Home Poly(lactic acid)/polypropylene and compatibilized poly(lactic acid)/polypropylene blends prepared by a vane extruder: analysis of the mechanical properties, morphology and thermal behavior
Article
Licensed
Unlicensed Requires Authentication

Poly(lactic acid)/polypropylene and compatibilized poly(lactic acid)/polypropylene blends prepared by a vane extruder: analysis of the mechanical properties, morphology and thermal behavior

  • Rong-yuan Chen , Wei Zou , Hai-chen Zhang , Gui-zhen Zhang , Zhi-tao Yang and Jin-ping Qu EMAIL logo
Published/Copyright: March 10, 2015
Become an author with De Gruyter Brill

Abstract

Poly(lactic acid) (PLA)/polypropylene (PP) blends with different weight fractions were prepared by a novel vane extruder. The mechanical properties, morphology, crystallization behavior and thermal stability of the blends were investigated. The tensile strength, flexural strength and elongation at break decreased nonlinearly when the PP content was not more than 50 wt% and then increased with an increase in the PP content. The flexural modulus decreased with increasing PP weight fraction. The PLA/PP 90:10 blend exhibited the optimum impact strength. Scanning electron microscopy measurements revealed that the PLA/PP blends were immiscible. Phase separation occurred significantly at a blend ratio of 50:50. Regarding the PLA/PP 90:10 blend, the mean diameter of the disperse-phase PP particles was the smallest at 1.11 μm. Differential scanning calorimetry measurements showed that low content of PP enhanced the crystallization of PLA. The PLA component in the blends impeded the crystallization of PP when PP was used as the matrix. The thermogravimetric analysis measurement involved a two-step decomposition process of the blends. The thermal resistance of the blends was improved by compounding with PP. As compatibilizers, both the maleic anhydride-grafted PP and the ethylene/n-butyl acrylate/glycidyl methacrylate terpolymer helped improve the mechanical properties, crystallization property and thermal resistance of the PLA/PP blends.


Corresponding author: Jin-ping Qu, National Engineering Research Center of Novel Equipment for Polymer Processing, The Key Laboratory of Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou 510640, China, e-mail:

Acknowledgments

The authors wish to acknowledge the National Natural Science Foundation of China-Guangdong Joint Foundation Project (U1201242), the National Research Foundation for the Doctoral Program of Higher Education of China (20120172130004), the New Century Excellent Talents in University (NCET-11-0152), the Pearl River Talent Fund for Young Sci-Tech Researchers of Guangzhou City (2011J2200058) and the Young Scientists Fund of the National Natural Science Foundation of China (grant no. 51403068).

References

[1] Gross RA, Kalra B. Science 2002, 297, 803–807.10.1126/science.297.5582.803Search in Google Scholar PubMed

[2] Vieira AC, Guedes RM, Tita V. J. Polym. Eng. 2013, 33, 293–302.10.1515/polyeng-2012-0150Search in Google Scholar

[3] Mosanenzadeh SG, Naguib HE, Park CB, Atalla N. Polym. Eng. Sci. 2013, 53, 1979–1989.10.1002/pen.23443Search in Google Scholar

[4] Chen BK, Shen CH, Chen SC, Chen AF. Polymer 2010, 5, 4667–4672.10.1016/j.polymer.2010.08.028Search in Google Scholar

[5] Hung CY, Wang CC, Chen CY. Polymer 2013, 54, 1860–1866.10.1016/j.polymer.2013.01.045Search in Google Scholar

[6] Liang JZ, Zhou L, Tang CY, Tsui CP. J. Appl. Polym. Sci. 2013, 128, 2940–2944.10.1002/app.38359Search in Google Scholar

[7] Lu X, Huang J, He G, Yang L, Zhang N, Zhao Y, Qu J. Ind. Eng. Chem. Res. 2013, 52, 13677–13684.10.1021/ie4020342Search in Google Scholar

[8] Chen F, Zhang J. Polymer 2010, 51, 1812–1819.10.1016/j.polymer.2010.02.035Search in Google Scholar

[9] Neppalli R, Causin V, Marigo A, Meincken M, Hartmann P, Reenen A. Polymer 2013, 54, 5909–5919.10.1016/j.polymer.2013.08.046Search in Google Scholar

[10] Delpouve N, Delbreilh L, Stoclet G, Saiter A, Dargent E. Macromolecules 2014, 47, 5186–5197.10.1021/ma500839pSearch in Google Scholar

[11] Othman N, Xu C, Mehrkhodavandi P, Hatzikiriakos SG. Polymer 2012, 53, 2443–2452.10.1016/j.polymer.2012.03.068Search in Google Scholar

[12] Wang HT, Chan YH, Feng SW, Lo YJ, Teng NC, Huang HM. J. Polym. Eng. 2014, 34, 241–245.10.1515/polyeng-2013-0206Search in Google Scholar

[13] Sun Y, He C. Macromolecules 2013, 46, 9625–9633.10.1021/ma4020615Search in Google Scholar

[14] Najafi N, Heuzey MC, Carreau PJ. Polym. Eng. Sci. 2013, 53, 1053–1064.10.1002/pen.23355Search in Google Scholar

[15] Chen RY, Zou W, Wu CR, Jia SK, Huang Z, Zhang GZ, Yang ZT, Qu JP. Polym. Test. 2014, 34, 1–9.10.1016/j.polymertesting.2013.12.009Search in Google Scholar

[16] Shibata M, Inoue Y, Miyoshi M. Polymer 2006, 47, 3557–3564.10.1016/j.polymer.2006.03.065Search in Google Scholar

[17] Todo M, Park SD, Takayama T, Arakawa K. Eng. Frac. Mech. 2007, 74, 1872–1883.10.1016/j.engfracmech.2006.05.021Search in Google Scholar

[18] Teamsinsungvon A, Ruksakulpiwat Y, Jarukumjorn K. Polym. Plast. Technol. Eng. 2013, 52, 1362–1367.10.1080/03602559.2013.820746Search in Google Scholar

[19] Reddy N, Nama D, Yang Y. Polym. Degrad. Stabil. 2008, 93, 233–241.10.1016/j.polymdegradstab.2007.09.005Search in Google Scholar

[20] Anderson KS, Hillmyer MA. Polymer 2004, 45, 8809–8823.10.1016/j.polymer.2004.10.047Search in Google Scholar

[21] Wang YL, Hu X, Li H, Ji X, Li ZM. Polym. Plast. Technol. Eng. 2010, 49, 1241–1246.10.1080/03602559.2010.496418Search in Google Scholar

[22] Lin Z, Chen C, Guan Z, Xu B, Li X, Huang Z. Polym. Plast. Technol. Eng. 2012, 51, 991–997.10.1080/03602559.2012.680559Search in Google Scholar

[23] Hamad K, Kaseem M, Deri F. J. Polym. Res. 2011, 18, 1799–1806.10.1007/s10965-011-9586-6Search in Google Scholar

[24] Choudhary P, Mohanty S, Nayak SK, Unnikrishnan L. J. Appl. Polym. Sci. 2011, 121, 3223–3237.10.1002/app.33866Search in Google Scholar

[25] Zhang YC, Wu HY, Qiu YP. Bioresource Technol. 2010, 101, 7944–7950.10.1016/j.biortech.2010.05.007Search in Google Scholar

[26] Park DH, Kim MS, Yang JH, Lee DJ, Kim KN, Hong BK, Kim WN. Macromol. Res. 2011, 19, 105–112.10.1007/s13233-011-0215-3Search in Google Scholar

[27] Almgren KM, Gamstedt EK, Berthold F, Lindström M. Polym. Compos. 2009, 30, 1809–1816.10.1002/pc.20753Search in Google Scholar

[28] Qu JP, Chen HZ, Liu SR, Tan B, Liu LM, Yin XC, Liu QJ, Guo RB. J. Appl. Polym. Sci. 2013, 128, 3576–3585.10.1002/app.38573Search in Google Scholar

[29] Jia S, Qu J, Liu W, Wu C, Chen R, Zhai S, Huang Z. Polym. Eng. Sci. 2014, 54, 716–724.10.1002/pen.23598Search in Google Scholar

[30] Qu JP. C.N. Patent 200,810,026,054.X (2008).10.1088/1126-6708/2008/07/054Search in Google Scholar

[31] Qu JP, Zhang GZ, Chen HZ, Yin XC, He HZ. Polym. Eng. Sci. 2012, 52, 2147–2156.10.1002/pen.23176Search in Google Scholar

[32] Martuscelli E, Silvestre C, Abate G. Polymer 1982, 23, 229–237.10.1016/0032-3861(82)90306-8Search in Google Scholar

[33] Yoo TW, Yoon HG, Choi SJ, Kim MS, Kim YH, Kim WN. Macromol. Res. 2010, 18, 583–588.10.1007/s13233-010-0613-ySearch in Google Scholar

Received: 2014-10-21
Accepted: 2015-1-25
Published Online: 2015-3-10
Published in Print: 2015-10-1

©2015 by De Gruyter

Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2014-0312/pdf
Scroll to top button