Home Evaluation of nickel shot peening process on strength of friction stir welded AA2014-T6 aluminum alloy joints
Article
Licensed
Unlicensed Requires Authentication

Evaluation of nickel shot peening process on strength of friction stir welded AA2014-T6 aluminum alloy joints

  • K. Mallieswaran

    is working as an Associate Professor in Mechanical Engineering at CK College of Engineering and Technology, Cuddalore, Tamil Nadu, India. He hascompleted his B.E in Mechanical Engineering, MBA in Production Management, M.E in CAD, and Ph.D. from VIT University, Chennai Campus. He has published many papers in peer reviewed international journals.His research areas are Metal Joining,Corrosion, Sheet Metal Forming, Composite Materials and Additive Manufacturing.

    , C. Rajendran , R. Padmanabhan

    is working as a Professor Higher Academic Grade in School of Mechanical Engineering at VIT University Chennai, Tamil Nadu, India. He has completed his B.E in Mechanical Engineering, M.E in Production Engineering and Ph.D from Dublin City University, Ireland, Post-Doctoral Research Associate at University of Coimbra, Portugal.He has published many papers in peer reviewed international journals. His H-index(scopus) is 15 and i10 index is 18. He is the Editor, Advances in Materials & Processing Technologies, Taylor & Francis Publishing Company. His research areas are Manufacturing Processes, Sheet Metal Forming, MEMS.

    and S. Rajasekaran
Published/Copyright: July 1, 2023
Become an author with De Gruyter Brill

Abstract

The best aluminum alloys for construction are those that incorporate copper. However, welding engineers find it difficult to join aluminium and its alloys as a result of cracking. One of the popular methods for joining nonferrous materials, especially aluminum alloys, is friction stir welding (FSW). A tensile strength of 75 % to 85 % of the basic material strength is produced by FSW joints. The majority of studies have documented a reduction in strength as a result of incomplete melting, creating a soft region at the boundary between the thermo – mechanically influenced zone and the stir zone. The current effort has focused on using the shot peening method to reduce the softness at the interface. According to the test findings, the nickel shot-peened joint produced a stronger joint than the traditional FSW joint. The shot-peened joint has gained 7 % additional strength compared to untreated joint.

Kurzfassung

Unter den Aluminiumlegierungen eignen sich besonders die kupferhaltigen Legierungen als Konstruktionswerkstoff. Für Schweißingenieure ist es jedoch schwierig, Aluminium und seine Legierungen zu fügen, da es leicht zu Rissen kommen kann. Eines der beliebtesten Fügeverfahren für Nichteisenwerkstoffe, insbesondere für Aluminiumlegierungen, ist das Rührreibschweißen (friction stir welding, FSW). Durch FSW-Verbindungen wird eine Zugfestigkeit von 75 % bis 85 % der Festigkeit des Grundmaterials erreicht. Einige Studien haben eine Verringerung der Festigkeit als Folge eines unvollständigen Aufschmelzens dokumentiert, wodurch ein weicher Bereich an der Grenze zwischen der thermomechanisch beeinflussten Zone und der Rührreibzone entsteht. Die aktuelle Forschung konzentriert sich auf die Anwendung des Kugelstrahlverfahrens, um die geringe Festigkeit an der Grenzfläche zu verbessern. Die Testergebnisse zeigen, dass die mit Nickel kugelgestrahlte Verbindung eine festere Verbindung als die herkömmliche FSW-Verbindung ergibt. Die kugelgestrahlte FSW-Verbindung hat im Vergleich zur unbehandelten Verbindung eine Festigkeitssteigerung von 7 % erreicht.

About the authors

Dr. K. Mallieswaran

is working as an Associate Professor in Mechanical Engineering at CK College of Engineering and Technology, Cuddalore, Tamil Nadu, India. He hascompleted his B.E in Mechanical Engineering, MBA in Production Management, M.E in CAD, and Ph.D. from VIT University, Chennai Campus. He has published many papers in peer reviewed international journals.His research areas are Metal Joining,Corrosion, Sheet Metal Forming, Composite Materials and Additive Manufacturing.

Dr. R. Padmanabhan

is working as a Professor Higher Academic Grade in School of Mechanical Engineering at VIT University Chennai, Tamil Nadu, India. He has completed his B.E in Mechanical Engineering, M.E in Production Engineering and Ph.D from Dublin City University, Ireland, Post-Doctoral Research Associate at University of Coimbra, Portugal.He has published many papers in peer reviewed international journals. His H-index(scopus) is 15 and i10 index is 18. He is the Editor, Advances in Materials & Processing Technologies, Taylor & Francis Publishing Company. His research areas are Manufacturing Processes, Sheet Metal Forming, MEMS.

References / Literatur

[1] Mohammad, A.; Mukhopadhyay, J.: Mechanical and microstructural behavior of dissimilar AA2014-T6 and AA7075-T6 aluminium alloys joined by friction stir welding. In Light Metals 2020, pp. 370–379. Springer, Cham, 2020. DOI:10.1007/978-3-030-36408-3_5310.1007/978-3-030-36408-3_53Search in Google Scholar

[2] Ramanjaneyulu, K.; Gankidi, M. R.; Gokhale, H: Optimization of process parameters of aluminum alloy AA 2014-T6 friction stir welds by response surface methodology. Defence Technology 11 (2015) 3, pp. 209–219. DOI:10.1016/j.dt.2015.03.00310.1016/j.dt.2015.03.003Search in Google Scholar

[3] Babu, S; Janaki Ram, G. D.; Venkitakrishnan, P. V.; Madhusudhan Reddy, G; Prasad Rao, K: Microstructure and mechanical properties of friction stir lap welded aluminum alloy AA2014. Jour of Materials Science & Technology 28 (2012) 5, pp. 414–426. DOI:10.1016/S1005-0302(12)60077-210.1016/S1005-0302(12)60077-2Search in Google Scholar

[4] Rajendran, C; Srinivasan,K; Balasubramanian, V; Balaji,H; Selvaraj, P: Effect of tool tilt angle on strength and microstructural characteristics of friction stir welded lap joints of AA2014-T6 aluminum alloy. Transaction of Nonferrous Materials Society of China 29 (2019) 9, pp. 1824–1835. DOI:10.1016/S1003-6326(19)65090-910.1016/S1003-6326(19)65090-9Search in Google Scholar

[5] Rajendran, C; Srinivasan,K; Balasubramanian, V; Balaji,H; Selvaraj, P: Identifying the combination of friction stir welding parameters to attain maximum strength of AA2014-T6 aluminum alloy joints. Advance in Materials and Processing Technology 4 (2018) 1, pp. 100–119. DOI:10.1080/2374068X.2017.136616210.1080/2374068X.2017.1366162Search in Google Scholar

[6] Marcello, C.; Forcellese, A; Santecchia, E.; Paoletti, C; Spigarelli, S.; Simoncini, M.: New approaches to friction stir welding of aluminum light-alloys. Metallurgy 10 (2020) 2, p. 233. DOI:10.3390/met1002023310.3390/met10020233Search in Google Scholar

[7] Shubham, V.; Gupta, M; Misra, J. P.: Optimization of process parameters in friction stir welding of armor-marine grade aluminium alloy using desirability approach. Materials Research Express, 6 (2018) 2, p. 026505. DOI:10.1088/2053-1591/aaea0110.1088/2053-1591/aaea01Search in Google Scholar

[8] Gadakh, V. S.; Kumar, A; Vikhe Patil, G.J: Analytical modeling of the friction stir welding process using different pin profiles. Welding Journal 94 (2015) 4, pp. 115–124Search in Google Scholar

[9] Ahmet, A: Impact of pinless stirring tools with different shoulder profile designs on friction stir spot welded joints. Journal of Mechanical Science and Technology 34 (2020) 9, pp. 3735–3743. DOI:10.1007/s12206-020-0825-910.1007/s12206-020-0825-9Search in Google Scholar

[10] Amir, G.; Yavari, M. M.; Tomków, J.; Grimaldo Guerrer, J. W.; Kheradmandan, H.; Dorofeev, A.; Memon, S.; Derazkola, H. A.: Investigation of Mechanical and Microstructural Properties of Welded Specimens of AA6061-T6 Alloy with Friction Stir Welding and Parallel-Friction Stir Welding Methods. Materials, 14 (2021) 20, p. 6003. DOI:10.3390/ma1420600310.3390/ma14206003Search in Google Scholar PubMed PubMed Central

[11] Devang, S.; Li, W.; Patel, V.: Stationary shoulder friction stir welding -low heat input joining technique: a review in comparison with conventional FSW and bobbin tool FSW. Critical Review in Solid State and Materials Science (2021), pp. 1–50Search in Google Scholar

[12] Zhao, H.; Shen, Z; Booth, M; Wen, L; Gerlich, F.: Calculation of welding tool pin width for friction stir welding of thin overlapping sheets. The International Journal of Advanced Manufacturing Technology 98 (2018) 5, pp. 1721–1731. DOI:10.1007/s00170-018-2350-x10.1007/s00170-018-2350-xSearch in Google Scholar

[13] Guangjian, P.; Yan, Q; Hu, J. J. ; Chen, P.; Chen, Z; Zhang, T.: Effect of forced air cooling on the microstructures, tensile strength, and hardness distribution of dissimilar friction stir welded AA5A06-AA6061 joints. Metallurgy 9 (2019) 3, p. 30410.3390/met9030304Search in Google Scholar

[14] Mallieswaran, K.; Padmanabhan, R; Balasubramanian, V: Friction stir welding parameters optimization for tailored welded blank sheets of AA1100 with AA6061 dissimilar alloy using response surface methodology. Advances in Materials and Processing Technology 4 (2018) 1, pp. 142–157. DOI:10.1080/2374068X.2017.141069010.1080/2374068X.2017.1410690Search in Google Scholar

[15] Kannusamy, A. S.; Ramasamy, R: Effect of post weld heat treatment and welding parameters on mechanical and corrosion characteristics of friction stir welded aluminium alloy AA2014-T6. Transaction of the Canadian Societyfor Mechanical Engineering 43 (2018) 2, pp. 230–236. DOI:10.1139/tcsme-2018-018510.1139/tcsme-2018-0185Search in Google Scholar

[16] Madhav, R., Bhattacharya, A: Mechanical strength and corrosion behavior of dissimilar friction stir welded AA7075-AA2014 joints. Materials Chemicals and Physics. 262 (2021), p. 124338. DOI:10.1016/j.matchemphys.2021.12433810.1016/j.matchemphys.2021.124338Search in Google Scholar

[17] Wakchaure, P. N.; Borkar, B. R; Shinde, V. B; Tajane, R. S,: The Effect of Tool Geometry on Metallurgical and Mechanical Properties of Friction Stir Welding of Aluminum Alloy AA2014-T6. IUP Journal of Mechanical Engineering 8 (2015) 4, p. 7Search in Google Scholar

[18] Nie, L.; Wu, Y. X; Gong,H: Prediction of temperature and residual stress distributions in friction stir welding of aluminum alloy. The International Journal of Advanced Manufacturing Technology. 106 (2020) 7, pp. 3301–3310. DOI:10.1007/s00170-019-04826-410.1007/s00170-019-04826-4Search in Google Scholar

[19] Rajendran, C.; Abdulriyazdeen A.; Abishek, S.; Aatheeshwaran, A.; Akash, A.: Prediction of relationship between angular velocity to the pitch line velocity (ω/v) on tensile strength of friction stir welded AA2014-T6 Aluminium alloy joints: Angular velocity to pitch line velocity ratio on FSW joints. Forces in Mechanics 4 (2021), p. 100036. DOI:10.1016/j.finmec.2021.10003610.1016/j.finmec.2021.100036Search in Google Scholar

[20] Ramanjaneyulu, K.; Madhusudhan Reddy, G; Venugopal Rao, A; Markandeya, R: Structure-property correlation of AA2014 friction stir welds: role of tool pin profile. Journal of Materials Engineering and Performance 22 (2013) 8, pp. 2224–2240. DOI:10.1007/s11665-013-0512-410.1007/s11665-013-0512-4Search in Google Scholar

[21] Abdulstaar, M. A.; Al-Fadhalah, K. J.; Wagner, L.: Microstructural variation through weld thickness and mechanical properties of peened friction stir welded 6061 aluminum alloy joints. Materials Characterization 126 (2017), pp. 64-73. DOI:10.1016/j.matchar.2017.02.01110.1016/j.matchar.2017.02.011Search in Google Scholar

[22] Peng, L.; Sun, S.; Hu, J.: Effect of laser shock peening on the microstructure and corrosion resistance in the surface of weld nugget zone and heat-affected zone of FSW joints of 7050 Al alloy. Optics & LaserTechnology 112 (2019), pp. 1–7. DOI:10.1016/j.optlastec.2018.10.05410.1016/j.optlastec.2018.10.054Search in Google Scholar

[23] Chuan, X.; Sheng, G; Wang, H.; Jiao Y. J.; Yuan, X.: Effect of high energy shot peening on the microstructure and mechanical properties of Mg/Ti joints. Journal of Alloys and Compounds 695 (2017), pp. 1383–1391. DOI:10.1016/j.jallcom.2016.10.26210.1016/j.jallcom.2016.10.262Search in Google Scholar

[24] Rui, L.; Yuan. X.; Li, T.; Hong, M.; Tao, S.; Chen, Z.; Wang, G.: Effect of High Energy Shot Peening on the Microstructure and Mechanical Property of AZ31B Mg Alloy/HSLA350 Steel Lap Joints. International Journal of Performance Engineering and Manufacturing 22 (2021) 5, pp. 831–841. DOI:10.1007/s12541-021-00501-510.1007/s12541-021-00501-5Search in Google Scholar

[25] Magdalena, B.; Kluz, R.; Kubit, A.; Ochał, K.: Microstructural variation through weld thickness and mechanical properties of peened friction stir welded 6061 aluminum alloy joints. Advances in Science and Technology Research Journal 14 (2020) 1. DOI:10.12913/22998624/11166210.12913/22998624/111662Search in Google Scholar

[26] Peng, L.; Hu, J.; Sun, S.; Xu, S.; Ren, G.: Effect of laser shock peening on the microstructural characterization in weld nugget zone of friction stir welded 7050 aluminum alloys. Journal of Laser Applications. 30 (2018) 3, p. 032015. DOI:10.2351/1.503548310.2351/1.5035483Search in Google Scholar

[27] Atieh Anas, M; Rula, M; Al Hazaa, A.; Barghash, M.; Mubaydin, H.: Effect of Pre-and Post-Weld Shot Peening on the Mechanical &Tribological Properties of TIG Welded Aluminum 6061-T6 Alloy. Transaction of the Canadian Society for Mechanical Engineering. 41 (2017), 2, pp. 197–209. DOI:10.1139/tcsme-2017-001410.1139/tcsme-2017-0014Search in Google Scholar

[28] Dhakal, B.; Swaroop, S.: Laser shock peening as post welding treatment technique. Journal of Manufacturing Process,32 (2018), pp. 721–733. DOI:10.1016/j.jmapro.2018.04.00610.1016/j.jmapro.2018.04.006Search in Google Scholar

[29] Lin, N.; Wu, Y.; Gong, H; Chen, D.; dong Guo, X.: Effect of shot peening on redistribution of residual stress field in friction stir welding of 2219 aluminum alloy. Materials. 13 (2020) 14, 2020: p. 3169. DOI:10.3390/ma1314316910.3390/ma13143169Search in Google Scholar PubMed PubMed Central

[30] Mattissen, D; Molodov, D. A; Shvindlerman, L. S; Gottstein, G: Drag effect of triple junctions on grain boundary and grain growth kinetics in aluminium. Actamaterials.3 (2005) 7, pp. 2049–2057. DOI:10.1016/j.actamat.2005.01.01610.1016/j.actamat.2005.01.016Search in Google Scholar

Received: 2022-12-03
Accepted: 2023-05-17
Published Online: 2023-07-01
Published in Print: 2023-06-30

© 2023 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 14.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pm-2022-1038/html
Scroll to top button