Microstructural characteristics and mechanical properties of WAAM components
-
K. Sommer
Konstantin Sommer born in Ukraine, in 1987. He studied mechanical engineering at University of Applied sciences (HTW) in Berlin and graduated in 2017. Since 2014 active in the field of additive manufacturing, investigating the field from design, material and process perspectives. Since 2023 lecturer at University of Applied Sciences for material and production science., A. Pfennig
Anja Pfennig studied Minerology at the Rheinische Friedrich Wilhelms University Bonn, Germany, where she graduated in 1997. Her Ph.-D. was earned in 2001 from the Friedrich Alexander University of Erlangen, Germany. She then worked for Siemens Energy in Berlin where she conducted scientific research on the oxidation of high temperature materials and corrosion behavior of steels used in Carbon Capture Techniques. 2009 she became full professor at the Applied University Berlin, HTW where she currently teaches material science for engineering students.
Abstract
Wire arc additive manufacturing (WAAM) is a process enabling the deposition of components with complex geometries while using high deposition rates. The WAAM process is associated with specific thermal process conditions resulting in inhomogeneities in the microstructure and thus, anisotropic properties within a component.
Using a WAAM component made of high-alloy steel 1.4370 as an example, correlations between the microstructural gradients and the mechanical properties will be studied based on hardness measurements. To this end, the phases and characteristic features present in the microstructure will be linked to hardness profiles measured in different regions of the WAAM component.
Kurzfassung
Wire Arc Additive Manufacturing (WAAM) ist ein Verfahren der additiven Fertigung, das es ermöglicht, komplexe Geometrien mit hohen Aufbauraten zu erzeugen. Der WAAM-Prozess ist mit spezifischen thermischen Prozessbedingungen verbunden, die innerhalb eines Bauteils Inhomogenitäten im Gefüge und somit auch eine Anisotropie der Eigenschaften bewirken.
Am Beispiel des hochlegierten Stahls 1.4370, hergestellt mittels WAAM, sind die Zusammenhänge zwischen den Gradienten im Gefüge und den mechanischen Eigenschaften am Beispiel der Härte untersucht. Hierzu sind die auftretenden Phasen und charakteristischen Gefügestrukturen mit den Härte-Verläufen in verschiedenen Bereichen eines WAAM-Bauteils in Zusammenhang gebracht.
About the authors
Konstantin Sommer born in Ukraine, in 1987. He studied mechanical engineering at University of Applied sciences (HTW) in Berlin and graduated in 2017. Since 2014 active in the field of additive manufacturing, investigating the field from design, material and process perspectives. Since 2023 lecturer at University of Applied Sciences for material and production science.
Anja Pfennig studied Minerology at the Rheinische Friedrich Wilhelms University Bonn, Germany, where she graduated in 1997. Her Ph.-D. was earned in 2001 from the Friedrich Alexander University of Erlangen, Germany. She then worked for Siemens Energy in Berlin where she conducted scientific research on the oxidation of high temperature materials and corrosion behavior of steels used in Carbon Capture Techniques. 2009 she became full professor at the Applied University Berlin, HTW where she currently teaches material science for engineering students.
References / Literatur
[1] Gebhardt, A.: Additive Fertigungsverfahren: Additive Manufacturing und 3D-Drucken für Prototyping – Tooling – Produktion. Carl Hanser Verlag GmbH & Company KG (2017). ISBN 9783446452367. https://doi.org/10.1007/978-3-446-44539-010.1007/978-3-446-44539-0Search in Google Scholar
[2] Zhou, K.: Additive Manufacturing Technology: Design, Optimization, and Modeling. Wiley (2022). ISBN 9783527833924. DOI:10.1002/978352783393110.1002/9783527833931Search in Google Scholar
[3] Bhate, D.: Design for Additive Manufacturing: Concepts and Considerations for the Aerospace Industry. SAE International (2018). ISBN 9780768091502. DOI:10.4271/PT-18810.4271/PT-188Search in Google Scholar
[4] Kumar, V.; Mandal, A.: Effect of Heat Input on the Wire-Arc Additive Manufactured Steel Structures. MIJST 11 (2023), pp. 11–20. DOI:10.47981/j.mijst.11(01)2023.419(11-20)10.47981/j.mijst.11(01)2023.419(11-20)Search in Google Scholar
[5] Rosli, N. A.; Alkahari, M. R.; Abdollah, M. F.b.; Maidin, S.; Ramli, F. R.; Herawan, S. G.: Review on effect of heat input for wire arc additive manufacturing process. Journal of Materials Research and Technology 11 (2021), pp. 2127–2145. DOI:10.1016/j.jmrt.2021.02.00210.1016/j.jmrt.2021.02.002Search in Google Scholar
[6] Rodrigues, T. A.; Duarte, V.; Miranda, R. M.; Santos, T. G.; Oliveira, J. P.: Current Status and Perspectives on Wire and Arc Additive Manufacturing (WAAM). Materials (Basel) 12 (2019). DOI:10.3390/ma1207112110.3390/ma12071121Search in Google Scholar PubMed PubMed Central
[7] Yang, Q.; Xia, C.; Deng, Y.; Li, X.; Wang, H.: Microstructure and Mechanical Properties of AlSi7Mg0.6 Aluminum Alloy Fabricated by Wire and Arc Additive Manufacturing Based on Cold Metal Transfer (WAAM-CMT). Materials (Basel) 12 (2019). DOI:10.3390/ma1216252510.3390/ma12162525Search in Google Scholar PubMed PubMed Central
[8] Fredriksson, H.; Akerlind, U.: Solidification and Crystallization Processing in Metals and Alloys. Wiley: Hoboken (2012). ISBN 111997554910.1002/9781119975540Search in Google Scholar
[9] Bajaj, P.; Hariharan, A.; Kini, A.; Kürnsteiner, P.; Raabe, D.; Jägle, E. A.: Steels in additive manufacturing: A review of their microstructure and properties. Materials Science and Engineering: A 772 (2020), p. 138633. DOI:10.1016/j.msea.2019.13863310.1016/j.msea.2019.138633Search in Google Scholar
[10] Wang, F.; Williams, S.; Colegrove, P.; Antonysamy, A. A.: Microstructure and Mechanical Properties of Wire and Arc Additive Manufactured Ti-6Al-4V. Metall Mater Trans A 44 (2013),pp. 968–977. DOI:10.1007/s11661-012-1444-610.1007/s11661-012-1444-6Search in Google Scholar
[11] Bhujangrao, T.; Veiga, F.; Suárez, A.; Iriondo, E.; Mata, F. G.: High-Temperature Mechanical Properties of IN718 Alloy: Comparison of Additive Manufactured and Wrought Samples. Crystals 10 (2020), p. 689. DOI:10.3390/cryst1008068910.3390/cryst10080689Search in Google Scholar
[12] Wang, T.; Zhang, Y.; Wu, Z.; Shi, C.: Microstructure and properties of die steel fabricated by WAAM using H13 wire. Vacuum 149 (2018), pp. 185–189. DOI:10.1016/j.vacuum.2017.12.034.10.1016/j.vacuum.2017.12.034.Search in Google Scholar
[13] Wu, W.; Xue, J.; Wang, L.; Zhang, Z.; Hu, Y.; Dong, C.: Forming Process, Microstructure, and Mechanical Properties of Thin-Walled 316L Stainless Steel Using Speed-Cold-Welding Additive Manufacturing. Metals 9 (2019). DOI:10.3390/met9010109.10.3390/met9010109.Search in Google Scholar
[14] DIN Deutsches Institut für Normung e.V., D. I. N. DIN 8556-1:1986-05, Schweißzusätze für das Schweißen nichtrostender und hitzebeständiger Stähle.Search in Google Scholar
[15] DIN Deutsches Institut für Normung e.V., D. I. N. DIN 17145:1980-05, Runder Walzdraht für Schweißzusätze; Technische Lieferbedingungen.Search in Google Scholar
[16] Kauczor, E.: Metallographische Arbeitsverfahren; Springer Berlin Heidelberg (2013) ISBN 9783642874741.Search in Google Scholar
[17] DIN EN ISO 6507-1:2018-07, Metallische Werkstoffe – Härteprüfung nach Vickers – Teil 1: Prüfverfahren (ISO 6507-1:2018); Deutsche Fassung EN ISO 6507-1:2018; Beuth Verlag GmbH: Berlin.Search in Google Scholar
[18] Brooks, J. A.; Williams, J. C.; Thompson, A. W.: STEM Analysis of primary austenite solidified stainless steel welds. Metall Trans A 14 (1983), pp. 23–31. DOI:10.1007/BF0264373310.1007/BF02643733Search in Google Scholar
[19] Suutala, N.; Takalo, T.; Moisio, T.: Ferritic-austenitic solidification mode in austenitic stainless steel welds. Metall Trans A 11 (1980),pp. 717–725. DOI:10.1007/BF0266120110.1007/BF02661201Search in Google Scholar
[20] Kujanpaa, V.; Suutala, N.; Takalo, T.; Moisio, T.: Correlation between solidification cracking and microstructure in austenitic and austenitic-ferritic stainless steel welds. Welding Research International 9 (1979) 2, pp. 55–76.Search in Google Scholar
[21] Brooks, J. A.; Thompson, A. W.: Microstructural development and solidification cracking susceptibility of austenitic stainless steel welds. International Materials Reviews 36 (1991), pp. 16–44, DOI:10.1179/imr.1991.36.1.1610.1179/imr.1991.36.1.16Search in Google Scholar
[22] Kou, S.: Welding Metallurgy. John Wiley & Sons. DOI:10.1002/047143402710.1002/0471434027Search in Google Scholar
[23] Bhadeshia, H. K. D. H.: Geometry of crystals, poly-crystals, and phase transformations; CRC Press: Boca Raton, FL (2018). ISBN 9781315114910.10.1201/9781315114910Search in Google Scholar
[24] Yajing Li; Ying Luo; Jianghua Li; Danrong Song; Bin Xu; Xu Chen: Ferrite formation and its effect on deformation mechanism of wire arc additive manufactured 308 L stainless steel. Journal of Nuclear Materials 550 (2021), p. 152933 DOI:10.1016/j.jnucmat.2021.15293310.1016/j.jnucmat.2021.152933Search in Google Scholar
[25] Li, J. C. M.: Microstructure and Properties of Materials. World Scientific (2000). DOI:10.1142/431110.1142/4311Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston, Germany
Articles in the same Issue
- Contents
- Editorial
- Editorial
- Microstructural characteristics and mechanical properties of WAAM components
- Grain size characterization of nickel alloy 718 with optimized metallographic sample preparation route followed by a novel etching technique
- High-resolution microscopy of biofilm and bacteria on titanium implants
- Failure Analysis
- Failure analysis of LCF cracked medium-voltage switch bellows
- Picture of the Month
- Picture of the Month
- News
- News
- Meeting Diary
- Meeting Diary
Articles in the same Issue
- Contents
- Editorial
- Editorial
- Microstructural characteristics and mechanical properties of WAAM components
- Grain size characterization of nickel alloy 718 with optimized metallographic sample preparation route followed by a novel etching technique
- High-resolution microscopy of biofilm and bacteria on titanium implants
- Failure Analysis
- Failure analysis of LCF cracked medium-voltage switch bellows
- Picture of the Month
- Picture of the Month
- News
- News
- Meeting Diary
- Meeting Diary