Abstract
The thermal conductivity of polypropylene (PP) composites filled with Al(OH)3 and Mg(OH)2 was measured by means of the stable flat measuring instrument at different testing temperatures. The effective thermal conductivity of the composites was estimated by applying the thermal conductivity equation proposed previously, and the estimations were compared with the experimental measured data under the same experimental conditions. The results showed that the calculations and measurements of the effective thermal conductivity were close to each other when the volume fraction of the Al(OH)3/Mg(OH)2 powder was <10.4%. Moreover, the effective thermal conductivity of the composites was estimated using the Russell model and the Maxwell-Eucken model, and the predictions were compared with the experimental data and the estimations of this equation. It was found that the estimations of this equation were closer to the experimental data than those of the Russell model and Maxwell-Eucken model.
©2012 by Walter de Gruyter Berlin Boston
Articles in the same Issue
- Masthead
- Masthead
- Review
- Influence of hydrostatic pressure and volumetric strain on the mechanical long term behavior of polymers
- Original Articles
- Dynamic pressure analysis as a tool for determination of sharkskin instability by extrusion of molten polymers
- Young’s modulus and prediction of plastics/elastomer blends
- Comparison of tribological performance of PEEK, UHMWPE, glass fiber reinforced PTFE and PTFE reinforced PEI composite materials under dry and lubricated conditions
- Study on the solidification kinetics of high-density polyethylene during thin-walled injection molding process
- The influence of level of interfacial healing on the weld-line strengths of injection molded parts
- Investigation on Nylon 66 silicate nanocomposites modified under gamma radiation
- Effect of mold surface antistiction treatment on microinjection replication quality using Cr-N/Zr-DLC thin-layer coating
- Estimation of thermal conductivity of PP/Al(OH)3/Mg(OH)2 composites
- Preparation and characterization of polyvinyl alcohol/carbon nanotube (PVA/CNT) conductive nanofibers
- Copolymerization of 5-norbornene-2-metheneoxy-trimethylsilyl with methyl 5-norbornene-2-carboxylate catalyzed by a novel Ni(benzocyclohexan-ketonaphthylimino)2/B(C6F5)3) system
- A modified polyurethane elastomer using polyfunctional HTPB synthesized by in-situ nitroxide mediated polymerization of 1,3-butadiene
- Preparation and characterizations of ternary biodegradable blends composed of polylactide, poly(ε-caprolactone), and wood flour
- Polypropylene + boehmite nanocomposite fibers
- Development of PCL-PEG nanofibrous mats as alternative carriers for recombinant Chinese hamster ovary cells
Articles in the same Issue
- Masthead
- Masthead
- Review
- Influence of hydrostatic pressure and volumetric strain on the mechanical long term behavior of polymers
- Original Articles
- Dynamic pressure analysis as a tool for determination of sharkskin instability by extrusion of molten polymers
- Young’s modulus and prediction of plastics/elastomer blends
- Comparison of tribological performance of PEEK, UHMWPE, glass fiber reinforced PTFE and PTFE reinforced PEI composite materials under dry and lubricated conditions
- Study on the solidification kinetics of high-density polyethylene during thin-walled injection molding process
- The influence of level of interfacial healing on the weld-line strengths of injection molded parts
- Investigation on Nylon 66 silicate nanocomposites modified under gamma radiation
- Effect of mold surface antistiction treatment on microinjection replication quality using Cr-N/Zr-DLC thin-layer coating
- Estimation of thermal conductivity of PP/Al(OH)3/Mg(OH)2 composites
- Preparation and characterization of polyvinyl alcohol/carbon nanotube (PVA/CNT) conductive nanofibers
- Copolymerization of 5-norbornene-2-metheneoxy-trimethylsilyl with methyl 5-norbornene-2-carboxylate catalyzed by a novel Ni(benzocyclohexan-ketonaphthylimino)2/B(C6F5)3) system
- A modified polyurethane elastomer using polyfunctional HTPB synthesized by in-situ nitroxide mediated polymerization of 1,3-butadiene
- Preparation and characterizations of ternary biodegradable blends composed of polylactide, poly(ε-caprolactone), and wood flour
- Polypropylene + boehmite nanocomposite fibers
- Development of PCL-PEG nanofibrous mats as alternative carriers for recombinant Chinese hamster ovary cells