Abstract
Three different poly(N-isopropylacrylamide-co-acrylic acid) [p(NIPAM-AA)] microgel samples were prepared using a precipitation polymerization method by varying the concentration of NIPAM and AA in aqueous medium. The microgels were used as microreactors to fabricate Ag nanoparticles (NPs) by in situ a reduction method. Fourier transform infrared (FTIR) and UV-visible spectroscopy were used to characterize the pure and hybrid microgels. The hybrid microgels with different AA content were used as catalysts for reduction of nitrobenzene (NB) into aniline. The progress of the reaction was monitored by a UV-visible spectrophotometer. The results show that the value of the apparent rate constant for catalytic reduction of NB decreases from 0.431 min-1 to 0.227 min-1 by increasing AA content from 3 mol% to 7 mol%, respectively. Decrease in apparent rate constant with increase of AA content can be attributed to an increase in hydrophilicity with increase of AA contents of the microgels. The increase in induction period with increase of AA contents indicates that diffusion of NB towards the catalytic surface becomes difficult due to an increase of hydrophilicity.
Acknowledgments
The authors are thankful to University of the Punjab, Lahore, Pakistan for financial support under a research grant for the fiscal year 2014–2015.
References
[1] Kratz K, Hellweg T, Eimer W. Ber. Bunsen-Ges. Phys. Chem. 1998, 102, 1603–1608.10.1002/bbpc.19981021119Search in Google Scholar
[2] Snowden MJ, Chowdhry BZ, Vincent B, Morris GE. J. Chem. Soc., Faraday Trans. 1996, 92, 5013–5016.10.1039/ft9969205013Search in Google Scholar
[3] Hoare T, Pelton R. Macromolecules 2004, 37, 2544–2550.10.1021/ma035658mSearch in Google Scholar
[4] Karg M, Pastoriza SI, Rodriguez GB, von KR, Wellert S, Hellweg T. Langmuir 2008, 24, 6300–6306.10.1021/la702996pSearch in Google Scholar PubMed
[5] Hoare T, Pelton R. Langmuir 2008, 24, 1005–1012.10.1021/la7024507Search in Google Scholar PubMed
[6] Lopez VC, Hadgraft J, Snowden M. Int. J. Pharm. 2005, 292, 137–147.10.1016/j.ijpharm.2004.11.040Search in Google Scholar
[7] Li Z, Ming T, Wang J, Ngai T. Angew. Chem. Int. Ed. 2009, 48, 8490–8493.10.1002/anie.200902103Search in Google Scholar
[8] Xie L, Chen M, Wu L. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 4919–4926.10.1002/pola.23543Search in Google Scholar
[9] Dong Y, Ma Y, Zhai T, Shen F, Zeng Y, Fu H, Yao J. Macromol. Rapid Commun. 2007, 28, 2339–2345.10.1002/marc.200700483Search in Google Scholar
[10] Pich A, Karak A, Lu Y, Ghosh AK, Adler HJP. Macromol. Rapid Commun. 2006, 27, 344–350.10.1002/marc.200500761Search in Google Scholar
[11] Xu S, Zhang J, Paquet C, Lin Y, Kumacheva E. Adv. Funct. Mater. 2003, 13, 468–472.10.1002/adfm.200304338Search in Google Scholar
[12] Chu LY, Kim JW, Shah RK, Weitz DA. Adv. Funct. Mater. 2007, 17, 3499–3504.10.1002/adfm.200700379Search in Google Scholar
[13] Farooqi ZH, Wu W, Zhou S, Siddiq M. Macromol. Chem. Phys. 2011, 212, 1510–1514.10.1002/macp.201000768Search in Google Scholar
[14] Weissman JM, Sunkara HB, Albert ST, Asher SA. Science 1996, 274, 959–963.10.1126/science.274.5289.959Search in Google Scholar PubMed
[15] Kleinen J, Richtering W. J. Phys. Chem. B 2011, 115, 3804–3810.10.1021/jp2014594Search in Google Scholar PubMed
[16] Saunders BR, Vincent B. Adv. Colloid Interface Sci. 1999, 80, 1–25.10.1016/S0001-8686(98)00071-2Search in Google Scholar
[17] Sasa N, Yamaoka T. Adv. Mater. 1994, 6, 417–421.10.1002/adma.19940060518Search in Google Scholar
[18] Contreras-Caceres R, Abalde-Cela S, Guardia-Giros P, Fernandez-Barbero A, Perez-Juste J, Alvarez-Puebla RA, Liz-Marzan LM. Langmuir 2011, 27, 4520–4525.10.1021/la200266eSearch in Google Scholar PubMed
[19] Liu Y-Y, Liu X-Y, Yang J-M, Lin D-L, Chen X, Zha L-S. Colloids Surf., A 2012, 393, 105–110.10.1016/j.colsurfa.2011.11.007Search in Google Scholar
[20] Shah LA, Farooqi ZH, Naeem H, Shah SM. J. Chem. Soc. Pak. 2013, 45, 1524–1531.Search in Google Scholar
[21] Rehman S, Shah SM, Siddiq M. J. Chem. Soc. Pak. 2013, 35, 717–725.Search in Google Scholar
[22] Farooqi ZH, Iqbal S, Khan SR, Kanwal F, Begum R. e-Polym. 2014, 14, 313–321.10.1515/epoly-2014-0111Search in Google Scholar
[23] Farooqi ZH, Khan SR, Hussain T, Begum R, Ejaz K, Majeed S, Ajmal M, Kanwal F, Siddiq M. Korean J. Chem. Eng. 2014, 31, 1674–1680.10.1007/s11814-014-0117-0Search in Google Scholar
[24] Karg M, Hellweg T. J. Mater. Chem. 2009, 19, 8714–8727.10.1039/b820292nSearch in Google Scholar
[25] Karg M, Hellweg T. Curr. Opin. Colloid Interface Sci. 2009, 14, 438–450.10.1016/j.cocis.2009.08.002Search in Google Scholar
[26] Khan SR, Farooqi ZH, Ajmal M, Siddiq M, Khan A. J. Dispersion Sci. Technol. 2013, 34, 1324–1333.10.1080/01932691.2012.744690Search in Google Scholar
[27] Zhang JT, Wei G, Keller TF, Gallagher H, Stotzel C, Muller FA, Gottschaldt M, Schubert US, Jandt KD. Macromol. Mater. Eng. 2010, 295, 1049–1057.10.1002/mame.201000204Search in Google Scholar
[28] Shi S, Wang Q, Wang T, Ren S, Gao Y, Wang N. J. Phys. Chem. B 2014, 118, 7177–7186.10.1021/jp5027477Search in Google Scholar PubMed
[29] Liu X, Wang X, Zha L, Lin D, Yang J, Zhou J, Zhang L. J. Mater. Chem. C 2014, 2, 7326–7335.10.1039/C4TC00966ESearch in Google Scholar
[30] Naeem H, Farooqi ZH, Shah LA, Siddiq M. J. Polym. Res. 2012, 19, 1–10.10.1007/s10965-012-9950-1Search in Google Scholar
[31] Lu Y, Mei Y, Drechsler M, Ballauff M. Angew. Chem. Int. Ed. 2006, 45, 813–816.10.1002/anie.200502731Search in Google Scholar
[32] Farooqi ZH, Khan SR, Begum R, Kanwal F, Sharif A, Ahmad E, Majeed S, Ijaz K, Ijaz A. Turk. J. Chem. 2015, 39, 96–107.10.3906/kim-1406-40Search in Google Scholar
[33] Tang Y, Wu T, Hu B, Yang Q, Liu L, Yu B, Ding Y, Ye S. Mater. Chem. Phys. 2015, 149, 460–466.10.1016/j.matchemphys.2014.10.045Search in Google Scholar
[34] Sahiner N, Ozay H, Ozay O, Aktas N. Appl. Catal., B 2010, 101, 137–143.10.1016/j.apcatb.2010.09.022Search in Google Scholar
[35] Wu S, Dzubiella J, Kaiser J, Drechsler M, Guo X, Ballauff M, Lu Y. Angew. Chem. Int. Ed. 2012, 51, 2229–2233.10.1002/anie.201106515Search in Google Scholar
[36] Zhang Y, Guan Y, Zhou S. Biomacromolecules 2006, 7, 3196–3201.10.1021/bm060557sSearch in Google Scholar
[37] Christensen ML, Keiding K. Colloids Surf., A 2005, 252, 61–69.10.1016/j.colsurfa.2004.10.063Search in Google Scholar
[38] Tang F, Ma N, Tong L, He F, Li L. Langmuir 2011, 28, 883–888.10.1021/la203704jSearch in Google Scholar
[39] Rastogi PK, Ganesan V, Krishnamoorthi S. Mater. Sci. Eng. B 2012, 177, 456–461.10.1016/j.mseb.2012.02.012Search in Google Scholar
[40] Farooqi ZH, Khan HU, Shah SM, Siddiq M. Arabian J. Chem. 2013, DOI:10.1016/j.arabjc.2013.07.031.10.1016/j.arabjc.2013.07.031Search in Google Scholar
[41] Sharma S. J. Colloid Interface Sci. 2015, 441, 25–29.10.1016/j.jcis.2014.11.030Search in Google Scholar
[42] Ajmal M, Farooqi ZH, Siddiq M. Korean J. Chem. Eng. 2013, 30, 2030–2036.10.1007/s11814-013-0150-4Search in Google Scholar
[43] Kratz K, Hellweg T, Eimer W. Colloids Surf., A 2000, 170, 137–149.10.1016/S0927-7757(00)00490-8Search in Google Scholar
[44] Burmistrova A, Richter M, Eisele M, Uzum C, von Klitzing R. Polymers 2011, 3, 1575–1590.10.3390/polym3041575Search in Google Scholar
[45] Dong J, Zhao Y, Zhao R, Zhou R. J. Environ. Sci. 2010, 22, 1741–1747.10.1016/S1001-0742(09)60314-4Search in Google Scholar
©2016 by De Gruyter
Articles in the same Issue
- Frontmatter
- Review
- Development of biomaterial surfaces with and without microbial nanosegments
- Original articles
- Performance and field implementation of a new fracturing fluid consisting of hydrophobically associating polyacrylamide and anionic surfactant
- Enhancing electrical and tribological properties of poly(methyl methacrylate) matrix nanocomposite films by co-incorporation of multiwalled carbon nanotubes and silicon dioxide microparticles
- The effect of two commercial melt strength enhancer additives on the thermal, rheological and morphological properties of polylactide
- Preparation and characterization of reactive liquid rubbers toughened epoxy-clay hybrid nanocomposites
- Catalytic growth of multi-walled carbon nanotubes using NiFe2O4 nanoparticles and incorporation into epoxy matrix for enhanced mechanical properties
- Enhanced carbon dioxide separation by polyethersulfone (PES) mixed matrix membranes deposited with clay
- Excellent durability of epoxy modified mortars in corrosive environments
- Engineering of silver nanoparticle fabricated poly (N-isopropylacrylamide-co-acrylic acid) microgels for rapid catalytic reduction of nitrobenzene
- High efficiency fabrication of ultrahigh molecular weight polyethylene submicron filaments/sheets by flash-spinning
- On the origin of indentation size effects and depth dependent mechanical properties of elastic polymers
Articles in the same Issue
- Frontmatter
- Review
- Development of biomaterial surfaces with and without microbial nanosegments
- Original articles
- Performance and field implementation of a new fracturing fluid consisting of hydrophobically associating polyacrylamide and anionic surfactant
- Enhancing electrical and tribological properties of poly(methyl methacrylate) matrix nanocomposite films by co-incorporation of multiwalled carbon nanotubes and silicon dioxide microparticles
- The effect of two commercial melt strength enhancer additives on the thermal, rheological and morphological properties of polylactide
- Preparation and characterization of reactive liquid rubbers toughened epoxy-clay hybrid nanocomposites
- Catalytic growth of multi-walled carbon nanotubes using NiFe2O4 nanoparticles and incorporation into epoxy matrix for enhanced mechanical properties
- Enhanced carbon dioxide separation by polyethersulfone (PES) mixed matrix membranes deposited with clay
- Excellent durability of epoxy modified mortars in corrosive environments
- Engineering of silver nanoparticle fabricated poly (N-isopropylacrylamide-co-acrylic acid) microgels for rapid catalytic reduction of nitrobenzene
- High efficiency fabrication of ultrahigh molecular weight polyethylene submicron filaments/sheets by flash-spinning
- On the origin of indentation size effects and depth dependent mechanical properties of elastic polymers