolactone) (PCL)/poly(lactic acid) (PLA) composite films by melt blending is explored to improve their mechanical property and analyze their antibacterial effect. The effect of perlite content on the mechanical, thermal, hydrophilic, and antibacterial properties of composite films is investigated. Results show that incorporation of 10 wt% perlite in PCL/PLA film improves the tensile strength and hydrophilicity by 1.2 times and 25 %, respectively. After perlite addition, the melting crystallization and glass transition temperature of PCL/PLA film are improved. The presence of perlite also confers antibacterial benefits to the composite film. PLA-based materials are used in the fields of medical materials and food packaging, and their ability to degrade in seawater has been a long-standing goal. In this study, the addition of PCL and perlite not only increases various properties and antibacterial effects, but the blending of inorganic materials and organic materials can destroy the link strength of polymer chain segments of organic materials and help them degrade in seawater. The prepared composite film features broad prospects for the development and application of various fields, such as food packaging and medical materials, reduce white pollution in the ocean.
Funding source: Fuzhou Science and Technology Plan Sponsorship Project
Award Identifier / Grant number: 2022-Y-005
Funding source: National Science Foundation of Fujian Province
Award Identifier / Grant number: 2020J01849
Funding source: Major Science and Technology Project of Fuzhou
Award Identifier / Grant number: 2021-ZD-298
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors declare no conflicts of interest.
-
Research funding: This work was financially supported by the National Science Foundation of Fujian Province (no. 2020J01849), the Major Science and Technology Project of Fuzhou (no. 2021-ZD-298), Fuzhou Science and Technology Plan Sponsorship Project (no. 2022-Y-005).
-
Data availability: Not applicable.
References
1. Zahid, S., Khalid, H., Ikram, F., Iqbal, H., Samie, M., Shahzadi, L., Shah, A. T., Yar, M., Chaudhry, A. A., Awan, S. J. Bi-layered α-tocopherol acetate loaded membranes for potential wound healing and skin regeneration. Mater. Sci. Eng. C 2019, 101, 438–447; https://doi.org/10.1016/j.msec.2019.03.080.Suche in Google Scholar PubMed
2. Shojaei, S., Nikuei, M., Goodarzi, V., Hakani, M., Khonakdar, H., Saeb, M. Disclosing the role of surface and bulk erosion on the viscoelastic behavior of biodegradable poly (ε‐caprolactone)/poly (lactic acid)/hydroxyapatite nanocomposites. J. Appl. Polym. Sci. 2019, 136, 47151; https://doi.org/10.1002/app.47151.Suche in Google Scholar
3. Oria, M., Tatu, R. R., Lin, C.-Y., Peiro, J. L. In vivo evaluation of novel PLA/PCL polymeric patch in rats for potential spina bifida coverage. J. Surg. Res. 2019, 242, 62–69; https://doi.org/10.1016/j.jss.2019.04.035.Suche in Google Scholar PubMed
4. Solarski, S., Ferreira, M., Devaux, E. Characterization of the thermal properties of PLA fibers by modulated differential scanning calorimetry. Polymer 2005, 46, 11187–11192; https://doi.org/10.1016/j.polymer.2005.10.027.Suche in Google Scholar
5. Cailloux, J., Raquez, J.-M., Re, G. L., Santana, O., Bonnaud, L., Dubois, P., Maspoch, M. L. Melt-processing of cellulose nanofibril/polylactide bionanocomposites via a sustainable polyethylene glycol-based carrier system. Carbohydr. Polym. 2019, 224, 115188; https://doi.org/10.1016/j.carbpol.2019.115188.Suche in Google Scholar PubMed
6. Khadka, N., Parajuli, S., Acharya, R., Neupane, S., Giri, J., Adhikari, R. Study of cellulose nanocrystals (CNC) & polyvinyl alcohol (PVA) composite film modified using silica and polybutylene terephthalate (PBT) as a transparent, hydrophobic, self-cleaning cover. engrXiv. 2020, https://doi.org/10.31224/osf.io/cbgs9.Suche in Google Scholar
7. Behtaj, S., Karamali, F., Masaeli, E., Anissimov, Y. G., Rybachuk, M. Electrospun PGS/PCL, PLLA/PCL, PLGA/PCL and pure PCL scaffolds for retinal progenitor cell cultivation. Biochem. Eng. J. 2021, 166, 107846; https://doi.org/10.1016/j.bej.2020.107846.Suche in Google Scholar
8. Kelnar, I., Kratochvíl, J., Fortelný, I., Kaprálková, L., Zhigunov, A., Nevoralová, M. Effect of graphite nanoplatelets on melt drawing and properties of PCL/PLA microfibrillar composites. Polym. Compos. 2018, 39, 3147–3156; https://doi.org/10.1002/pc.24322.Suche in Google Scholar
9. Sarazin, P., Li, G., Orts, W. J., Favis, B. D. Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch. Polymer 2008, 49, 599–609; https://doi.org/10.1016/j.polymer.2007.11.029.Suche in Google Scholar
10. Luyt, A., Gasmi, S. Influence of blending and blend morphology on the thermal properties and crystallization behaviour of PLA and PCL in PLA/PCL blends. J. Mater. Sci. 2016, 51, 4670–4681; https://doi.org/10.1007/s10853-016-9784-z.Suche in Google Scholar
11. Luyt, A., Gasmi, S. Influence of TiO 2 nanoparticles on the crystallization behaviour and tensile properties of biodegradable PLA and PCL nanocomposites. J. Polym. Environ. 2018, 26, 2410–2423; https://doi.org/10.1007/s10924-017-1142-y.Suche in Google Scholar
12. Ostafinska, A., Fortelný, I., Hodan, J., Krejčíková, S., Nevoralová, M., Kredatusová, J., Kruliš, Z., Kotek, J., Šlouf, M. Strong synergistic effects in PLA/PCL blends: impact of PLA matrix viscosity. J. Mech. Behav. Biomed. Mater. 2017, 69, 229–241; https://doi.org/10.1016/j.jmbbm.2017.01.015.Suche in Google Scholar PubMed
13. Venkatesan, J., Qian, Z.-J., Ryu, B., Kumar, N. A., Kim, S.-K. Preparation and characterization of carbon nanotube-grafted-chitosan–natural hydroxyapatite composite for bone tissue engineering. Carbohydr. Polym. 2011, 83, 569–577; https://doi.org/10.1016/j.carbpol.2010.08.019.Suche in Google Scholar
14. Zhang, J.-F., Sun, X. Mechanical properties of poly (lactic acid)/starch composites compatibilized by maleic anhydride. Biomacromolecules 2004, 5, 1446–1451; https://doi.org/10.1021/bm0400022.Suche in Google Scholar PubMed
15. Rizvi, A., Park, C. B., Favis, B. D. Tuning viscoelastic and crystallization properties of polypropylene containing in-situ generated high aspect ratio polyethylene terephthalate fibrils. Polymer 2015, 68, 83–91; https://doi.org/10.1016/j.polymer.2015.04.081.Suche in Google Scholar
16. Na, Y.-H., He, Y., Shuai, X., Kikkawa, Y., Doi, Y., Inoue, Y. Compatibilization effect of poly (ε-caprolactone)-b-poly (ethylene glycol) block copolymers and phase morphology analysis in immiscible poly (lactide)/poly (ε-caprolactone) blends. Biomacromolecules 2002, 3, 1179–1186; https://doi.org/10.1021/bm020050r.Suche in Google Scholar PubMed
17. Rusa, C. C., Tonelli, A. E. Polymer/polymer inclusion compounds as a novel approach to obtaining a PLLA/PCL intimately compatible blend. Macromolecules 2000, 33, 5321–5324; https://doi.org/10.1021/ma000746h.Suche in Google Scholar
18. Bai, H., Xiu, H., Gao, J., Deng, H., Zhang, Q., Yang, M., Fu, Q. Tailoring impact toughness of poly (L-lactide)/poly (ε-caprolactone)(PLLA/PCL) blends by controlling crystallization of PLLA matrix. ACS Appl. Mater. Interfaces 2012, 4, 897–905; https://doi.org/10.1021/am201564f.Suche in Google Scholar PubMed
19. Kakroodi, A. R., Kazemi, Y., Rodrigue, D., Park, C. B. Facile production of biodegradable PCL/PLA in situ nanofibrillar composites with unprecedented compatibility between the blend components. Chem. Eng. J. 2018, 351, 976–984; https://doi.org/10.1016/j.cej.2018.06.152.Suche in Google Scholar
20. Marras, S. I., Kladi, K. P., Tsivintzelis, I., Zuburtikudis, I., Panayiotou, C. Biodegradable polymer nanocomposites: the role of nanoclays on the thermomechanical characteristics and the electrospun fibrous structure. Acta Biomater. 2008, 4, 756–765; https://doi.org/10.1016/j.actbio.2007.12.005.Suche in Google Scholar PubMed
21. Pérez-Masiá, R., López-Rubio, A., Fabra, M. J., Lagaron, J. M. Use of electrohydrodynamic processing to develop nanostructured materials for the preservation of the cold chain. Innovat. Food Sci. Emerg. Technol. 2014, 26, 415–423; https://doi.org/10.1016/j.ifset.2014.10.010.Suche in Google Scholar
22. de Oliveira, A. G., Jandorno, J. C.Jr, da Rocha, E. B. D., de Sousa, A. M. F., da Silva, A. L. N. Evaluation of expanded perlite behavior in PS/Perlite composites. Appl. Clay Sci. 2019, 181, 105223; https://doi.org/10.1016/j.clay.2019.105223.Suche in Google Scholar
23. Valdez-Castillo, M., Saucedo-Lucero, J. O., Arriaga, S. Photocatalytic inactivation of airborne microorganisms in continuous flow using perlite-supported ZnO and TiO2. Chem. Eng. J. 2019, 374, 914–923; https://doi.org/10.1016/j.cej.2019.05.231.Suche in Google Scholar
24. Arifuzzaman, M., Kim, H. S. Plane stress/strain compressive behavior of perlite composite foam. J. Test. Eval. 2018, 47, 2905–2925; https://doi.org/10.1520/jte20170135.Suche in Google Scholar
25. Adjei, S., Bageri, B. S., Elkatatny, S., Adebayo, A. Effect of perlite particles on barite cement properties. ACS Omega 2021, 6, 4793–4799; https://doi.org/10.1021/acsomega.0c05699.Suche in Google Scholar PubMed PubMed Central
26. Cheng, F., Zhang, X., Wen, R., Huang, Z., Fang, M., Liu, Y., Wu, X., Min, X. Thermal conductivity enhancement of form-stable tetradecanol/expanded perlite composite phase change materials by adding Cu powder and carbon fiber for thermal energy storage. Appl. Therm. Eng. 2019, 156, 653–659; https://doi.org/10.1016/j.applthermaleng.2019.03.140.Suche in Google Scholar
27. Raji, M., Nekhlaoui, S., El Hassani, I.-E. E. A., Essassi, E. M., Essabir, H., Rodrigue, D., Bouhfid, R. Utilization of volcanic amorphous aluminosilicate rocks (perlite) as alternative materials in lightweight composites. Composites, Part B 2019, 165, 47–54; https://doi.org/10.1016/j.compositesb.2018.11.098.Suche in Google Scholar
28. Cabuk, M., Yavuz, M., Unal, H. I. Colloidal, electrorheological, and viscoelastic properties of polypyrrole-graft-chitosan biodegradable copolymer. J. Intell. Mater. Syst. Struct. 2015, 26, 1799–1810; https://doi.org/10.1177/1045389x15577652.Suche in Google Scholar
29. Unal, H. I., Sahan, B., Erol, O. Investigation of electrokinetic and electrorheological properties of polyindole prepared in the presence of a surfactant. Mater. Chem. Phys. 2012, 134, 382–391; https://doi.org/10.1016/j.matchemphys.2012.03.006.Suche in Google Scholar
30. Li, T.-T., Dai, W., Huang, S.-Y., Wang, H., Lin, Q., Lou, C.-W., Lin, J.-H. Preparation and characterization of SEBS-g-MAH-filled flexible polyurethane foam composites with gradient-changing structure. Mater. Design 2019, 183, 108150; https://doi.org/10.1016/j.matdes.2019.108150.Suche in Google Scholar
31. Sun, M., Kingham, P. J., Reid, A. J., Armstrong, S. J., Terenghi, G., Downes, S. In vitro and in vivo testing of novel ultrathin PCL and PCL/PLA blend films as peripheral nerve conduit. J. Biomed. Mater. Res., Part A 2010, 93, 1470–1481; https://doi.org/10.1002/jbm.a.32681.Suche in Google Scholar PubMed
32. Wang, H., Li, T.-T., Wu, L., Lou, C.-W., Lin, J.-H. Multifunctional, polyurethane-based foam composites reinforced by a fabric structure: preparation, mechanical, acoustic, and EMI shielding properties. Materials 2018, 11, 2085; https://doi.org/10.3390/ma11112085.Suche in Google Scholar PubMed PubMed Central
33. Noroozi, N., Schafer, L. L., Hatzikiriakos, S. G. Thermorheological properties of poly (ε‐caprolactone)/polylactide blends. Polym. Eng. Sci. 2012, 52, 2348–2359; https://doi.org/10.1002/pen.23186.Suche in Google Scholar
34. Wang, L., Gramlich, W. M., Gardner, D. J. Improving the impact strength of Poly (lactic acid)(PLA) in fused layer modeling (FLM). Polymer 2017, 114, 242–248; https://doi.org/10.1016/j.polymer.2017.03.011.Suche in Google Scholar
35. Matta, A., Rao, R. U., Suman, K., Rambabu, V. Preparation and characterization of biodegradable PLA/PCL polymeric blends. Procedia Mater. Sci. 2014, 6, 1266–1270; https://doi.org/10.1016/j.mspro.2014.07.201.Suche in Google Scholar
36. Mofokeng, J., Kelnar, I., Luyt, A. Effect of layered silicates on the thermal stability of PCL/PLA microfibrillar composites. Polym. Test. 2016, 50, 9–14; https://doi.org/10.1016/j.polymertesting.2015.12.004.Suche in Google Scholar
37. Barczewski, M., Mysiukiewicz, O., Szulc, J., Kloziński, A. Poly (lactic acid) green composites filled with linseed cake as an agricultural waste filler. Influence of oil content within the filler on the rheological behavior. J. Appl. Polym. Sci. 2019, 136, 47651; https://doi.org/10.1002/app.47651.Suche in Google Scholar
38. Mofokeng, J., Luyt, A. Morphology and thermal degradation studies of melt-mixed poly (lactic acid)(PLA)/poly (ε-caprolactone)(PCL) biodegradable polymer blend nanocomposites with TiO2 as filler. Polym. Test. 2015, 45, 93–100; https://doi.org/10.1016/j.polymertesting.2015.05.007.Suche in Google Scholar
39. Abdal-hay, A., Hwang, M.-G., Lim, J. K. In vitro bioactivity of titanium implants coated with bicomponent hybrid biodegradable polymers. J. Sol. Gel Sci. Technol. 2012, 64, 756–764; https://doi.org/10.1007/s10971-012-2912-6.Suche in Google Scholar
40. Killian, M. S., Gnichwitz, J.-F., Hirsch, A., Schmuki, P., Kunze, J. ToF-SIMS and XPS studies of the adsorption characteristics of a Zn-porphyrin on TiO2. Langmuir 2010, 26, 3531–3538; https://doi.org/10.1021/la9032139.Suche in Google Scholar PubMed
41. Li, T.-T., Zhong, Y., Yan, M., Zhou, W., Xu, W., Huang, S.-Y., Sun, F., Lou, C.-W., Lin, J.-H. Synergistic effect and characterization of graphene/carbon nanotubes/polyvinyl alcohol/sodium alginate nanofibrous membranes formed using continuous needleless dynamic linear electrospinning. Nanomaterials 2019, 9, 714; https://doi.org/10.3390/nano9050714.Suche in Google Scholar PubMed PubMed Central
42. Ibarguren, C., Audisio, M. C., Torres, E. M. F., Apella, M. C. Silicates characterization as potential bacteriocin-carriers. Innovat. Food Sci. Emerg. Technol. 2010, 11, 197–202; https://doi.org/10.1016/j.ifset.2009.10.002.Suche in Google Scholar
43. Mallakpour, S., Khani, Z. Surface modified SiO2 nanoparticles by thiamine and ultrasonication synthesis of PCL/SiO2-VB1 NCs: Morphology, thermal, mechanical and bioactivity investigations. Ultrason. Sonochem. 2018, 41, 527–537; https://doi.org/10.1016/j.ultsonch.2017.10.015.Suche in Google Scholar PubMed
44. Shankar, S., Rhim, J.-W., Won, K. Preparation of poly (lactide)/lignin/silver nanoparticles composite films with UV light barrier and antibacterial properties. Int. J. Biol. Macromol. 2018, 107, 1724–1731; https://doi.org/10.1016/j.ijbiomac.2017.10.038.Suche in Google Scholar PubMed
45. Galli Engler, L., Farias, N. C., Silva Crespo, J., Gately, N. M., Major, I., Pezzoli, R., Devine, D. M. Designing sustainable polymer blends: tailoring mechanical properties and degradation behaviour in PHB/PLA/PCL blends in a seawater environment. Polymers 2023, 15, 2874; https://doi.org/10.3390/polym15132874.Suche in Google Scholar PubMed PubMed Central
46. Narancic, T., Verstichel, S., Reddy Chaganti, S., Morales-Gamez, L., Kenny, S. T., De Wilde, B., Babu Padamati, R., O’Connor, K. E. Biodegradable plastic blends create new possibilities for end-of-life management of plastics but they are not a panacea for plastic pollution. Environ. Sci. Technol. 2018, 52, 10441–10452; https://doi.org/10.1021/acs.est.8b02963.Suche in Google Scholar PubMed
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material Properties
- Research progress of metal organic framework materials in anti-corrosion coating
- Effect of gamma irradiation on tensile, thermal and wettability properties of waste coffee grounds reinforced HDPE composites
- Morphologies, structures, and properties on blends of triblock copolymers and linear low-density polyethylene
- Enhancement of the tribological and thermal properties of UHMWPE based ternary nanocomposites containing graphene and titanium titride
- Preparation and Assembly
- Preparation and property evaluation of poly(ε-caprolactone)/polylactic acid/perlite biodegradable composite film
- Engineering and Processing
- Predictive maintenance feasibility assessment based on nonreturn valve wear of injection molding machines
- Quality monitoring of injection molding based on TSO-SVM and MOSSA
- Location-controlled crazing in polyethylene using focused electron beams and tensile strain
- Annual Reviewer Acknowledgement
- Reviewer acknowledgement Journal of Polymer Engineering volume 43 (2023)
Artikel in diesem Heft
- Frontmatter
- Material Properties
- Research progress of metal organic framework materials in anti-corrosion coating
- Effect of gamma irradiation on tensile, thermal and wettability properties of waste coffee grounds reinforced HDPE composites
- Morphologies, structures, and properties on blends of triblock copolymers and linear low-density polyethylene
- Enhancement of the tribological and thermal properties of UHMWPE based ternary nanocomposites containing graphene and titanium titride
- Preparation and Assembly
- Preparation and property evaluation of poly(ε-caprolactone)/polylactic acid/perlite biodegradable composite film
- Engineering and Processing
- Predictive maintenance feasibility assessment based on nonreturn valve wear of injection molding machines
- Quality monitoring of injection molding based on TSO-SVM and MOSSA
- Location-controlled crazing in polyethylene using focused electron beams and tensile strain
- Annual Reviewer Acknowledgement
- Reviewer acknowledgement Journal of Polymer Engineering volume 43 (2023)