Home Study on the solidification kinetics of high-density polyethylene during thin-walled injection molding process
Article
Licensed
Unlicensed Requires Authentication

Study on the solidification kinetics of high-density polyethylene during thin-walled injection molding process

  • Shuang-quan Deng , Bin Yang EMAIL logo , Ji-bin Miao , Ru Xia , Jia-sheng Qian , Peng Chen and Ming-bo Yang
Published/Copyright: September 21, 2012
Become an author with De Gruyter Brill

Abstract

In this work, the effect of the initial and secondary temperature differences on the solidification behaviors of high-density polyethylene (HDPE) during the thin-walled injection molding (TWIM) was intensively investigated. Simulated temperature profiles using the enthalpy transformation methodology were compared with an in situ temperature measurement, and reasonable agreement was achieved between calculations and measurements. Two-dimensional wide-angle X-ray diffraction characterization shows that the formation of oriented crystal structures was considerably affected by the thermal gradient within the injection-molded article. The present study can be practically significant to the optimization of the cooling parameters during the TWIM of crystalline polymers as well as to the further study on the relationship among “processing-structure-property” of polymeric materials.


Corresponding author: Bin Yang, College of Chemistry and Chemical Engineering, and the Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei 230601, P.R. China

Received: 2012-5-24
Accepted: 2012-8-23
Published Online: 2012-09-21
Published in Print: 2012-10-01

©2012 by Walter de Gruyter Berlin Boston

Articles in the same Issue

  1. Masthead
  2. Masthead
  3. Review
  4. Influence of hydrostatic pressure and volumetric strain on the mechanical long term behavior of polymers
  5. Original Articles
  6. Dynamic pressure analysis as a tool for determination of sharkskin instability by extrusion of molten polymers
  7. Young’s modulus and prediction of plastics/elastomer blends
  8. Comparison of tribological performance of PEEK, UHMWPE, glass fiber reinforced PTFE and PTFE reinforced PEI composite materials under dry and lubricated conditions
  9. Study on the solidification kinetics of high-density polyethylene during thin-walled injection molding process
  10. The influence of level of interfacial healing on the weld-line strengths of injection molded parts
  11. Investigation on Nylon 66 silicate nanocomposites modified under gamma radiation
  12. Effect of mold surface antistiction treatment on microinjection replication quality using Cr-N/Zr-DLC thin-layer coating
  13. Estimation of thermal conductivity of PP/Al(OH)3/Mg(OH)2 composites
  14. Preparation and characterization of polyvinyl alcohol/carbon nanotube (PVA/CNT) conductive nanofibers
  15. Copolymerization of 5-norbornene-2-metheneoxy-trimethylsilyl with methyl 5-norbornene-2-carboxylate catalyzed by a novel Ni(benzocyclohexan-ketonaphthylimino)2/B(C6F5)3) system
  16. A modified polyurethane elastomer using polyfunctional HTPB synthesized by in-situ nitroxide mediated polymerization of 1,3-butadiene
  17. Preparation and characterizations of ternary biodegradable blends composed of polylactide, poly(ε-caprolactone), and wood flour
  18. Polypropylene + boehmite nanocomposite fibers
  19. Development of PCL-PEG nanofibrous mats as alternative carriers for recombinant Chinese hamster ovary cells
Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2012-0045/pdf?lang=en
Scroll to top button