Home Preparation and performance of “three-layer sandwich” composite loose nanofiltration membrane based on mussel bionic technology
Article
Licensed
Unlicensed Requires Authentication

Preparation and performance of “three-layer sandwich” composite loose nanofiltration membrane based on mussel bionic technology

  • Shaowei Chen , Peng Liu ORCID logo EMAIL logo , Zhenchun Li , Tianwei Li , Yunwu Yu , Yuanyuan Bi , Feihong Li and Junpeng Mao
Published/Copyright: July 10, 2023
Become an author with De Gruyter Brill

Abstract

In this study, a novel “three-layer sandwich” composite loose nanofiltration (NF) membrane structure by mussel bionic technology was constructed on a porous polyvinylidene fluoride (PVDF) substrate membrane, with a mussel bionic coating as the middle layer and the complex network of polyphenols and metal ions as the top layer. The new composite NF membrane had comprehensive properties such as excellent separation performance, good hydrophilicity and strong antifouling ability. The experimental results showed that the combination of tannic acid (TA) and iron ion (Fe3+) could significantly improve the comprehensive performance of the composite NF membrane, with water flux of more than 3000 L/(m2∙h), and the retention rate of dyes and bovine serum protein (BSA) exceeded 90 %, and contact angle was up to 30°. The combination of TA and copper ion (Cu2+) can greatly enhance the antifouling performance and interception ability of methylene blue. The complexation activity of metal ions and polyphenols was related to the oxidation of metal ions. The PVDF/DA-PEI/TA-M+ composite structure scheme of “three-layer sandwich” NF membrane provides a new idea and future development direction for the development of novel NF membranes with excellent comprehensive performance.


Corresponding author: Peng Liu, College of Materials Science and Engineering, Shenyang Jianzhu University, 110168, Shenyang City, Liaoning Province, PR China, E-mail:

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: 52278453

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the National Natural Science Foundation of China (52278453), Applied Basic Research Project of Liaoning Province (2023JH2/101600057), and Basic Scientific Research Project of Universities of Liaoning Provincial Department of Education (LJKQZ2021060).

  3. Conflict of interest: The authors declare that they have no conflicts of interest regarding this article.

  4. Data and code availability: Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

  5. Ethical approval: Not applicable.

References

1. Lv, X. B., Xie, R., Ji, J. Y., Liu, Z., Wen, X.-Y., Liu, L.-Y., Hu, J.-Q., Ju, X.-J., Wang, W., Chu, L.-Y. A novel strategy to fabricate cation-cross-linked graphene oxide membrane with high aqueous stability and high separation performance. ACS Appl. Mater. Interfaces 2020, 12, 56269–56280; https://doi.org/10.1021/acsami.0c15178.Search in Google Scholar PubMed

2. Ju, H., Duan, J., Lu, H., Xu, W. Cross-linking with diamine monomers to prepare graphene oxide composite membranes with varying D-spacing for enhanced desalination properties. Front. Chem. 2021, 9, 779304; https://doi.org/10.3389/fchem.2021.779304.Search in Google Scholar PubMed PubMed Central

3. Zheng, K., Li, S., Chen, Z., Chen, Y., Hong, Y., Lan, W. Highly stable graphene oxide composite nanofiltration membrane. Nanoscale 2021, 13, 10061–10066; https://doi.org/10.1039/d1nr01823j.Search in Google Scholar PubMed

4. Garcia-Ivars, J., Martella, L., Massella, M., Carbonell-Alcaina, C., Alcaina-Miranda, M. I., Iborra-Clar, M. I. Nanofiltration as tertiary treatment method for removing trace pharmaceutically active compounds in wastewater from wastewater treatment plants. Water Res. 2017, 125, 360–373; https://doi.org/10.1016/j.watres.2017.08.070.Search in Google Scholar PubMed

5. Wang, J., Wang, L., Miao, R., Lv, Y., Wang, X., Meng, X., Yang, R., Zhang, X. Enhanced gypsum scaling by organic fouling layer on nanofiltration membrane: characteristics and mechanisms. Water Res. 2016, 91, 203–213; https://doi.org/10.1016/j.watres.2016.01.019.Search in Google Scholar PubMed

6. Wang, L., Miao, R., Wang, X., Meng, X., Yang, Y., Huang, D., Feng, L., Liu, Z., Ju, K. Fouling behavior of typical organic foulants in polyvinylidene fluoride ultrafiltration membranes: characterization from microforces. Environ. Sci. Technol. 2013, 47, 3708–3714; https://doi.org/10.1021/es4004119.Search in Google Scholar PubMed

7. Xie, W., Li, J., Sun, T., Shang, W., Dong, W., Li, M., Sun, F. Hydrophilic modification and anti-fouling properties of PVDF membrane via in situ nano-particle blending. Environ. Sci. Pollut. Res. Int. 2018, 25, 25227–25242; https://doi.org/10.1007/s11356-018-2613-y.Search in Google Scholar PubMed

8. Li, R., Wu, Y., Shen, L., Chen, J., Lin, H. A novel strategy to develop antifouling and antibacterial conductive Cu/polydopamine/polyvinylidene fluoride membranes for water treatment. J. Colloid Interface Sci. 2018, 531, 493–501; https://doi.org/10.1016/j.jcis.2018.07.090.Search in Google Scholar PubMed

9. Jiang, J., Zhu, L., Zhu, L., Zhang, H., Zhu, B., Xu, Y. Antifouling and antimicrobial polymer membranes based on bioinspired polydopamine and strong hydrogen-bonded poly(N-vinyl pyrrolidone). ACS Appl. Mater. Interfaces 2013, 5, 12895–12904; https://doi.org/10.1021/am403405c.Search in Google Scholar PubMed

10. Kim, D. G., Kang, H., Han, S., Lee, J. C. Dual effective organic/inorganic hybrid star-shaped polymer coatings on ultrafiltration membrane for bio- and oil-fouling resistance. ACS Appl. Mater. Interfaces 2012, 4, 5898–5906; https://doi.org/10.1021/am301538h.Search in Google Scholar PubMed

11. Shen, X., Zhao, Y., Feng, X., Bi, S., Ding, W., Chen, L. Improved antifouling properties of PVDF membranes modified with oppositely charged copolymer. Biofouling 2013, 29, 331–343; https://doi.org/10.1080/08927014.2013.772142.Search in Google Scholar PubMed

12. Lin, N. J., Yang, H. S., Chang, Y., Tung, K.-L., Chen, W.-H., Cheng, H.-W., Hsiao, S.-W., Aimar, P., Yamamoto, K., Lai, J.-Y. Surface self-assembled PEGylation of fluoro-based PVDF membranes via hydrophobic-driven copolymer anchoring for ultra-stable biofouling resistance. Langmuir 2013, 29, 10183–10193; https://doi.org/10.1021/la401336y.Search in Google Scholar PubMed

13. Zhao, X., Su, Y., Liu, Y., Zhang, R., Jiang, Z. Multiple antifouling capacities of hybrid membranes derived from multifunctional titania nanoparticles. J. Membr. Sci. 2015, 495, 226–234; https://doi.org/10.1016/j.memsci.2015.08.026.Search in Google Scholar

14. Zhang, J., Liu, Y., Liu, Y., Liu, W., Lu, F., Yuan, Z., Lu, C. Gold nanocluster-encapsulated hyperbranched polyethyleneimine for selective and ratiometric dopamine analyses by enhanced self-polymerization. Front. Chem. 2022, 10, 928607; https://doi.org/10.3389/fchem.2022.928607.Search in Google Scholar PubMed PubMed Central

15. Li, C., Yang, Q., Chen, D., Zhu, H., Chen, J., Liu, R., Dang, Q., Wang, X. Polyethyleneimine-assisted co-deposition of polydopamine coating with enhanced stability and efficient secondary modification. RSC Adv. 2022, 12, 35051–35063; https://doi.org/10.1039/d2ra05130c.Search in Google Scholar PubMed PubMed Central

16. Liu, Y., Xu, C., Gu, Y., Shen, X., Zhnag, Y., Li, B., Chen, L. Polydopamine-modified poly(l-lactic acid) nanofiber scaffolds immobilized with an osteogenic growth peptide for bone tissue regeneration. RSC Adv. 2019, 9, 11722–11736; https://doi.org/10.1039/c8ra08828d.Search in Google Scholar PubMed PubMed Central

17. Wang, R., Zhao, X., Lan, Y., Liu, L., Gao, C. In situ metal-polyphenol interfacial assembly tailored superwetting PES/SPES/MPN membranes for oil-in-water emulsion separation. J. Membr. Sci. 2020, 615, 118566; https://doi.org/10.1016/j.memsci.2020.118566.Search in Google Scholar

18. Ma, T., Su, Y., Li, Y., Zhang, R., Liu, Y., He, M., Li, Y., Dong, N., Wu, H., Jiang, Z. Fabrication of electro-neutral nanofiltration membranes at neutral pH with antifouling surface via interfacial polymerization from a novel zwitterionic amine monomer. J. Membr. Sci. 2016, 503, 101–109; https://doi.org/10.1016/j.memsci.2015.12.038.Search in Google Scholar

19. Guo, J., Zhang, Y., Yang, F., Mamba, B. B., Ma, J., Shao, L., Liu, S. Ultra-permeable dual-mechanism-driven graphene oxide framework membranes for precision ion separations. Angew. Chem. Int. Ed. Engl. 2023, 62, e202302931; https://doi.org/10.1002/anie.202302931.Search in Google Scholar PubMed

20. Yang, F., Zhang, Y., Huang, J., Gao, G., Zhu, J., Ma, J., Shao, L. Unprecedented acid-tolerant ultrathin membranes with finely tuned sub-nanopores for energetic-efficient molecular sieving. Sci. Bull. 2023, 68, 29–33; https://doi.org/10.1016/j.scib.2022.12.021.Search in Google Scholar PubMed

21. Wang, W., Hong, G., Zhang, Y., Yang, X., Hu, N., Zhang, J., Sorokin, P., Shao, L. Designing an energy-efficient multi-stage selective electrodialysis process based on high-performance materials for lithium extraction. J. Membr. Sci. 2023, 675, 121534; https://doi.org/10.1016/j.memsci.2023.121534.Search in Google Scholar

22. Feinberg, H., Hanks, T. W. Polydopamine: a bioinspired adhesive and surface-modification platform. Polym. Int. 2022, 71, 578–582; https://doi.org/10.1002/pi.6358.Search in Google Scholar

23. Du, Y., Qiu, W. Z., Lv, Y., Wu, J., Xu, Z.-K. Nanofiltration membranes with narrow pore size distribution via contra-diffusion-induced mussel-inspired chemistry. ACS Appl. Mater. Interfaces 2016, 8, 29696–29704; https://doi.org/10.1021/acsami.6b10367.Search in Google Scholar PubMed

24. Kang, X., Cheng, Y., Wen, Y., Qi, J., Li, X. Bio-inspired co-deposited preparation of GO composite loose nanofiltration membrane for dye contaminated wastewater sustainable treatment. J. Hazard. Mater. 2020, 400, 123121; https://doi.org/10.1016/j.jhazmat.2020.123121.Search in Google Scholar PubMed

25. Fang, X., Wei, S., Liu, S., Li, R., Zhang, Z., Liu, Y., Zhang, X., Lou, M., Chen, G., Li, F. Metal-coordinated nanofiltration membranes constructed on metal ions blended support toward enhanced dye/salt separation and antifouling performances. Membranes (Basel) 2022, 12, 340; https://doi.org/10.3390/membranes12030340.Search in Google Scholar PubMed PubMed Central

26. Li, J., Gong, J. L., Fang, S. Y., Cao, W.-C., Tang, S.-Q., Qin, M., Zhou, H.-Y., Wang, Y.-W. Low-pressure thin-film composite nanofiltration membranes with enhanced selectivity and antifouling property for effective dye/salt separation. J. Colloid Interface Sci. 2023, 641, 197–214; https://doi.org/10.1016/j.jcis.2023.03.044.Search in Google Scholar PubMed

27. Xie, X. L., Liu, Q. X., Li, R. K. Y., Zhou, X.-P., Zhang, Q.-X., Yu, Z.-Z., Mai, Y.-W. Rheological and mechanical properties of PVC/CaCO3 nanocomposites prepared by in situ polymerization. Polymer 2004, 45, 6665–6673; https://doi.org/10.1016/j.polymer.2004.07.045.Search in Google Scholar

28. Li, J., Wu, D. Nucleation roles of cellulose nanocrystals and chitin nanocrystals in poly(ε-caprolactone) nanocomposites. Int. J. Biol. Macromol. 2022, 205, 587–594; https://doi.org/10.1016/j.ijbiomac.2022.02.123.Search in Google Scholar PubMed

29. Xiao, M., Shang, Y., Ji, L., Yan, M., Chen, F., He, Q., Yan, S. Enhancing the ammonia selectivity by using nanofiber PVDF composite membranes fabricated with functionalized carbon nanotubes. Membranes (Basel) 2022, 12, 1164; https://doi.org/10.3390/membranes12111164.Search in Google Scholar PubMed PubMed Central

30. Wu, W., Huang, R., Qi, W., Su, R., He, Z. Bioinspired peptide-coated superhydrophilic poly(vinylidene fluoride) membrane for oil/water emulsion separation. Langmuir 2018, 34, 6621–6627; https://doi.org/10.1021/acs.langmuir.8b01017.Search in Google Scholar PubMed

31. Li, Y., Wang, S., Wu, H., Guo, R., Liu, Y., Jiang, Z., Tian, Z., Zhang, P., Cao, X., Wang, B. High-performance composite membrane with enriched CO2-philic groups and improved adhesion at the interface. ACS Appl. Mater. Interfaces 2014, 6, 6654–6663; https://doi.org/10.1021/am500356g.Search in Google Scholar PubMed

32. Liu, Y., Su, Y., Cao, J., Liu, Y., Su, Y., Cao, J., Guan, J., Xu, L., Zhang, R., He, M., Zhang, Q., Fan, L., Jiang, Z. Synergy of the mechanical, antifouling and permeation properties of a carbon nanotube nanohybrid membrane for efficient oil/water separation. Nanoscale 2017, 9, 7508–7518; https://doi.org/10.1039/c7nr00818j.Search in Google Scholar PubMed

33. Liu, F., Zhou, Y., Shen, Y., Wang, L., Li, D., Liu, Q., Deng, B. The preparation of electrospun PVDF/TBAC multi-morphology nanofiber membrane and its application in direct contact membrane distillation. Macromol. Rapid Commun. 2022, 43, e2100286; https://doi.org/10.1002/marc.202100286.Search in Google Scholar PubMed

34. Zhang, Y., Liu, P., Majonis, D., Winnik, M. A. Polymeric dipicolylamine based mass tags for mass cytometry. Chem. Sci. 2022, 13, 3233–3243; https://doi.org/10.1039/d2sc00595f.Search in Google Scholar PubMed PubMed Central

35. Grenier, L., Beyler, M., Closson, T., Zabinyakov, N., Bouzekri, A., Zhang, Y., Pichaandi, J. M., Winnik, M. A., Liu, P., Ornatsky, O. I., Baranov, V., Tripier, R. Enabling indium channels for mass cytometry by using reinforced cyclam-based chelating polylysine. Bioconjug. Chem. 2020, 31, 2103–2115; https://doi.org/10.1021/acs.bioconjchem.0c00267.Search in Google Scholar PubMed

36. Liu, P., Cai, Z., Kang, J. W., Boyle, A. J., Adams, J., Lu, Y., Mbong, G. N. N., Sidhu, S., Reilly, R. M., Winnik, M. A. Intracellular routing in breast cancer cells of streptavidin-conjugated trastuzumab Fab fragments linked to biotinylated doxorubicin-functionalized metal chelating polymers. Biomacromolecules 2014, 15, 715–725; https://doi.org/10.1021/bm401483a.Search in Google Scholar PubMed

37. Wang, S., Gai, Y., Sun, L., Lan, X., Zeng, D., Xiang, G., Ma, X. Synthesis and evaluation of novel 1,4,7-triazacyclononane derivatives as Cu2+and Ga3+ chelators. J. Inorg. Biochem. 2022, 229, 111719; https://doi.org/10.1016/j.jinorgbio.2022.111719.Search in Google Scholar PubMed

38. Liu, P., Boyle, A. J., Lu, Y., Adams, J., Chi, Y., Reilly, R. M., Winnik, M. A. Metal-chelating polymers (MCPs) with zwitterionic pendant groups complexed to trastuzumab exhibit decreased liver accumulation compared to polyanionic MCP immunoconjugates. Biomacromolecules 2015, 16, 3613–3623; https://doi.org/10.1021/acs.biomac.5b01066.Search in Google Scholar PubMed

39. Ejima, H., Richardson, J. J., Liang, K., Best, J. P., van Koeverden, M. P., Such, G. K., Cui, J., Caruso, F. One-step assembly of coordination complexes for versatile film and particle engineering. Science 2013, 341, 154–157; https://doi.org/10.1126/science.1237265.Search in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/polyeng-2023-0109).


Received: 2023-05-03
Accepted: 2023-06-23
Published Online: 2023-07-10
Published in Print: 2023-08-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2023-0109/html
Scroll to top button