Catalytic growth of multi-walled carbon nanotubes using NiFe2O4 nanoparticles and incorporation into epoxy matrix for enhanced mechanical properties
Abstract
Mechanical properties of multi-walled carbon nanotubes (CNT) reinforced epoxy nanocomposites, with and without any structural defect, were investigated using different weight percent values of pristine and covalently functionalized CNT. First, nickel ferrite (NiFe2O4) catalyst nanoparticles were prepared using the co-precipitate method followed by CNT growth via chemical vapor deposition, using acetylene as carbon feedstock. Through a combination of magnetic stirring and ultrasound vibration treatments in acetone, pristine, COOH-, or NH2-functionalized CNTs at 0.15, 0.60, 1.10 and 1.50 wt% were added to the Epon 828 epoxy. During each stage, extensive materials characterization was carried out using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA)/differential thermal analysis (DTA) techniques. Tensile testing of the specimens revealed an increase in the elastic modulus and tensile strength values with maximum increase registered in the case of nanocomposites made from 1.1 wt% CNT-NH2 (+73%) or CNT-COOH (67%) addition. The energy absorbed during impact testing also increased by 86% upon addition of 1.50 wt% CNT-NH2. The presence of a small notch in the nanocomposite specimens yielded superior mechanical properties to those of the neat epoxy. Such enhancement in the mechanical properties can be attributed to better CNT dispersion in the nanocomposites and good interfacial bonding, as confirmed from microstructural examination of the fractured surfaces.
Acknowledgments
The authors are grateful to Nicolas Gautier from Jean Rouxel Institut des Matériaux, Nantes, France for technical assistance with HR-TEM. The authors thankfully acknowledge a financial grant from the National University of Science and Technology, Pakistan. The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding of this research through the Research Group Project No. RGP-VPP-283.
References
[1] Han J. In Carbon Nanotubes: Science and Applications, Meyyappan M, Ed., CRC Press, FL, USA: 2004, pp. 2–21.Search in Google Scholar
[2] Laird ED, Hood MA, Li CY. In Carbon Nanomaterials, Gogotsi Y, Presser V, Eds., CRC Press, FL, USA, LLC: 2014, pp. 135–186.Search in Google Scholar
[3] Berhan L, Yi Y, Sastry A, Munoz E, Selvidge M, Baughman R. J. Appl. Phys. 2044, 95, 4335.10.1063/1.1687995Search in Google Scholar
[4] Chang L, Hui-Ming C. J. Phys. D: Appl. Phys. 2005, 38, R231.10.1088/0022-3727/38/14/R01Search in Google Scholar
[5] Melechko AV, Merkulov VI, McKnight TE, Guillorn MA, Klein KL, Lowndes DH, Simpson ML. J. Appl. Phys. 2005, 97, 041301.10.1063/1.1857591Search in Google Scholar
[6] Sarangi D, Hierold C, Karimi A. Fullerenes, Nanotubes, Carbon Nanostruct. 2005, 13, 243–253.10.1081/FST-200039287Search in Google Scholar
[7] Makris TD, Giorgi L, Giorgi R, Lisi N, Salernitano E. Diamond Relat. Mater. 2005, 14, 815–819.10.1016/j.diamond.2004.11.001Search in Google Scholar
[8] Ago H, Imamura S, Okazaki T, Saito T, Yumura M, Tsuji M. J. Phys. Chem. B 2005, 109, 10035–10041.10.1021/jp050307qSearch in Google Scholar
[9] Jang YT, Ahn J-H, Lee Y-H, Ju B-K. Chem. Phys. Lett. 2003, 372, 745–749.10.1016/S0009-2614(03)00501-3Search in Google Scholar
[10] Mauron P, Emmenegger C, Sudan P, Wenger P, Rentsch S, Züttel A. Diamond Relat. Mater. 2003, 12, 780–785.10.1016/S0925-9635(02)00337-0Search in Google Scholar
[11] Cui H, Eres G, Howe JY, Puretkzy A, Varela M, Geohegan DB, Lowndes DH. Chem. Phys. Lett. 2003, 374, 222–228.10.1016/S0009-2614(03)00701-2Search in Google Scholar
[12] Magrez A, Seo JW, Mikó C, Hernádi K, Forró L. J. Phys. Chem. B 2005, 109, 10087–10091.10.1021/jp050363rSearch in Google Scholar
[13] Morjan RE, Maltsev V, Nerushev O, Yao Y, Falk LKL, Campbell EEB. Chem. Phys. Lett. 2004, 383, 385–390.10.1016/j.cplett.2003.11.063Search in Google Scholar
[14] Geohegan DB, Puretzky AA, Ivanov IN, Jesse S, Eres G, Howe JY. Appl. Phys. Lett. 2003, 83, 1851.10.1063/1.1605793Search in Google Scholar
[15] Zhang H, Liang E, Ding P, Chao M. Phys. B 2003, 337, 10.10.1016/S0921-4526(03)00314-4Search in Google Scholar
[16] Taylor C, Cavicchi RE, Montgomery CB, Turner S. Nanotechnology 2004, 15, 62.10.1088/0957-4484/15/1/012Search in Google Scholar
[17] Kukovecz Á, Méhn D, Nemes-Nagy E, Szabó R, Kiricsi I. Carbon 2005, 43, 2842–2849.10.1016/j.carbon.2005.06.001Search in Google Scholar
[18] Singh C, Shaffer MSP, Windle AH. Carbon 2003, 41, 359.10.1016/S0008-6223(02)00314-7Search in Google Scholar
[19] Afrin R, Khaliq J, Islam M, Gul IH, Bhatti AS, Manzoor U. Sensors Actuators A 2012, 187, 73–78.10.1016/j.sna.2012.08.028Search in Google Scholar
[20] Kitano H, Tachimoto K, Anraku Y. J. Colloid Interface Sci. 2007, 306, 28–33.10.1016/j.jcis.2006.10.034Search in Google Scholar
[21] Shen J, Huang W, Wu L, Hu Y, Ye M. Mater. Sci. Eng. A 2007, 464, 151–156.10.1016/j.msea.2007.02.091Search in Google Scholar
[22] Men XH, Zhang ZZ, Song HJ, Wang K, Jiang W. Compos. Sci. Technol. 2008, 68, 1042–1049.10.1016/j.compscitech.2007.07.008Search in Google Scholar
[23] Ye Y, Chen H, Wu J, Ye L. Polymer 2007, 48, 6426–6433.10.1016/j.polymer.2007.08.035Search in Google Scholar
[24] Fidelus J, Wiesel E, Gojny F, Schulte K, Wagner H. Composites A 2005, 36, 1555.10.1016/j.compositesa.2005.02.006Search in Google Scholar
[25] Liu L-Q, Wagner HD. Compos. Interfaces 2007, 14, 285–297.10.1163/156855407780452904Search in Google Scholar
[26] Spitalsky Z, Tasis D, Papagelis K, Galiotis C. Prog. Polym. Sci. 2010, 35, 357–401.10.1016/j.progpolymsci.2009.09.003Search in Google Scholar
[27] Gojny FH, Wichmann MH, Fiedler B, Schulte K. Compos. Sci. Technol. 2005, 65, 2300–2313.10.1016/j.compscitech.2005.04.021Search in Google Scholar
[28] Hameed A, Islam M, Ahmad I, Mahmood N, Saeed S, Javed H. Polym. Composites 2014. doi:10.1002/pc.23097.10.1002/pc.23097Search in Google Scholar
[29] Mahmood N, Islam M, Hameed A, Saeed S. Polymers 2013, 5, 1380–1391.10.3390/polym5041380Search in Google Scholar
[30] Ogasawara T, Moon S-Y, Inoue Y, Shimamura Y. Compos. Sci. Technol. 2011, 71, 1826–1833.10.1016/j.compscitech.2011.08.009Search in Google Scholar
[31] Nguyen T-D, Do T-O. Size- and Shape-Controlled Synthesis of Monodisperse Metal Oxide and Mixed Oxide Nanocrystals, Nanocrystal, Masuda Y, Ed., ISBN: 978-953-307-199-2, InTech, Croatia, 2011.10.5772/17054Search in Google Scholar
[32] Dong Q, Yin S, Guo CS, Li HH, Kumada N, Takei T, Yonesaki Y, Kinomura N, Sato T. J. Phys.: Conference Series 2012, 339, 012004.10.1088/1742-6596/339/1/012004Search in Google Scholar
[33] Nikolic AS, Jovic N, Rogan J, Kremenovic A, Ristic M, Meden A, Antic B. Ceram. Int. 2013, 39, 6681–6688.10.1016/j.ceramint.2013.01.106Search in Google Scholar
[34] Wepasnick KA, Smith BA, Schrote KE, Wilson HK, Diegelmann SR, Fairbrother DH. Carbon 2011, 49, 24–36.10.1016/j.carbon.2010.08.034Search in Google Scholar
[35] Roh HS, Potdar HS, Jun KW, Kim JW, Oh YS. Appl. Catal., A 2004, 276, 231–239.10.1016/j.apcata.2004.08.009Search in Google Scholar
[36] Titus E, Ali N, Cabral G, Gracio J, Babu PR, Jackson M. J. Mater. Eng. Performance 2006, 15, 182–186.10.1361/105994906X95841Search in Google Scholar
[37] Zhang D, Shi L, Fang J, Li X, Dai K. Mater. Lett. 2005, 59, 4044–4047.10.1016/j.matlet.2005.07.081Search in Google Scholar
[38] Tuinstra F, Koenig JL. J. Chem. Phys. 1970, 53, 1126.10.1063/1.1674108Search in Google Scholar
[39] Osorio AG, Silveira ICL, Bueno VL. Bergmann CP. Appl. Surf. Sci. 2008, 255, 2485–2489.10.1016/j.apsusc.2008.07.144Search in Google Scholar
[40] Chen GX, Kim H-S, Park BH, Yoon J-S. Polymer 2006, 47, 4760–4767.10.1016/j.polymer.2006.04.020Search in Google Scholar
[41] Kim JA, Seong DG, Kang TJ, Youn JR. Carbon 2006, 44, 1898–1905.10.1016/j.carbon.2006.02.026Search in Google Scholar
[42] Zou W, Du Z-J, Liu Y-X, Yang X, Li H-Q, Zhang C. Compos. Sci. Technol. 2008, 68, 3259–3264.10.1016/j.compscitech.2008.08.011Search in Google Scholar
[43] Yaping Z, Aibo Z, Qinghua C, Jiaoxia Z, Rongchang N. Mater. Sci. Eng. A 2006, 435–436, 145–149.10.1016/j.msea.2006.07.106Search in Google Scholar
[44] Li J, Wu Z, Huang C, Liu H, Huang R, Li K. Compos. Sci. Technol. 2014, 90, 166–173.10.1016/j.compscitech.2013.11.009Search in Google Scholar
©2016 by De Gruyter
Articles in the same Issue
- Frontmatter
- Review
- Development of biomaterial surfaces with and without microbial nanosegments
- Original articles
- Performance and field implementation of a new fracturing fluid consisting of hydrophobically associating polyacrylamide and anionic surfactant
- Enhancing electrical and tribological properties of poly(methyl methacrylate) matrix nanocomposite films by co-incorporation of multiwalled carbon nanotubes and silicon dioxide microparticles
- The effect of two commercial melt strength enhancer additives on the thermal, rheological and morphological properties of polylactide
- Preparation and characterization of reactive liquid rubbers toughened epoxy-clay hybrid nanocomposites
- Catalytic growth of multi-walled carbon nanotubes using NiFe2O4 nanoparticles and incorporation into epoxy matrix for enhanced mechanical properties
- Enhanced carbon dioxide separation by polyethersulfone (PES) mixed matrix membranes deposited with clay
- Excellent durability of epoxy modified mortars in corrosive environments
- Engineering of silver nanoparticle fabricated poly (N-isopropylacrylamide-co-acrylic acid) microgels for rapid catalytic reduction of nitrobenzene
- High efficiency fabrication of ultrahigh molecular weight polyethylene submicron filaments/sheets by flash-spinning
- On the origin of indentation size effects and depth dependent mechanical properties of elastic polymers
Articles in the same Issue
- Frontmatter
- Review
- Development of biomaterial surfaces with and without microbial nanosegments
- Original articles
- Performance and field implementation of a new fracturing fluid consisting of hydrophobically associating polyacrylamide and anionic surfactant
- Enhancing electrical and tribological properties of poly(methyl methacrylate) matrix nanocomposite films by co-incorporation of multiwalled carbon nanotubes and silicon dioxide microparticles
- The effect of two commercial melt strength enhancer additives on the thermal, rheological and morphological properties of polylactide
- Preparation and characterization of reactive liquid rubbers toughened epoxy-clay hybrid nanocomposites
- Catalytic growth of multi-walled carbon nanotubes using NiFe2O4 nanoparticles and incorporation into epoxy matrix for enhanced mechanical properties
- Enhanced carbon dioxide separation by polyethersulfone (PES) mixed matrix membranes deposited with clay
- Excellent durability of epoxy modified mortars in corrosive environments
- Engineering of silver nanoparticle fabricated poly (N-isopropylacrylamide-co-acrylic acid) microgels for rapid catalytic reduction of nitrobenzene
- High efficiency fabrication of ultrahigh molecular weight polyethylene submicron filaments/sheets by flash-spinning
- On the origin of indentation size effects and depth dependent mechanical properties of elastic polymers