Abstract
This study investigates the impact of gamma irradiation on the properties of waste coffee grounds (WCG)/high-density polyethylene (HDPE) composites. The composites were manufactured with 20 wt% of unirradiated and irradiated WCG at 10 and 20 kGy doses of gamma radiation. Through the utilization of a two-roll mill followed by a hydraulic press. The properties of the composites were analyzed through several methods, including contact angle measurements, hardness and tensile tests, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM), in order to understand the influence of gamma irradiation. The addition of WCG decreased the tensile strength of the composite. However, gamma irradiation at 10 and 20 kGy led to substantial improvements in thermal stability and tensile strength compared to unirradiated samples. The SEM images showed the alterations within the fiber-matrix interface that corroborated the enhanced tensile properties after the treatment. While FTIR spectra confirmed the changes in functional groups of WCG caused by the irradiation process, gamma irradiation treatment not only increases fiber-matrix adhesion but also significantly improves the water resistance of the composites. These results suggest that gamma irradiation can be used for the modification of agro-waste materials as a beneficial process and the fabrication of high-performance, environmentally friendly composites.
Acknowledgements
The authors are grateful to CRNA for allowing us to use the Cobalt-60 gamma irradiator and particularly to Mr. Djamel Tahtat for his collaboration and human qualities. The authors are also appreciative of the scientific assistance provided by the CP2K complex.
-
Research ethics: The authors hereby affirm that this manuscript is an original work that has not been previously published or submitted to another journal for consideration.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Ahmed Nabil Louahem M’sabah: collection and analysis of results, writing of the manuscript, and review. Nadira Bellili and Badrina Dairi: review and supervision. Nesrine Ammouchi: review.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. EL-Zayat, M. M., Abdel-Hakim, A., Mohamed, M. A. J. Macromol. Sci. Part A 2019, 56, 127–135; https://doi.org/10.1080/10601325.2018.1549949.Search in Google Scholar
2. Rahman, H., Yeasmin, F., Khan, S. A., Hasan, M. Z., Roy, M., Uddin, M. B., Khan, R. A. J. Mater. Res. Technol. 2021, 11, 914–928; https://doi.org/10.1016/j.jmrt.2021.01.067.Search in Google Scholar
3. Raslan, H. A., Fathy, E. S., Mohamed, R. M. J. Polym. Anal. Charact. 2017, 23, 181–192; https://doi.org/10.1080/1023666x.2017.1405535.Search in Google Scholar
4. Han, Y. H., Han, S. O., Cho, D., Kim, H.-I. Compos. Interfaces 2007, 14, 559–578; https://doi.org/10.1163/156855407781291272.Search in Google Scholar
5. Rimdusit, S., Wongsongyot, S., Jittarom, S., Suwanmala, P., Tiptipakorn, S. J. Polym. Res. 2010, 18, 801–809; https://doi.org/10.1007/s10965-010-9477-2.Search in Google Scholar
6. Wu, H., Hu, W., Zhang, Y., Huang, L., Zhang, J., Tan, S., Cai, X., Liao, X. J. Mater. Sci. 2016, 51, 10205–10214; https://doi.org/10.1007/s10853-016-0248-2.Search in Google Scholar
7. Hassan, M. M., Karim, A., Shabnam, T., Bhuiyan, A. H., Khan, M. A. Polym.-Plast. Technol. Eng. 2012, 51, 977–982; https://doi.org/10.1080/03602559.2012.679378.Search in Google Scholar
8. Mendes, J. F., Martins, J. T., Manrich, A., Luchesi, B. R., Dantas, A. P. S., Vanderlei, R. M., Claro, P. C., Neto, A. R. de S., Mattoso, L. H. C., Martins, M. A. J. Polym. Environ. 2021, 29, 2888–2900; https://doi.org/10.1007/s10924-021-02090-w.Search in Google Scholar
9. Sahu, P., Gupta, M. J. Reinf. Plast. Compos. 2017, 36, 1759–1780; https://doi.org/10.1177/0731684417725584.Search in Google Scholar
10. García-García, D., Carbonell, A., Samper, M. D., García-Sanoguera, D., Balart, R. Compos. Part B Eng. 2015, 78, 256–265; https://doi.org/10.1016/j.compositesb.2015.03.080.Search in Google Scholar
11. Lee, H. K., Park, Y. G., Jeong, T., Song, Y. S. J. Appl. Polym. Sci. 2015, 132, 42043; https://doi.org/10.1002/app.42043.Search in Google Scholar
12. Tan, M. Y., Nicholas Kuan, H. T., Lee, M. C. Int. J. Polym. Sci. 2017, 2017, 1–12; https://doi.org/10.1155/2017/6258151.Search in Google Scholar
13. Wu, C.-S. Polym. Degrad. Stab. 2015, 121, 51–59; https://doi.org/10.1016/j.polymdegradstab.2015.08.011.Search in Google Scholar
14. Moustafa, H., Guizani, C., Dufresne, A. J. Appl. Polym. Sci. 2016, 134, 44498; https://doi.org/10.1002/app.44498.Search in Google Scholar
15. Essabir, H., Raji, M., Laaziz, S. A., Rodrique, D., Bouhfid, R., Qaiss, A. Compos. Part B Eng. 2018, 149, 1–11; https://doi.org/10.1016/j.compositesb.2018.05.020.Search in Google Scholar
16. Kwon, E. E., Yi, H., Jeon, Y. J. Bioresour. Technol. 2013, 136, 475–480; https://doi.org/10.1016/j.biortech.2013.03.052.Search in Google Scholar PubMed
17. Caetano, N. S., Silva, V. F. M., Melo, A. C., Martins, A. A., Mata, T. M. Clean Technol. Environ. Policy 2014, 16, 1423–1430; https://doi.org/10.1007/s10098-014-0773-0.Search in Google Scholar
18. Givens, D. I., Barber, W. P. Agric. Wastes 1986, 18, 69–72; https://doi.org/10.1016/0141-4607(86)90108-3.Search in Google Scholar
19. Mussatto, S. I., Carneiro, L. M., Silva, J. P. A., Roberto, I. C., Teixeira, J. A. Carbohydr. Polym. 2011, 83, 368–374; https://doi.org/10.1016/j.carbpol.2010.07.063.Search in Google Scholar
20. Kondamudi, N., Mohapatra, S. K., Misra, M. J. Agric. Food Chem. 2008, 56, 11757–11760; https://doi.org/10.1021/jf802487s.Search in Google Scholar PubMed
21. Garcia, C. V., Kim, Y.-T. J. Polym. Environ. 2021, 29, 2372–2384; https://doi.org/10.1007/s10924-021-02067-9.Search in Google Scholar
22. Noura, H., Amar, B., Hocine, D., Rabah, Y., Stephane, C., Roland, E. H., Anne, B. J. Thermoplast. Compos. Mater. 2017, 31, 598–615; https://doi.org/10.1177/0892705717714831.Search in Google Scholar
23. Diaz-Silvarrey, L. S., Zhang, K., Phan, A. N. Green Chem. 2018, 20, 1813–1823; https://doi.org/10.1039/c7gc03662k.Search in Google Scholar
24. Ferreira, M. S., Sartori, M. N., Oliveira, R. R., Guven, O., Moura, E. A. B. Appl. Surf. Sci. 2014, 310, 325–330; https://doi.org/10.1016/j.apsusc.2014.03.076.Search in Google Scholar
25. Pastrnak, A., Henriquez, A., La Saponara, V. J. Appl. Polym. Sci. 2020, 137, 49283; https://doi.org/10.1002/app.49283.Search in Google Scholar
26. Kumar, S., Panda, A. K., Singh, R. K. Resour. Conserv. Recycl. 2011, 55, 893–910; https://doi.org/10.1016/j.resconrec.2011.05.005.Search in Google Scholar
27. Khan, M. A., Haque, N., Al-Kafi, A., Alam, M. N., Abedin, M. Z. Polym.-Plast. Technol. Eng. 2006, 45, 607–613; https://doi.org/10.1080/03602550600554141.Search in Google Scholar
28. Vasco, M. C., Claro Neto, S., Nascimento, E. M., Azevedo, E. Polímeros 2017, 27, 165–170; https://doi.org/10.1590/0104-1428.05916.Search in Google Scholar
29. Gibeop, N., Lee, D. W., Prasad, C. V., Toru, F., Kim, B. S., Song, J. I. Adv. Compos. Mater. 2013, 22, 389–399; https://doi.org/10.1080/09243046.2013.843814.Search in Google Scholar
30. Joseph, K., Thomas, S., Pavithran, C. Polymer 1996, 37, 5139–5149; https://doi.org/10.1016/0032-3861(96)00144-9.Search in Google Scholar
31. Valadez-Gonzalez, A., Cervantes-Uc, J. M., Olayo, R., Herrera-Franco, P. J. Compos. Part B Eng. 1999, 30, 321–331; https://doi.org/10.1016/s1359-8368(98)00055-9.Search in Google Scholar
32. Abdul Khalil, H. P. S., Ismail, H. Polym. Test. 2000, 20, 65–75; https://doi.org/10.1016/s0142-9418(99)00080-x.Search in Google Scholar
33. Shah, H., Srinivasulu, B., Shit, S. C. Polym. Renew. Resour. 2013, 4, 61–84; https://doi.org/10.1177/204124791300400202.Search in Google Scholar
34. Wang, J., Dong, J., Zhang, J., Zhu, B., Cui, D. J. Polym. Eng. 2018, 38, 157–166; https://doi.org/10.1515/polyeng-2016-0432.Search in Google Scholar
35. Gassan, J. Compos. Sci. Technol. 2000, 60, 2857–2863; https://doi.org/10.1016/s0266-3538(00)00168-8.Search in Google Scholar
36. Ragoubi, M., Bienaimé, D., Molina, S., George, B., Merlin, A. Ind. Crops Prod. 2010, 31, 344–349; https://doi.org/10.1016/j.indcrop.2009.12.004.Search in Google Scholar
37. Law, T. T., Ishak, Z. A. M. J. Appl. Polym. Sci. 2010, 120, 563–572; https://doi.org/10.1002/app.33184.Search in Google Scholar
38. Niang, B., Ndiaye, D., Kholl, M., Babacar, L., Diallo, A., Badji, A. Chem. Sci. Int. J. 2017, 20, 1–12; https://doi.org/10.9734/csji/2017/37423.Search in Google Scholar
39. Ayma, A. J. Text. Sci. Eng. 2017, 7, 1000294; https://doi.org/10.4172/2165-8064.1000294.Search in Google Scholar
40. Islam, T., Khan, R. A., Khan, M. A., Rahman, Md. A., Fernandez-Lahore, M., Huque, Q. M. I., Islam, R. Polym.-Plast. Technol. Eng. 2009, 48, 1198–1205; https://doi.org/10.1080/03602550903149169.Search in Google Scholar
41. Zaman, H. U., Khan, M. A., Khan, R. A. J. Polym. Eng. 2012, 32, 301–309; https://doi.org/10.1515/polyeng-2012-0004.Search in Google Scholar
42. Rahman, H., Alimuzzaman, S., Sayeed, M. M. A., Khan, R. A. Int. J. Plast. Technol. 2019, 23, 229–238; https://doi.org/10.1007/s12588-019-09253-4.Search in Google Scholar
43. Sahadat Hossain, Md., Uddin, M. B., Razzak, Md., Sarwaruddin Chowdhury, A. M., Khan, R. A. Radiat. Eff. Defects Solids 2017, 172, 904–914; https://doi.org/10.1080/10420150.2017.1417409.Search in Google Scholar
44. Reyes, J., Albano, C., Davidson, E., Poleo, R., González, J., Ichazo, M., Chipara, M. Mater. Res. Innov. 2001, 4, 294–300; https://doi.org/10.1007/s100190000104.Search in Google Scholar
45. Gulati, K., Lal, S., Kumar, S., Arora, S. Polym. Bull. 2020, 78, 7019–7038; https://doi.org/10.1007/s00289-020-03477-w.Search in Google Scholar
46. Zarrinbakhsh, N., Wang, T., Rodriguez-Uribe, A., Misra, M., Mohanty, A. K. BioResources 2016, 11, 7637–7653; https://doi.org/10.15376/biores.11.3.7637-7653.Search in Google Scholar
47. Reis, N., Franca, A. S., Oliveira, L. S. LWT – Food Sci. Technol. 2013, 50, 715–722; https://doi.org/10.1016/j.lwt.2012.07.016.Search in Google Scholar
48. EL-Zayat, M. M., Mohamed, R. M., Raslan, H. A. J. Macromol. Sci. Part A 2019, 57, 344–354; https://doi.org/10.1080/10601325.2019.1698964.Search in Google Scholar
49. Botaro, V. R., dos Santos, C. G., Arantes Júnior, G., da Costa, A. R. Appl. Surf. Sci. 2001, 183, 120–125; https://doi.org/10.1016/s0169-4332(01)00571-2.Search in Google Scholar
50. Bellili, N., Djidjelli, H., Boukerrou, A., Barres, C., Fenouillot, F. J. Vinyl Addit. Technol. 2014, 22, 273–278; https://doi.org/10.1002/vnl.21441.Search in Google Scholar
51. Părpăriţă, E., Darie, R. N., Popescu, C.-M., Uddin, Md. A., Vasile, C. Mater. Des. (1980–2015) 2014, 56, 763–772.10.1016/j.matdes.2013.12.033Search in Google Scholar
52. Kumar, V., Gulati, K., Lal, S., Arora, S. Radiat. Phys. Chem. 2020, 174, 108922; https://doi.org/10.1016/j.radphyschem.2020.108922.Search in Google Scholar
53. Sahadat Hossain, Md., Chowdhury, A. M. S., Khan, R. A. Radiat. Eff. Defects Solids 2017, 172, 517–530; https://doi.org/10.1080/10420150.2017.1351442.Search in Google Scholar
54. Yorseng, K., Mavinkere Rangappa, S., Parameswaranpillai, J., Siengchin, S. Polymers 2020, 12, 2254; https://doi.org/10.3390/polym12102254.Search in Google Scholar PubMed PubMed Central
55. Lee, T. S., Choi, H. Y., Choi, H. N., Lee, K.-Y., Kim, S.-H., Lee, S. G., Yong, D. K. J. Adhes. Sci. Technol. 2013, 27, 1335–1347; https://doi.org/10.1080/01694243.2012.697326.Search in Google Scholar
56. Akindoyo, J. O., Beg, M. D. H., Ghazali, S. B., Islam, M. R., Mamun, A. A. Polym.-Plast. Technol. Eng. 2015, 54, 1321–1333; https://doi.org/10.1080/03602559.2015.1010219.Search in Google Scholar
57. Huner, U. J. Nat. Fibers 2017, 15, 808–821; https://doi.org/10.1080/15440478.2017.1369207.Search in Google Scholar
58. Bellili, N., Djidjelli, H., Boukerrou, A., Dairi, B., Bendib, R. Compos. Mech. Comput. Appl. Int. J. 2020, 11, 309–322; https://doi.org/10.1615/compmechcomputapplintj.2020033271.Search in Google Scholar
59. Hassan, M. M., Aly, R. O., El-Ghandour, A., Abdelnaby, H. A. J. Elastomers Plast. 2013, 45, 77–94; https://doi.org/10.1177/0095244312445523.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material Properties
- Research progress of metal organic framework materials in anti-corrosion coating
- Effect of gamma irradiation on tensile, thermal and wettability properties of waste coffee grounds reinforced HDPE composites
- Morphologies, structures, and properties on blends of triblock copolymers and linear low-density polyethylene
- Enhancement of the tribological and thermal properties of UHMWPE based ternary nanocomposites containing graphene and titanium titride
- Preparation and Assembly
- Preparation and property evaluation of poly(ε-caprolactone)/polylactic acid/perlite biodegradable composite film
- Engineering and Processing
- Predictive maintenance feasibility assessment based on nonreturn valve wear of injection molding machines
- Quality monitoring of injection molding based on TSO-SVM and MOSSA
- Location-controlled crazing in polyethylene using focused electron beams and tensile strain
- Annual Reviewer Acknowledgement
- Reviewer acknowledgement Journal of Polymer Engineering volume 43 (2023)
Articles in the same Issue
- Frontmatter
- Material Properties
- Research progress of metal organic framework materials in anti-corrosion coating
- Effect of gamma irradiation on tensile, thermal and wettability properties of waste coffee grounds reinforced HDPE composites
- Morphologies, structures, and properties on blends of triblock copolymers and linear low-density polyethylene
- Enhancement of the tribological and thermal properties of UHMWPE based ternary nanocomposites containing graphene and titanium titride
- Preparation and Assembly
- Preparation and property evaluation of poly(ε-caprolactone)/polylactic acid/perlite biodegradable composite film
- Engineering and Processing
- Predictive maintenance feasibility assessment based on nonreturn valve wear of injection molding machines
- Quality monitoring of injection molding based on TSO-SVM and MOSSA
- Location-controlled crazing in polyethylene using focused electron beams and tensile strain
- Annual Reviewer Acknowledgement
- Reviewer acknowledgement Journal of Polymer Engineering volume 43 (2023)