Abstract
Advanced materials with excellent performance are in high demand in modern industry. Carbon fiber composites offer a number of advantageous mechanical properties. A significant improvement in fiber-reinforced composites can be achieved by dispersing a very small amount of nanofiller in the resin. Vacuum-assisted resin transfer molding (VARTM) is one of the most important processes for producing reinforced plastics. In this work, several composite samples were fabricated with the infusion of carbon nanofibers (CNFs) into the epoxy matrix using VARTM process. Using scanning electron microscopy (SEM), it was confirmed that CNFs were well dispersed in the resin. Bending tests were performed to investigate the mechanical properties of the samples, and SEM, to examine the fracture surfaces.
Acknowledgments
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A3A01019379).
References
[1] Nguyen TLT, Hermansen JE, Mogensen L. Appl. Energ. 2013, 104, 633–641.10.1016/j.apenergy.2012.11.057Search in Google Scholar
[2] Zhang X, Ning Z, Wang DK, Diniz da Costa JC. Chem. Eng. J. 2013, 232, 397–404.10.1016/j.cej.2013.07.106Search in Google Scholar
[3] Hotza D, Diniz da Costa JC. Int. J. Hydrogen Energ. 2008, 33, 4915–4935.10.1016/j.ijhydene.2008.06.028Search in Google Scholar
[4] Bank LC. Composites for Construction: Structural Design With FRP Materials, Wiley: New York, 2006.10.1002/9780470121429Search in Google Scholar
[5] Witik RA, Payet J, Michaud V, Ludwig C, Månson JE. Compos. Part A. 2011, 42, 1694–1709.10.1016/j.compositesa.2011.07.024Search in Google Scholar
[6] Belingardi G, Beyene AT, Koricho EG, Martorana B. Compos. Struct. 2015, 120, 483–495.10.1016/j.compstruct.2014.10.007Search in Google Scholar
[7] Swolfs Y, Gorbatikh L, Verpoest I. Compos. Part A. 2014, 67, 181–200.10.1016/j.compositesa.2014.08.027Search in Google Scholar
[8] Kim YJ, Heffernan PJ. J. Compos. Constr. 2008, 2, 246–256.10.1061/(ASCE)1090-0268(2008)12:3(246)Search in Google Scholar
[9] Jiao H, Mashiri F, Zhao XL. Thin Wall. Struct. 2012, 59, 144–152.10.1016/j.tws.2012.06.002Search in Google Scholar
[10] Kim YJ, Harries KA. Eng Struct. 2011, 33, 1491–1502.10.1016/j.engstruct.2011.01.019Search in Google Scholar
[11] Cheng J, Ji H, Qiu J, Takagi T, Uchimoto T, Hu N. NDT & E Int. 2014, 68, 1–12.10.1016/j.ndteint.2014.07.001Search in Google Scholar
[12] Larson K, Peterman R, Rasheed H. J. Compos. Constr. 2005, 9, 313–326.10.1061/(ASCE)1090-0268(2005)9:4(313)Search in Google Scholar
[13] Rasheed HA, Harrison RR, Peterman RJ, Alkhrdaji T. Compos. Struct. 2010, 92, 2379–290.10.1016/j.compstruct.2010.03.009Search in Google Scholar
[14] Lee SC, Jeong ST, Park JN, Kim SJ, Cho GJ. Acta Mech. Solida. Sin. 2008, 21, 364–368.10.1007/s10338-008-0844-zSearch in Google Scholar
[15] Kostopoulos V, Tsotra P, Karapappas P, Tsantzalis S, Vavouliotis A, Loutas TH, Paipetis A, Friedrich K, Tanimoto T. Compos. Sci. Technol. 2007, 67, 822–828.10.1016/j.compscitech.2006.02.038Search in Google Scholar
[16] Sebaey TA, Blanco N, Costa J, Lopes CS. Compos. Sci. Technol. 2012, 72, 1251–1256.10.1016/j.compscitech.2012.04.011Search in Google Scholar
[17] Yokozeki T, Iwahori Y, Ishibashi M, Yanagisawa T, Imai K, Arai M, Takahashi T, Enomoto K. Compos. Sci. Technol. 2009, 69, 2268–2273.10.1016/j.compscitech.2008.12.017Search in Google Scholar
[18] Khan LA, Nesbitt AN, Day RJ. Compos. Part A. 2010, 41, 942–953.10.1016/j.compositesa.2010.03.003Search in Google Scholar
[19] Abraham D, Matthews S, McIlhagger R. Compos. Part A. 1998, 29, 795–801.10.1016/S1359-835X(98)00055-4Search in Google Scholar
[20] Bickerton S, Govignon Q, Kelly P. Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications, Woodhead Publishing: Cambridge, 2013.Search in Google Scholar
[21] Henz BJ, Mohan RV, Shires DR. Compos. Part A. 2007, 38, 1932–1946.10.1016/j.compositesa.2007.03.005Search in Google Scholar
[22] Wu CH, Pan YR. J. Mater. Process. Technol. 2008, 201, 695–700.10.1016/j.jmatprotec.2007.11.241Search in Google Scholar
[23] Park CH, Lebel A, Saouab A, Breard J, Lee WI. Compos. Part A. 2011, 42, 658–668.10.1016/j.compositesa.2011.02.005Search in Google Scholar
[24] Villière M, Guéroult S, Sobotka V, Boyard N, Bréard J, Delaunay D. Compos. Part A. 2015, 69, 255–265.10.1016/j.compositesa.2014.11.024Search in Google Scholar
[25] Lugo J, Simacek P, Advani, SG. Compos. Part A. 2014, 67, 157–170.10.1016/j.compositesa.2014.08.031Search in Google Scholar
[26] Naik NK, Sirisha M, Inani A. Prog. Aeosp. Sci. 2014, 65, 22–40.10.1016/j.paerosci.2013.09.002Search in Google Scholar
[27] Simacek P, Eksik Ö, Heider D, Gillespie JW, Advani S. Compos. Part A. 2012, 43, 370–380.10.1016/j.compositesa.2011.10.002Search in Google Scholar
[28] Poorzeinolabedin M, Parnas L, Dashatan SH. Mater. Des. 2014, 64, 450–455.10.1016/j.matdes.2014.08.008Search in Google Scholar
[29] Kessels JFA, Jonker AS, Akkerman R. Compos. Part A. 2007, 38, 2076–2085.10.1016/j.compositesa.2007.04.008Search in Google Scholar
[30] Thagard JR, Okoli OI, Liang Z, Wang HP, Zhang C. Compos. Part A. 2003, 34, 803–811.10.1016/S1359-835X(03)00201-XSearch in Google Scholar
[31] Han K, Jiang S, Zhang C, Wang B. Compos. Part A. 2000, 31, 79–86.10.1016/S1359-835X(99)00053-6Search in Google Scholar
[32] Morales G, Barrena MI, Gómez de Salazar JM, Merino C, Rodríguez D. Compos. Struct. 2010, 92, 1416–1422.10.1016/j.compstruct.2009.11.017Search in Google Scholar
[33] Hossain MK, Hossain ME, Hosur MV, Jeelani S. Compos. Part A. 2011, 42, 1774–1782.10.1016/j.compositesa.2011.07.033Search in Google Scholar
[34] Jiménez-Suárez A, Campo M, Sánchez M, Romón C, Ureña A. Compos. Part B. 2012, 43, 3104–3113.10.1016/j.compositesb.2012.04.030Search in Google Scholar
[35] Haedir J, Bambach MR, Zhao XL, Grzebieta RH. Thin Wall. Struct. 2009, 47, 1136–1147.10.1016/j.tws.2008.10.017Search in Google Scholar
[36] Colombi P, Poggi C. Compos. Part B. 2006, 37, 64–73.10.1016/j.compositesb.2005.03.002Search in Google Scholar
[37] Kim YJ, Brunell G. Compos. Struct. 2011, 93, 1986–1996.10.1016/j.compstruct.2011.02.024Search in Google Scholar
[38] Song JH. e-Polymers. 2014, 14, 345–352.10.1515/epoly-2014-0091Search in Google Scholar
©2016 by De Gruyter
Articles in the same Issue
- Frontmatter
- Original articles
- Waste paper as a cheap source of natural fibre to reinforce polyester resin in production of bio-composites
- Effects of chemical plating time on the electromechanical properties of ionic polymer metal composites
- Predictive modeling of phenolic compound release from nanofibers of electrospun networks for application in periodontal disease
- Epoxy composites reinforced with multi-walled carbon nanotube/poly(ethylene glycol)methylether-coated aramid fiber
- Preparation and characterization of biodegradable blends of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and poly(butylene adipate-co-terephthalate)
- Bending properties of carbon fiber nanocomposites with lamination structure of reinforcement
- The effects of wettability, shear strength, and Weibull characteristics of fiber-reinforced poly(lactic acid) composites
- Matrimid mixed matrix membranes for enhanced CO2/CH4 separation
- Blend membranes based on polyurethane and polyethylene glycol: exploring the impact of molecular weight and concentration of the second phase on gas permeation enhancement
- Thermoplastic films containing lignin and their optical polarization properties
- Valorization of industrial by-products through bioplastic production: defatted rice bran and kraft lignin utilization
- Design analysis of a standard injection screw for plasticising polycarbonate resins
Articles in the same Issue
- Frontmatter
- Original articles
- Waste paper as a cheap source of natural fibre to reinforce polyester resin in production of bio-composites
- Effects of chemical plating time on the electromechanical properties of ionic polymer metal composites
- Predictive modeling of phenolic compound release from nanofibers of electrospun networks for application in periodontal disease
- Epoxy composites reinforced with multi-walled carbon nanotube/poly(ethylene glycol)methylether-coated aramid fiber
- Preparation and characterization of biodegradable blends of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and poly(butylene adipate-co-terephthalate)
- Bending properties of carbon fiber nanocomposites with lamination structure of reinforcement
- The effects of wettability, shear strength, and Weibull characteristics of fiber-reinforced poly(lactic acid) composites
- Matrimid mixed matrix membranes for enhanced CO2/CH4 separation
- Blend membranes based on polyurethane and polyethylene glycol: exploring the impact of molecular weight and concentration of the second phase on gas permeation enhancement
- Thermoplastic films containing lignin and their optical polarization properties
- Valorization of industrial by-products through bioplastic production: defatted rice bran and kraft lignin utilization
- Design analysis of a standard injection screw for plasticising polycarbonate resins