Efficient preparation of PDMS-based conductive composites using self-designed automatic equipment and an application example
Abstract
In this paper, the fabrication process of polydimethylsiloxane (PDMS)-based microstructured conductive composites via differential temperature hot embossing was proposed based on the spatial confining forced network assembly theory. The mold temperature was kept constant throughout the whole embossing cycle in this method, whereas the setting temperatures of the upper and lower molds were different. To solve the problem of poor conveying performance, a double-station automatic hot embossing equipment was designed and developed. A “bullet-filled” accurate feeding system was designed aiming at the high viscosity and feeding difficulty of blended PDMS-based composites before curing. Dispersion mold and semifixed compression mold were designed according to different functional requirements of different workstations. The developed automatic hot embossing equipment had already been successfully applied to the continuous preparation of conductive composites with greatly improved processing precision and efficiency. Furthermore, the conductive composites with and without microstructures can be used as flexible sensors for pressure measurements.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 51673020
Award Identifier / Grant number: 51173015
Funding statement: The authors acknowledge the financial support of the National Natural Science Foundation of China (Funder Id: http://dx.doi.org/10.13039/501100001809, nos. 51673020 and 51173015).
References
[1] Cao Z, Wei B. ACS Nano 2014, 8, 3049–3059.10.1021/nn500585gSearch in Google Scholar PubMed
[2] Lv L, Liu J, Liang C, Gu J, Liu H, Liu C, Lu Y, Sun K, Fan R, Wang N, Lu L, Guo Z, Wujcik EK. Eng. Sci. 2018, 2, 26–42.Search in Google Scholar
[3] Jakus AE, Secor EB, Rutz AL, Jordan SW, Hersam MC, Shah RN. ACS Nano 2015, 9, 4636–4648.10.1021/acsnano.5b01179Search in Google Scholar PubMed
[4] Roh E, Hwang B, Kim D, Kim B, Lee N. ACS Nano 2015, 9, 6252–6261.10.1021/acsnano.5b01613Search in Google Scholar PubMed
[5] Gu H, Xu X, Dong M, Xie P, Shao Q, Fan R, Liu C, Wu S, Wei R, Guo Z. Carbon 2019, 147, 550–558.10.1016/j.carbon.2019.03.028Search in Google Scholar
[6] Wu N, Xu D, Wang Z, Wang F, Liu J, Liu W, Shao Q, Liu H, Gao Q, Guo Z. Carbon 2019, 145, 433–444.10.1016/j.carbon.2019.01.028Search in Google Scholar
[7] Zhang X, Wang X, Liu X, Lv C, Wang Y, Zheng G, Liu H, Liu C, Guo Z, Shen C. ACS Sustain Chem. Eng. 2018, 6, 12580–12585.10.1021/acssuschemeng.8b03305Search in Google Scholar
[8] Ma R, Wang Y, Qi H, Shi C, Wei G, Xiao L, Huang Z, Liu S, Yu H, Teng C, Liu H, Murugadoss V, Zhang J, Wang Y, Guo Z. Compos. Pt B Eng. 2019, 167, 396–405.10.1016/j.compositesb.2019.03.006Search in Google Scholar
[9] Guo Y, Ruan K, Yang X, Ma T, Kong J, Wu N, Zhang J, Gu J, Guo Z. J. Mater. Chem. C 2019, 7, 7035–7044.10.1039/C9TC01804BSearch in Google Scholar
[10] Cheng C, Fan R, Fan G, Liu H, Zhang J, Shen J, Ma Q, Wei R, Guo Z. J. Mater. Chem. C 2019, 7, 3160–3167.10.1039/C9TC00291JSearch in Google Scholar
[11] Gu H, Zhang H, Ma C, Xu X, Wang Y, Wang Z, Wei R, Liu H, Liu C, Shao Q, Mai X, Guo Z. Carbon 2019, 142, 131–140.10.1016/j.carbon.2018.10.029Search in Google Scholar
[12] Qian Y, Yuan Y, Wang H, Liu H, Zhang J, Shi S, Guo Z, Wang N. J. Mater. Chem. A 2018, 6, 24676–24685.10.1039/C8TA09486ASearch in Google Scholar
[13] Dong M, Wang C, Liu H, Liu C, Shen C, Zhang J, Jia C, Ding T, Guo Z. Macromol. Mater. Eng. 2019, 304, 1900010.10.1002/mame.201900010Search in Google Scholar
[14] Jiang D, Wang Y, Li B, Sun C, Wu Z, Yan H, Xing L, Qi S, Li Y, Liu H, Xie W, Wang X, Ding T, Guo Z. Macromol. Mater. Eng. 2019, 1900074. doi: 10.1002/mame.201900074.10.1002/mame.201900074Search in Google Scholar
[15] Xu G, Shi Z, Zhao Y, Deng J, Dong M, Liu C, Murugadoss V, Mai X, Guo Z. Int. J. Biol. Macromol. 2019, 126, 376–384.10.1016/j.ijbiomac.2018.12.234Search in Google Scholar
[16] Gale MT. Microelectron Eng. 1997, 34, 321–339.10.1016/S0167-9317(97)00189-5Search in Google Scholar
[17] Mizuno H, Sugihara O, Kaino T, Okamoto N, Hosino M. Opt. Lett. 2003, 28, 2378.10.1364/OL.28.002378Search in Google Scholar PubMed
[18] Mohammed M-I, Desmulliez MPY. Lab. Chip 2011, 11, 569–595.10.1039/C0LC00204FSearch in Google Scholar
[19] Wu H, Zhu J, Huang Y, Wu D, Sun J. Molecules 2018, 23, 2347.10.3390/molecules23092347Search in Google Scholar PubMed PubMed Central
[20] Lara F, Airado-Rodríguez D, Moreno-González D, Huertas-Pérez J, García-Campaña A. Anal. Chim. Acta 2016, 913, 22–40.10.1016/j.aca.2016.01.046Search in Google Scholar PubMed
[21] Zhuang J, Wu D-M, Xu H, Huang Y, Liu Y, Sun J-Y. Int. Polym. Process 2019, 34, 231–238.10.3139/217.3726Search in Google Scholar
[22] Sun J, Li H, Huang Y, Zheng X, Liu Y, Zhuang J, Wu D. ACS Omega 2019, 4, 2750–2757.10.1021/acsomega.8b03138Search in Google Scholar PubMed PubMed Central
[23] Sun J, Zhuang J, Shi J, Kormakov S, Liu Y, Yang Z, Wu D. J. Mater. Sci. 2019, 54, 8436–8449.10.1007/s10853-019-03472-1Search in Google Scholar
[24] Gao X, Huang Y, Liu Y, Kormakov S, Zheng X, Wu D, Wu D. RSC Adv. 2017, 7, 14761–14768.10.1039/C7RA02061ASearch in Google Scholar
[25] Gu H, Zhang H, Ma C, Sun H, Liu C, Dai K, Zhang J, Wei R, Ding T, Guo Z. J. Mater. Chem. C 2019, 7, 2353–2360.10.1039/C8TC05448GSearch in Google Scholar
[26] Sun J, Shen J, Chen S, Cooper M, Fu H, Wu D, Yang Z. Polymers 2018, 10, 505.10.3390/polym10050505Search in Google Scholar PubMed PubMed Central
[27] Huang Y, Kormakov S, He X, Gao X, Zheng X, Liu Y, Sun J, Wu D. Polymers 2019, 11, 187.10.3390/polym11020187Search in Google Scholar PubMed PubMed Central
[28] Liu Y, Gu H, Jia Y, Liu J, Zhang H, Wang R, Zhang B, Zhang H, Zhang Q. Chem. Eng. J. 2019, 356, 318–328.10.1016/j.cej.2018.09.022Search in Google Scholar
[29] Liu Y, Zhang L, Mo C, Cao Y, Wu W, Wang W. Lab. Chip 2016, 16, 4220–4229.10.1039/C6LC01086ESearch in Google Scholar PubMed
[30] Razak AHA, Skov AL. RSC Adv. 2017, 7, 468–477.10.1039/C6RA25878FSearch in Google Scholar
[31] Liu H, Li Q, Zhang S, Yin R, Liu X, He Y, Dai K, Shan C, Guo J, Liu C, Shen C, Wang X, Wang N, Wang Z, Wei R, Guo Z. J. Mater. Chem. C 2018, 6, 12121–12141.10.1039/C8TC04079FSearch in Google Scholar
[32] Sun J, Kormakov S, Liu Y, Huang Y, Wu D, Yang Z. Molecules 2018, 23, 1704.10.3390/molecules23071704Search in Google Scholar PubMed PubMed Central
[33] Gandla S, Gupta H, Pininti AR, Tewari A, Gupta D. RSC Adv. 2016, 6, 107793–107799.10.1039/C6RA20428GSearch in Google Scholar
[34] Deng H, Lin L, Ji M, Zhang S, Yang M, Fu Q. Prog. Polym. Sci. 2014, 39, 627–655.10.1016/j.progpolymsci.2013.07.007Search in Google Scholar
[35] Karger-Kocsis J, Mahmood H, Pegoretti A. Prog. Mater. Sci. 2015, 73, 1–43.10.1016/j.pmatsci.2015.02.003Search in Google Scholar
[36] Yang J, Yang W, Wang X, Dong M, Liu H, Wujcik EK, Shao Q, Wu S, Ding T, Guo Z. Macromol. Chem. Phys. 2019, 220, 1800567.10.1002/macp.201800567Search in Google Scholar
[37] Kormakov S, He X, Huang Y, Liu Y, Sun J, Zheng X, Skopincev I, Gao X, Wu D. Polym. Compos. 2018, 40, 1819–1827.10.1002/pc.24942Search in Google Scholar
[38] Ma Y, Wu D, Liu Y, Li X, Qiao H, Yu ZZ. Compos. Pt B Eng. 2014, 56, 384–391.10.1016/j.compositesb.2013.08.026Search in Google Scholar
[39] Pang H, Xu L, Yan DX, Li ZM. Prog. Polym. Sci. 2014, 39, 1908–1933.10.1016/j.progpolymsci.2014.07.007Search in Google Scholar
[40] Qian H, Kucernak AR, Greenhalgh ES, Bismarck A, Shaffer MSP. ACS Appl. Mater. Interfaces 2013, 5, 6113–6122.10.1021/am400947jSearch in Google Scholar PubMed
[41] Qi X-Y, Yan D, Jiang Z, Cao YK, Yu ZZ, Yavari F, Koratkar N. ACS Appl. Mater. Interfaces 2011, 3, 3130–3133.10.1021/am200628cSearch in Google Scholar PubMed
[42] Yan D, Zhang HB, Jia Y, Hu J, Qi XY, Zhang Z, Yu ZZ. ACS Appl. Mater. Interfaces 2012, 4, 4740–4745.10.1021/am301119bSearch in Google Scholar PubMed
[43] Mao C, Zhu Y, Jiang W. ACS Appl. Mater. Interfaces 2012, 4, 5281–5286.10.1021/am301230qSearch in Google Scholar PubMed
[44] Tang G, Jiang ZG, Li X, Zhang HB, Dasari A, Yu ZZ. Carbon 2014, 77, 592–599.10.1016/j.carbon.2014.05.063Search in Google Scholar
[45] Gao J-F, Li ZM, Meng Q, Yang Q. Mater. Lett. 2008, 62, 3530–3532.10.1016/j.matlet.2008.03.053Search in Google Scholar
[46] Shi S, Wang L, Pan Y, Liu C, Liu X, Li Y, Zhang J, Zheng G, Guo Z. Compos. Pt B Eng. 2019, 167, 362–369.10.1016/j.compositesb.2019.03.007Search in Google Scholar
[47] Sohi NJS, Bhadra S, Khastgir D. Carbon 2011, 49, 1349–1361.10.1016/j.carbon.2010.12.001Search in Google Scholar
[48] Wu D, Gao X, Sun J, Wu D, Liu Y, Kormakov S, Zheng X, Wu L, Huang Y, Guo Z. Compos. Pt A Appl. Sci. Manuf. 2017, 102, 88–95.10.1016/j.compositesa.2017.07.027Search in Google Scholar
[49] Sun J, Zhao Y, Yang Z, Shen J, Cabrera E, Lertola MJ, Yang W, Zhang D, Benatar A, Castro JM, Wu D, Lee LJ. Nanotechnology 2018, 29, 355304.10.1088/1361-6528/aacc59Search in Google Scholar PubMed
[50] Sun J, Wang X, Wu J, Jiang C, Shen J, Cooper MA, Zheng X, Liu Y, Yang Z, Wu D. Sci. Rep. 2018, 8, 5438.10.1038/s41598-018-23771-ySearch in Google Scholar PubMed PubMed Central
[51] He X, Huang Y, Liu Y, Zheng X, Kormakov S, Sun J, Zhuang J, Gao X, Wu D. J. Mater. Sci. 2018, 53, 14299–14310.10.1007/s10853-018-2618-4Search in Google Scholar
[52] Sun J, Wu D, Liu Y, Dai L, Jiang C. Adv. Polym. Technol. 2018, 37, 1581–1591.10.1002/adv.21815Search in Google Scholar
[53] Wu D, Sun J, Liu Y, Yang Z, Xu H, Zheng X, Gou P. Polym. Eng. Sci. 2017, 57, 268–274.10.1002/pen.24408Search in Google Scholar
[54] Jingyao S, Daming W, Ying L, Zhenzhou Y, Pengsheng G. Polym. Eng. Sci. 2018, 58, 952–960.10.1002/pen.24651Search in Google Scholar
[55] Sun J, Zhuang J, Jiang H, Huang Y, Zheng X, Liu Y, Wu D. Appl. Thermal. Eng. 2017, 121, 492–500.10.1016/j.applthermaleng.2017.04.104Search in Google Scholar
[56] Zhuang J, Hu W, Fan Y, Sun J, He X, Xu H, Huang Y, Wu D. Microsyst. Technol. 2018, 25, 381–388.10.1007/s00542-018-3988-xSearch in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Characterization and corrosion resistance of ultra-high molecular weight polyethylene composite coatings reinforced with tungsten carbide particles in hydrochloric acid medium
- Tribological properties of PAANa/UHMWPE composite materials in seawater lubrication
- Preparation and assembly
- Acrylic acid-chitosan blend hydrogel: a novel polymer adsorbent for adsorption of lead(II) and copper(II) ions from wastewater
- Efficient preparation of PDMS-based conductive composites using self-designed automatic equipment and an application example
- Significant improvement of the low-temperature toughness of PVC/ASA/NBR ternary blends through the concept of mismatched thermal expansion coefficient
- Chitosan surface modified PLGA nanoparticles loaded with brigatinib for the treatment of non-small cell lung cancer
- Fabrication of polyimide films with imaging quality using a spin-coating method for potential optical applications
- Engineering and processing
- An experimental study on the micro- and nanocellular foaming of polystyrene/poly(methyl methacrylate) blend composites
- Barrel heating with inductive coils in an injection molding machine
- Influence of temperature dependence on the structural characteristics of polyoxymethylene/poly(lactic acid) blends by injection molding
- Annual reviewer acknowledgement
- Reviewer acknowledgement Journal of Polymer Engineering volume 39 (2019)
Articles in the same Issue
- Frontmatter
- Material properties
- Characterization and corrosion resistance of ultra-high molecular weight polyethylene composite coatings reinforced with tungsten carbide particles in hydrochloric acid medium
- Tribological properties of PAANa/UHMWPE composite materials in seawater lubrication
- Preparation and assembly
- Acrylic acid-chitosan blend hydrogel: a novel polymer adsorbent for adsorption of lead(II) and copper(II) ions from wastewater
- Efficient preparation of PDMS-based conductive composites using self-designed automatic equipment and an application example
- Significant improvement of the low-temperature toughness of PVC/ASA/NBR ternary blends through the concept of mismatched thermal expansion coefficient
- Chitosan surface modified PLGA nanoparticles loaded with brigatinib for the treatment of non-small cell lung cancer
- Fabrication of polyimide films with imaging quality using a spin-coating method for potential optical applications
- Engineering and processing
- An experimental study on the micro- and nanocellular foaming of polystyrene/poly(methyl methacrylate) blend composites
- Barrel heating with inductive coils in an injection molding machine
- Influence of temperature dependence on the structural characteristics of polyoxymethylene/poly(lactic acid) blends by injection molding
- Annual reviewer acknowledgement
- Reviewer acknowledgement Journal of Polymer Engineering volume 39 (2019)