Home Effect of gamma irradiation on tensile, thermal and wettability properties of waste coffee grounds reinforced HDPE composites
Article
Licensed
Unlicensed Requires Authentication

Effect of gamma irradiation on tensile, thermal and wettability properties of waste coffee grounds reinforced HDPE composites

  • Ahmed Nabil Louahem M’sabah EMAIL logo , Nadira Bellili , Badrina Dairi and Nesrine Ammouchi
Published/Copyright: November 27, 2023
Become an author with De Gruyter Brill

Abstract

This study investigates the impact of gamma irradiation on the properties of waste coffee grounds (WCG)/high-density polyethylene (HDPE) composites. The composites were manufactured with 20 wt% of unirradiated and irradiated WCG at 10 and 20 kGy doses of gamma radiation. Through the utilization of a two-roll mill followed by a hydraulic press. The properties of the composites were analyzed through several methods, including contact angle measurements, hardness and tensile tests, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM), in order to understand the influence of gamma irradiation. The addition of WCG decreased the tensile strength of the composite. However, gamma irradiation at 10 and 20 kGy led to substantial improvements in thermal stability and tensile strength compared to unirradiated samples. The SEM images showed the alterations within the fiber-matrix interface that corroborated the enhanced tensile properties after the treatment. While FTIR spectra confirmed the changes in functional groups of WCG caused by the irradiation process, gamma irradiation treatment not only increases fiber-matrix adhesion but also significantly improves the water resistance of the composites. These results suggest that gamma irradiation can be used for the modification of agro-waste materials as a beneficial process and the fabrication of high-performance, environmentally friendly composites.


Corresponding author: Ahmed Nabil Louahem M’sabah, Laboratory of Physico-Chemistry Research on Surfaces and Interfaces (LRPCSI), University of 20 August 1955 of Skikda, Skikda 21000, Algeria; and Department of Process Engineering, Faculty of Technology, University of 20 August 1955 of Skikda, Skikda 21000, Algeria, E-mail:

Acknowledgements

The authors are grateful to CRNA for allowing us to use the Cobalt-60 gamma irradiator and particularly to Mr. Djamel Tahtat for his collaboration and human qualities. The authors are also appreciative of the scientific assistance provided by the CP2K complex.

  1. Research ethics: The authors hereby affirm that this manuscript is an original work that has not been previously published or submitted to another journal for consideration.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Ahmed Nabil Louahem M’sabah: collection and analysis of results, writing of the manuscript, and review. Nadira Bellili and Badrina Dairi: review and supervision. Nesrine Ammouchi: review.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. EL-Zayat, M. M., Abdel-Hakim, A., Mohamed, M. A. J. Macromol. Sci. Part A 2019, 56, 127–135; https://doi.org/10.1080/10601325.2018.1549949.Search in Google Scholar

2. Rahman, H., Yeasmin, F., Khan, S. A., Hasan, M. Z., Roy, M., Uddin, M. B., Khan, R. A. J. Mater. Res. Technol. 2021, 11, 914–928; https://doi.org/10.1016/j.jmrt.2021.01.067.Search in Google Scholar

3. Raslan, H. A., Fathy, E. S., Mohamed, R. M. J. Polym. Anal. Charact. 2017, 23, 181–192; https://doi.org/10.1080/1023666x.2017.1405535.Search in Google Scholar

4. Han, Y. H., Han, S. O., Cho, D., Kim, H.-I. Compos. Interfaces 2007, 14, 559–578; https://doi.org/10.1163/156855407781291272.Search in Google Scholar

5. Rimdusit, S., Wongsongyot, S., Jittarom, S., Suwanmala, P., Tiptipakorn, S. J. Polym. Res. 2010, 18, 801–809; https://doi.org/10.1007/s10965-010-9477-2.Search in Google Scholar

6. Wu, H., Hu, W., Zhang, Y., Huang, L., Zhang, J., Tan, S., Cai, X., Liao, X. J. Mater. Sci. 2016, 51, 10205–10214; https://doi.org/10.1007/s10853-016-0248-2.Search in Google Scholar

7. Hassan, M. M., Karim, A., Shabnam, T., Bhuiyan, A. H., Khan, M. A. Polym.-Plast. Technol. Eng. 2012, 51, 977–982; https://doi.org/10.1080/03602559.2012.679378.Search in Google Scholar

8. Mendes, J. F., Martins, J. T., Manrich, A., Luchesi, B. R., Dantas, A. P. S., Vanderlei, R. M., Claro, P. C., Neto, A. R. de S., Mattoso, L. H. C., Martins, M. A. J. Polym. Environ. 2021, 29, 2888–2900; https://doi.org/10.1007/s10924-021-02090-w.Search in Google Scholar

9. Sahu, P., Gupta, M. J. Reinf. Plast. Compos. 2017, 36, 1759–1780; https://doi.org/10.1177/0731684417725584.Search in Google Scholar

10. García-García, D., Carbonell, A., Samper, M. D., García-Sanoguera, D., Balart, R. Compos. Part B Eng. 2015, 78, 256–265; https://doi.org/10.1016/j.compositesb.2015.03.080.Search in Google Scholar

11. Lee, H. K., Park, Y. G., Jeong, T., Song, Y. S. J. Appl. Polym. Sci. 2015, 132, 42043; https://doi.org/10.1002/app.42043.Search in Google Scholar

12. Tan, M. Y., Nicholas Kuan, H. T., Lee, M. C. Int. J. Polym. Sci. 2017, 2017, 1–12; https://doi.org/10.1155/2017/6258151.Search in Google Scholar

13. Wu, C.-S. Polym. Degrad. Stab. 2015, 121, 51–59; https://doi.org/10.1016/j.polymdegradstab.2015.08.011.Search in Google Scholar

14. Moustafa, H., Guizani, C., Dufresne, A. J. Appl. Polym. Sci. 2016, 134, 44498; https://doi.org/10.1002/app.44498.Search in Google Scholar

15. Essabir, H., Raji, M., Laaziz, S. A., Rodrique, D., Bouhfid, R., Qaiss, A. Compos. Part B Eng. 2018, 149, 1–11; https://doi.org/10.1016/j.compositesb.2018.05.020.Search in Google Scholar

16. Kwon, E. E., Yi, H., Jeon, Y. J. Bioresour. Technol. 2013, 136, 475–480; https://doi.org/10.1016/j.biortech.2013.03.052.Search in Google Scholar PubMed

17. Caetano, N. S., Silva, V. F. M., Melo, A. C., Martins, A. A., Mata, T. M. Clean Technol. Environ. Policy 2014, 16, 1423–1430; https://doi.org/10.1007/s10098-014-0773-0.Search in Google Scholar

18. Givens, D. I., Barber, W. P. Agric. Wastes 1986, 18, 69–72; https://doi.org/10.1016/0141-4607(86)90108-3.Search in Google Scholar

19. Mussatto, S. I., Carneiro, L. M., Silva, J. P. A., Roberto, I. C., Teixeira, J. A. Carbohydr. Polym. 2011, 83, 368–374; https://doi.org/10.1016/j.carbpol.2010.07.063.Search in Google Scholar

20. Kondamudi, N., Mohapatra, S. K., Misra, M. J. Agric. Food Chem. 2008, 56, 11757–11760; https://doi.org/10.1021/jf802487s.Search in Google Scholar PubMed

21. Garcia, C. V., Kim, Y.-T. J. Polym. Environ. 2021, 29, 2372–2384; https://doi.org/10.1007/s10924-021-02067-9.Search in Google Scholar

22. Noura, H., Amar, B., Hocine, D., Rabah, Y., Stephane, C., Roland, E. H., Anne, B. J. Thermoplast. Compos. Mater. 2017, 31, 598–615; https://doi.org/10.1177/0892705717714831.Search in Google Scholar

23. Diaz-Silvarrey, L. S., Zhang, K., Phan, A. N. Green Chem. 2018, 20, 1813–1823; https://doi.org/10.1039/c7gc03662k.Search in Google Scholar

24. Ferreira, M. S., Sartori, M. N., Oliveira, R. R., Guven, O., Moura, E. A. B. Appl. Surf. Sci. 2014, 310, 325–330; https://doi.org/10.1016/j.apsusc.2014.03.076.Search in Google Scholar

25. Pastrnak, A., Henriquez, A., La Saponara, V. J. Appl. Polym. Sci. 2020, 137, 49283; https://doi.org/10.1002/app.49283.Search in Google Scholar

26. Kumar, S., Panda, A. K., Singh, R. K. Resour. Conserv. Recycl. 2011, 55, 893–910; https://doi.org/10.1016/j.resconrec.2011.05.005.Search in Google Scholar

27. Khan, M. A., Haque, N., Al-Kafi, A., Alam, M. N., Abedin, M. Z. Polym.-Plast. Technol. Eng. 2006, 45, 607–613; https://doi.org/10.1080/03602550600554141.Search in Google Scholar

28. Vasco, M. C., Claro Neto, S., Nascimento, E. M., Azevedo, E. Polímeros 2017, 27, 165–170; https://doi.org/10.1590/0104-1428.05916.Search in Google Scholar

29. Gibeop, N., Lee, D. W., Prasad, C. V., Toru, F., Kim, B. S., Song, J. I. Adv. Compos. Mater. 2013, 22, 389–399; https://doi.org/10.1080/09243046.2013.843814.Search in Google Scholar

30. Joseph, K., Thomas, S., Pavithran, C. Polymer 1996, 37, 5139–5149; https://doi.org/10.1016/0032-3861(96)00144-9.Search in Google Scholar

31. Valadez-Gonzalez, A., Cervantes-Uc, J. M., Olayo, R., Herrera-Franco, P. J. Compos. Part B Eng. 1999, 30, 321–331; https://doi.org/10.1016/s1359-8368(98)00055-9.Search in Google Scholar

32. Abdul Khalil, H. P. S., Ismail, H. Polym. Test. 2000, 20, 65–75; https://doi.org/10.1016/s0142-9418(99)00080-x.Search in Google Scholar

33. Shah, H., Srinivasulu, B., Shit, S. C. Polym. Renew. Resour. 2013, 4, 61–84; https://doi.org/10.1177/204124791300400202.Search in Google Scholar

34. Wang, J., Dong, J., Zhang, J., Zhu, B., Cui, D. J. Polym. Eng. 2018, 38, 157–166; https://doi.org/10.1515/polyeng-2016-0432.Search in Google Scholar

35. Gassan, J. Compos. Sci. Technol. 2000, 60, 2857–2863; https://doi.org/10.1016/s0266-3538(00)00168-8.Search in Google Scholar

36. Ragoubi, M., Bienaimé, D., Molina, S., George, B., Merlin, A. Ind. Crops Prod. 2010, 31, 344–349; https://doi.org/10.1016/j.indcrop.2009.12.004.Search in Google Scholar

37. Law, T. T., Ishak, Z. A. M. J. Appl. Polym. Sci. 2010, 120, 563–572; https://doi.org/10.1002/app.33184.Search in Google Scholar

38. Niang, B., Ndiaye, D., Kholl, M., Babacar, L., Diallo, A., Badji, A. Chem. Sci. Int. J. 2017, 20, 1–12; https://doi.org/10.9734/csji/2017/37423.Search in Google Scholar

39. Ayma, A. J. Text. Sci. Eng. 2017, 7, 1000294; https://doi.org/10.4172/2165-8064.1000294.Search in Google Scholar

40. Islam, T., Khan, R. A., Khan, M. A., Rahman, Md. A., Fernandez-Lahore, M., Huque, Q. M. I., Islam, R. Polym.-Plast. Technol. Eng. 2009, 48, 1198–1205; https://doi.org/10.1080/03602550903149169.Search in Google Scholar

41. Zaman, H. U., Khan, M. A., Khan, R. A. J. Polym. Eng. 2012, 32, 301–309; https://doi.org/10.1515/polyeng-2012-0004.Search in Google Scholar

42. Rahman, H., Alimuzzaman, S., Sayeed, M. M. A., Khan, R. A. Int. J. Plast. Technol. 2019, 23, 229–238; https://doi.org/10.1007/s12588-019-09253-4.Search in Google Scholar

43. Sahadat Hossain, Md., Uddin, M. B., Razzak, Md., Sarwaruddin Chowdhury, A. M., Khan, R. A. Radiat. Eff. Defects Solids 2017, 172, 904–914; https://doi.org/10.1080/10420150.2017.1417409.Search in Google Scholar

44. Reyes, J., Albano, C., Davidson, E., Poleo, R., González, J., Ichazo, M., Chipara, M. Mater. Res. Innov. 2001, 4, 294–300; https://doi.org/10.1007/s100190000104.Search in Google Scholar

45. Gulati, K., Lal, S., Kumar, S., Arora, S. Polym. Bull. 2020, 78, 7019–7038; https://doi.org/10.1007/s00289-020-03477-w.Search in Google Scholar

46. Zarrinbakhsh, N., Wang, T., Rodriguez-Uribe, A., Misra, M., Mohanty, A. K. BioResources 2016, 11, 7637–7653; https://doi.org/10.15376/biores.11.3.7637-7653.Search in Google Scholar

47. Reis, N., Franca, A. S., Oliveira, L. S. LWT – Food Sci. Technol. 2013, 50, 715–722; https://doi.org/10.1016/j.lwt.2012.07.016.Search in Google Scholar

48. EL-Zayat, M. M., Mohamed, R. M., Raslan, H. A. J. Macromol. Sci. Part A 2019, 57, 344–354; https://doi.org/10.1080/10601325.2019.1698964.Search in Google Scholar

49. Botaro, V. R., dos Santos, C. G., Arantes Júnior, G., da Costa, A. R. Appl. Surf. Sci. 2001, 183, 120–125; https://doi.org/10.1016/s0169-4332(01)00571-2.Search in Google Scholar

50. Bellili, N., Djidjelli, H., Boukerrou, A., Barres, C., Fenouillot, F. J. Vinyl Addit. Technol. 2014, 22, 273–278; https://doi.org/10.1002/vnl.21441.Search in Google Scholar

51. Părpăriţă, E., Darie, R. N., Popescu, C.-M., Uddin, Md. A., Vasile, C. Mater. Des. (1980–2015) 2014, 56, 763–772.10.1016/j.matdes.2013.12.033Search in Google Scholar

52. Kumar, V., Gulati, K., Lal, S., Arora, S. Radiat. Phys. Chem. 2020, 174, 108922; https://doi.org/10.1016/j.radphyschem.2020.108922.Search in Google Scholar

53. Sahadat Hossain, Md., Chowdhury, A. M. S., Khan, R. A. Radiat. Eff. Defects Solids 2017, 172, 517–530; https://doi.org/10.1080/10420150.2017.1351442.Search in Google Scholar

54. Yorseng, K., Mavinkere Rangappa, S., Parameswaranpillai, J., Siengchin, S. Polymers 2020, 12, 2254; https://doi.org/10.3390/polym12102254.Search in Google Scholar PubMed PubMed Central

55. Lee, T. S., Choi, H. Y., Choi, H. N., Lee, K.-Y., Kim, S.-H., Lee, S. G., Yong, D. K. J. Adhes. Sci. Technol. 2013, 27, 1335–1347; https://doi.org/10.1080/01694243.2012.697326.Search in Google Scholar

56. Akindoyo, J. O., Beg, M. D. H., Ghazali, S. B., Islam, M. R., Mamun, A. A. Polym.-Plast. Technol. Eng. 2015, 54, 1321–1333; https://doi.org/10.1080/03602559.2015.1010219.Search in Google Scholar

57. Huner, U. J. Nat. Fibers 2017, 15, 808–821; https://doi.org/10.1080/15440478.2017.1369207.Search in Google Scholar

58. Bellili, N., Djidjelli, H., Boukerrou, A., Dairi, B., Bendib, R. Compos. Mech. Comput. Appl. Int. J. 2020, 11, 309–322; https://doi.org/10.1615/compmechcomputapplintj.2020033271.Search in Google Scholar

59. Hassan, M. M., Aly, R. O., El-Ghandour, A., Abdelnaby, H. A. J. Elastomers Plast. 2013, 45, 77–94; https://doi.org/10.1177/0095244312445523.Search in Google Scholar

Received: 2023-08-08
Accepted: 2023-10-26
Published Online: 2023-11-27
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2023-0192/html
Scroll to top button