Home Design and development of welding electrode for structural steel
Article
Licensed
Unlicensed Requires Authentication

Design and development of welding electrode for structural steel

  • K. Kumar , L. Sharma

    Graduated at Beant College of Engineering & Technology Gurdaspur (State Govt. College) in 2008. Worked at Tharrmax Ltd. from 2008 to 2009. Completed his M.Eng. at Thapar University Patiala in 2011. Assistant Professor at Lovely Professional University from 2011 to 2015. PhD from IIT Jodhpur in 2020. Assistant Professor in Chandigarh University since 2020

    EMAIL logo
    , R. Chhibber , S. K. Mohapatra and R. K. Sharma
Published/Copyright: February 21, 2025
Become an author with De Gruyter Brill

Abstract

Due to the large number of consumables available, the flexibility required to achieve appropriate properties in the welded joint is very high. Fundamental knowledge about development of different electrodes for structural steel, of which information is scarce in international welding literature. In present work six rutile coated electrodes were prepared by increasing calcite content, at the expense of cellulose and Si-bearing components like mica and china clay, in the fluxes. This modification produced an increase in the slag basicity, which caused a marked increment in all-weld-metal toughness and modifications in operational behavior with a decrease in penetration and width of the weld bead, while maintaining the typical excellent operational characteristics of rutile electrodes. Microstructure examination of six electrodes indicates the presence of inclusions and secondary phase particles. Maximum tensile strength of 430 N/mm2 while minimum tensile strength of 323 N/mm2 was observed for 7.5 % and 12.5 % calcite content. In F position, 7.5 %, 10 %, 12.5 % calcite was faster than 15 %, 17.5 % and 20 % calcite. For DC (+), 15 %, 17.5 %, 20 % calcite presented higher spatter than 5 %, 10 %, 12.5 % calcite.

Kurzfassung

Aufgrund der Vielzahl an verfügbaren Verbrauchsmaterialien und Verfahren besteht eine hohe Flexibilität hinsichtlich der Erzeugung von Schweißnähten mit geeigneten Eigenschaften. In der internationalen Schweißliteratur ist jedoch nur wenig über die Grundlagen zur Entwicklung verschiedener Stabelektroden für Baustahl zu finden. Für die vorliegende Arbeit werden sechs rutilumhüllte Elektroden hergestellt, bei denen der Calcitgehalt erhöht und der Gehalt an zellulose- und Si-haltigen Bestandteilen wie Glimmer und Kaolinit in den Flussmitteln entsprechend verringert wird. Diese Modifikation führte zu einer höheren Basizität der Schlacke und damit zu einem deutlichen Anstieg der Zähigkeit des Schweißguts und einer Änderung des Betriebsverhaltens. Ebenso wurde eine Verringerung der Einbrandtiefe und der Breite der Schweißraupe beobachtet, während die für rutilumhüllte Elektroden typischen ausgezeichneten Betriebseigenschaften erhalten blieben. Gefügeuntersuchungen der sechs Elektroden weisen auf das Vorliegen von Einschlüssen und Partikeln der Sekundärphase hin. Bei Calcitgehalten von 7,5 % und 12,5 % wurde eine maximale Zugfestigkeit von 430 N/mm2 und eine minimale Zugfestigkeit von 323 N/mm2 beobachtet. Beim Schweißen in Wannenposition wurde mit Calcitgehalten von 7,5 %, 10 % und 12,5 % eine höhere Schweißgeschwindigkeit als mit Gehalten von 15 %, 17,5 % und 20 % erzielt. Bei Gleichstrom mit positiver Elektrodenpolung (DC (+)) wurden mit Calcitgehalten von 15 %, 17,5 % und 20 % mehr Schweißspritzer als bei Gehalten von 5 %, 10 % und 12,5 % beobachtet.

About the author

L. Sharma

Graduated at Beant College of Engineering & Technology Gurdaspur (State Govt. College) in 2008. Worked at Tharrmax Ltd. from 2008 to 2009. Completed his M.Eng. at Thapar University Patiala in 2011. Assistant Professor at Lovely Professional University from 2011 to 2015. PhD from IIT Jodhpur in 2020. Assistant Professor in Chandigarh University since 2020

References / Literatur

[1] Svensson, L. E.; Elvander, J.; Esab, A. B.; Göteborg: Challenges for welding Consumables for the new Millennium. Savetsaren (1999), pp. 1–11.Search in Google Scholar

[2] Svensson, L. E.: Exploiting advances in arc weld technology by welding institute. Woodhead Publishing Limited (1999).Search in Google Scholar

[3] Sampath, K.: Constraints-Based Modelling Enables Successful Development of a Welding Electrode Specification for Critical Navy Applications. Welding Journal (2005), pp. 131–138.Search in Google Scholar

[4] Mitra, U.; Eagar, T. W.: Slag Metal Reactions during Welding: Part II (Theory). Metallurgical Transactions 22B (1991), pp. 73–81. DOI:10.1007/BF0267252910.1007/BF02672529Search in Google Scholar

[5] Sharma, L.; Chhibber, R.: Design and development of submerged arc welding fluxes using TiO2-SiO2-CaO and SiO2-CaO-Al2O3 flux system. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 233 (2019), pp. 739–762. DOI:10.1177/095440891879403610.1177/0954408918794036Search in Google Scholar

[6] Sharma, L; Chhibber, R.: Investigating the physicochemical and thermophysical properties of submerged arc welding fluxes designed using TiO2-SiO2-MgO and SiO2-MgO-Al2O3 flux systems for linepipe steels. Ceram Int. 45 (2019), pp. 1569–1587. DOI:10.1016/j.ceramint.2018.10.03210.1016/j.ceramint.2018.10.032Search in Google Scholar

[7] Sharma, L.; Chhibber, R.: Design of CaO-SiO2-CaF2 and CaO-SiO2-Al2O3 Based Submerged Arc Fluxes for Series of Bead on Plate Pipeline Steel Welds – Effect on Carbon and Manganese Content, Grain Size and Microhardness. Journal of Pressure Vessel Technology, Transactions of the ASME 141 (2019), pp. 1–10. DOI:10.1115/1.404329810.1115/1.4043298Search in Google Scholar

[8] Sharma, L.; Chhibber, R.: Design of TiO2-SiO2-MgO and SiO2-MgO-Al2O3-Based Submerged Arc Fluxes for Multipass Bead on Plate Pipeline Steel Welds. Journal of Pressure Vessel Technology, Transactions of the ASME 141 (2019). DOI:10.1115/1.404337510.1115/1.4043375Search in Google Scholar

[9] Bhandari, D.; Chhibber, R.; Arora, N.; Mehta, R.: Investigation of TiO2-SiO2-CaO-CaF2 based electrode coatings on weld metal chemistry and mechanical behaviour of bimetallic welds. J Manuf Process. 23 (2016), pp. 61–74. DOI:10.1016/j.jmapro.2016.05.01310.1016/j.jmapro.2016.05.013Search in Google Scholar

[10] Khan, W. N.; Kumar, J.; Chhibber, R.: High-temperature wettability study of mineral waste added CaO–CaF2–SiO2 and CaO–TiO2–SiO2-based electrode coating for offshore welds. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 234 (2020), pp. 622–636. DOI:10.1177/146442072090643810.1177/1464420720906438Search in Google Scholar

[11] Pouriamanesh, R.; Dehghani, K.; Vallant, R.; Enzinger, N.: Effect of Ti Addition on the Micro-structure and Mechanical Properties of Weld Metals in HSLA Steels. J Mater Eng Perform. 27 (2018), pp. 6058–6068. DOI:10.1007/s11665-018-3686-y10.1007/s11665-018-3686-ySearch in Google Scholar

[12] Sharma, L.; Kumar, J.; Chhibber, R.: Experimental investigation on surface behaviour of submerged arc welding fluxes using basic flux system. Ceram Int. 46 (2020), pp. 8111–8121. DOI:10.1016/j.ceramint.2019.12.03810.1016/j.ceramint.2019.12.038Search in Google Scholar

[13] Sharma, L.; Chhibber, R.: Mechanical properties and hydrogen induced cracking behaviour of API X70 SAW weldments. International Journal of Pressure Vessels and Piping 165 (2018), pp. 193–207. DOI:10.1016/j.ijpvp.2018.06.01310.1016/j.ijpvp.2018.06.013Search in Google Scholar

[14] Sharma, L.; Kumar, J.; Chhibber, R.: Experimental investigation on high temperature wettability and structural behaviour of SAW fluxes using MgO–TiO2–SiO2 and Al2O3–MgO–SiO2 flux system. Ceram Int. 46 (2020), pp. 5649–5657. DOI:10.1016/j.ceramint.2019.11.01110.1016/j.ceramint.2019.11.011Search in Google Scholar

[15] Kumar, V.; Kumar, J.; Chhibber, R.; Sharma, L.: Investigation on CaO-SiO2-CaF2-SrO Based Electrode Coating System on High-Temperature Wettability and Structural Behaviour for Power Plants Welds. Silicon (2022). DOI:10.1007/s12633-022-02145-010.1007/s12633-022-02145-0Search in Google Scholar

[16] Mishra, S.; Sharma, L.; Chhibber, R.: Modelling and Thermophysical Properties of TiO 2 SiO 2 CaO and SiO 2 CaO MgO Based Electrode Coatings for Offshore Applications. Silicon (2023). DOI:10.1007/s12633-023-02559-410.1007/s12633-023-02559-4Search in Google Scholar

[17] Mahajan, S.; Chhibber, R.: Design and Development of Shielded Metal Arc Welding (SMAW) Electrode Coatings Using a CaO-CaF2-SiO2 and CaO-SiO2-Al2O3 Flux System. JOM. 71 (2019), pp. 2435–2444. DOI:10.1007/s11837-019-03494-910.1007/s11837-019-03494-9Search in Google Scholar

[18] Khan, W. N.; Chhibber, R.: Physicochemical and thermo physical characterization of CaO–CaF2–SiO2 and CaO–TiO2–SiO2 based electrode coating for offshore welds. Ceram Int. 46 (2020), pp. 8601–8614. DOI:10.1016/j.ceramint.2019.12.09210.1016/j.ceramint.2019.12.092Search in Google Scholar

[19] Sharma, L.; Kumar, J.; Chhibber, R.: Experimental investigation on high temperature wettability and structural behaviour of SAW fluxes using MgO–TiO2–SiO2 and Al2O3–MgO–SiO2 flux system. Ceram Int. 46 (2020), pp. 5649–5657. DOI:10.1016/j.ceramint.2019.11.01110.1016/j.ceramint.2019.11.011Search in Google Scholar

[20] Mitra,U. ; Eagar, T. W.: Slag-metal reactions during welding: Part I. Evaluation and reassessment of existing theories. Metallurgical Transactions B. 22 (1991), pp. 65–71. DOI:10.1007/BF0267252810.1007/BF02672528Search in Google Scholar

Received: 2024-02-26
Accepted: 2024-07-22
Published Online: 2025-02-21
Published in Print: 2025-02-25

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pm-2025-0003/html
Scroll to top button