Home Crystalline phase of inorganic montmorillonite/poly(vinylidene fluoride) nanocomposites: influence of dispersion of nanolayers
Article
Licensed
Unlicensed Requires Authentication

Crystalline phase of inorganic montmorillonite/poly(vinylidene fluoride) nanocomposites: influence of dispersion of nanolayers

  • Chao Fu , Xuemei Wang , Xiang Shi and Xianghai Ran EMAIL logo
Published/Copyright: April 7, 2016
Become an author with De Gruyter Brill

Abstract

Inorganic montmorillonite (MMT)/poly(vinylidene fluoride) nanocomposites were prepared by two methods: co-precipitation and solution casting. The effect of preparation methods and thermal treatment on crystalline phase was investigated by Fourier transform infrared spectroscopy and differential scanning calorimetry tests. The isothermal crystallization process was observed with polarized optical microscopy. It was found that the solution-casting method was more effective than the co-precipitation method in inducing the polar phase in the melt-isothermal crystallization process. The addition of inorganic MMT by the solution-casting method without further thermal treatment promoted the β-phase crystallization. The inorganic MMT significantly improved the γ phase of the solution-cast samples in the melt-recrystallization process. The degree of dispersion of inorganic MMT influenced the relative content of the polar phase and the crystallinity of the samples in the same crystallization conditions, i.e. the preparation method and the thermal treatment. The effect of dispersion on crystallization kinetics was also studied to verify the enhancement of finely dispersed nanolayer clusters on the γ phase.

Award Identifier / Grant number: 21504091

Funding statement: This work was supported by the National Science Foundation for Young Scientists of China (grant no. 21504091).

Acknowledgments:

This work was supported by the National Science Foundation for Young Scientists of China (grant no. 21504091).

References

[1] Shah D, Maiti P, Gunn E, Schmidt DF, Jiang DD, Batt CA. Adv. Mater. 2004, 16, 1173–1177.10.1002/adma.200306355Search in Google Scholar

[2] Hasegawa R, Takahashi Y, Chatani Y, Tadokoro H. Polym. J. 1972, 3, 600–610.10.1295/polymj.3.600Search in Google Scholar

[3] He X, Yao K. Appl. Phys. Lett. 2006, 89, 112909.10.1063/1.2352799Search in Google Scholar

[4] Ke K, Pötschke P, Jehnichen D, Fischer D, Voit B. Polymer 2014, 55, 611–619.10.1016/j.polymer.2013.12.014Search in Google Scholar

[5] Rath SK, Dubey S, Kumar GS, Kumar S, Patra A, Bahadur J. J. Mater. Sci. 2014, 49, 103–113.10.1007/s10853-013-7681-2Search in Google Scholar

[6] Jiang Z, Zheng G, Zhan K, Han Z, Yang J. J. Phys. D: Appl. Phys. 2015, 48, 245303.10.1088/0022-3727/48/24/245303Search in Google Scholar

[7] El Achaby M, Arrakhiz F, Vaudreuil S, Essassi E, Qaiss A. Appl. Surf. Sci. 2012, 258, 7668–7677.10.1016/j.apsusc.2012.04.118Search in Google Scholar

[8] Mandal D, Henkel K, Schmeißer D. Mater. Lett. 2012, 73, 123–125.10.1016/j.matlet.2011.11.117Search in Google Scholar

[9] Li B, Xu C, Zheng J, Xu C. Sensors 2014, 14, 9889–9899.10.3390/s140609889Search in Google Scholar PubMed PubMed Central

[10] Thakur P, Kool A, Bagchi B, Das S, Nandy P. Phys. Chem. Chem. Phys. 2015, 17, 1368–1378.10.1039/C4CP04006FSearch in Google Scholar PubMed

[11] Jia N, Xing Q, Liu X, Sun J, Xia G, Huang W. J. Colloid. Interf. Sci. 2015, 453, 169–176.10.1016/j.jcis.2015.05.002Search in Google Scholar PubMed

[12] Ince-Gunduz BS, Alpern R, Amare D, Crawford J, Dolan B, Jones S. Polymer 2010, 51, 1485–1493.10.1016/j.polymer.2010.01.011Search in Google Scholar

[13] Asai K, Okamoto M, Tashiro K. Polymer 2008, 49, 4298–4306.10.1016/j.polymer.2008.07.037Search in Google Scholar

[14] Ramasundaram S, Yoon S, Kim KJ, Park C. J. Polym. Sci. B: Polym. Phys. 2008, 46, 2173–2187.10.1002/polb.21550Search in Google Scholar

[15] Benabid F-Z, Rong L, Benachour D, Cagiao ME, Ponçot M, Zouai F. J. Polym. Eng. 2015, 35, 181–190.10.1515/polyeng-2014-0113Search in Google Scholar

[16] Yang J, Wang J, Zhang Q, Chen F, Deng H, Wang K. Polymer 2011, 52, 4970–4978.10.1016/j.polymer.2011.08.051Search in Google Scholar

[17] Lopes A, Costa C, Tavares C, Neves I, Lanceros-Mendez S. J. Phys. Chem. C 2011, 115, 18076–18082.10.1021/jp204513wSearch in Google Scholar

[18] Santos K, Bischoff E, Liberman S, Oviedo M, Mauler R. Ultrason. Sonochem. 2011, 18, 997–1001.10.1016/j.ultsonch.2011.03.011Search in Google Scholar PubMed

[19] Gregorio Jr R, Cestari M. J. Polym. Sci. B: Polym. Phys. 1994, 32, 859–870.10.1002/polb.1994.090320509Search in Google Scholar

[20] Lovinger AJ. Poly (vinylidene fluoride). In: Developments in Crystalline Polymers–1, Bassett E, Ed., Applied Science Publishers: London, 1982, pp. 197–273.10.1007/978-94-009-7343-5_5Search in Google Scholar

[21] Kobayashi M, Tashiro K, Tadokoro H. Macromolecules 1975, 8, 158–171.10.1021/ma60044a013Search in Google Scholar

[22] Martins P, Lopes A, Lanceros-Mendez S. Prog. Polym. Sci. 2014, 39, 683–706.10.1016/j.progpolymsci.2013.07.006Search in Google Scholar

[23] Lam CK, Lau KT, Cheung HY, Ling HY. Mater. Lett. 2005, 59, 1369–1372.10.1016/j.matlet.2004.12.048Search in Google Scholar

[24] He L, Xia G, Sun J, Zhao Q, Song R, Ma Z. J. Colloid. Interf. Sci. 2013, 393, 97–103.10.1016/j.jcis.2012.10.060Search in Google Scholar PubMed

[25] Sharma M, Madras G, Bose S. Cryst. Growth. Des. 2015, 15, 3345–3355.10.1021/acs.cgd.5b00445Search in Google Scholar

[26] Zhang Y, Jiang S, Yu Y, Xiong G, Zhang Q, Guang G. J. Appl. Polym. Sci. 2012, 123, 2595–2600.10.1002/app.34431Search in Google Scholar

[27] Silva M, Sencadas V, Botelho G, Machado A, Rolo AG, Rocha JG. Mater. Chem. Phys. 2010, 122, 87–92.10.1016/j.matchemphys.2010.02.067Search in Google Scholar

[28] Hu B, Hu N, Wu L, Liu F, Liu Y, Ning H. J. Polym. Eng.2015, 35, 451–461.10.1515/polyeng-2014-0239Search in Google Scholar

[29] Lopes A, Ferreira JC, Costa C, Lanceros-Méndez S. Thermochim. Acta 2013,574, 19–25.10.1016/j.tca.2013.08.003Search in Google Scholar

[30] Martins P, Costa CM, Benelmekki M, Botelho G, Lanceros-Mendez S. CrystEngComm 2012, 14, 2807–2811.10.1039/c2ce06654hSearch in Google Scholar

[31] Martins P, Caparros C, Gonçalves R, Martins P, Benelmekki M, Botelho G, Lanceros-Mendez S. J. Phys. Chem. C 2012, 116, 15790–15794.10.1021/jp3038768Search in Google Scholar

[32] Lopes AC, Sonia AC, Manuel Fernando RP, Gabriela B, Lanceros-Mendez S. ChemPhysChem 2013, 14, 1926–1933.10.1002/cphc.201300174Search in Google Scholar PubMed

[33] Mendes SF, Costa CM, Caparrós C, Sencadas V, Lanceros-Méndez S. J. Mater. Sci. 2012, 47, 1378–1388.10.1007/s10853-011-5916-7Search in Google Scholar

[34] Su-Hsia L, Ruey-Shin J. J. Hazard. Mater. 2002, 92, 2002, 315–326.10.1016/S0304-3894(02)00026-2Search in Google Scholar

Received: 2015-12-9
Accepted: 2016-2-23
Published Online: 2016-4-7
Published in Print: 2017-1-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2015-0517/html
Scroll to top button