Home Image processing methods and light optical microscopy for in-situ quantification of chromatic change and anode dilation in Li-ion battery graphite anodes during (de-)lithiation
Article
Licensed
Unlicensed Requires Authentication

Image processing methods and light optical microscopy for in-situ quantification of chromatic change and anode dilation in Li-ion battery graphite anodes during (de-)lithiation

  • A. Jansche

    is currently pursuing his Ph.D. in applied machine learning for materials microscopy. He received his bachelor's degree in Computer Science and his research master's degree in Advanced Materials and Manufacturing from Aalen University, Germany. He has been working as a research assistant at the Materials Research Institute Aalen since 2015 and as a software engineer for automated microscopy since 2012. His research includes deep neural networks, computer vision and materials microscopy.

    , S. Desapogu

    is currently pursuing his master's degree in the field of Engineering Sciences at TH Rosenheim. Since 2021 he has been working as a student assistant at Materials Research Institute Aalen. There he was working on semantic segmentation with deep neural networks for 2D and 3D data as well as image feature extraction for regression models. His research interests include deep neural networks and computer vision.

    , C. Hogrefe , A. K. Choudhary , F. Trier , A. Kopp , C. Weisenberger , T. Waldmann , M. Wohlfahrt-Mehrens , T. Bernthaler and G. Schneider
Published/Copyright: March 4, 2023
Become an author with De Gruyter Brill

Abstract

In Lithium-ion batteries, the graphite anode is known to undergo a noticeable chromatic change during lithiation and de-lithiation by forming graphite intercalation compounds. Additionally, the graphite anode primarily contributes to the volume change of the battery. Using a novel in-situ optical microscopy setup for imaging cross-sections of Li-ion full cells, both effects can be studied simultaneously during charging and discharging. In this work, we describe feature extraction methods to quantify these effects in the image data (3730 images in total) captured during the lithiation and de-lithiation process. Automated and manual evaluations are compared. The images show graphite anodes and NMC 622 cathodes. For colorfulness, we evaluate different methods based on classical image processing. The metrics calculated with these approaches are compared to the results of ColorNet, which is a trainable colorfulness estimator based on deep convolutional neural networks. We propose a supervised semantic segmentation approach using U-Net for the layer thickness measurement and the anode dilation derived from it.

Kurzfassung

Die Graphitanode in Lithium-Ionen-Batterien ist dafür bekannt, dass sie sich durch die Ausbildung von Graphiteinlagerungsverbindungen während Lithiierung und Delithiierung merklich farblich verändert. Darüber hinaus wirkt sich die Graphitanode maßgeblich auf die Volumenänderung des Akkus aus. Mithilfe eines neuartigen optischen In-situ-Mikroskopieverfahrens zur Schnittbildgebung von Li-Ionen Vollzellen können beide Effekte während des Lade- und Entladevorgangs gleichzeitig untersucht werden. In diesem Beitrag beschreiben wir Merkmalsextraktionsverfahren zur Quantifzierung dieser Effekte in den während der Lithiierung und Delithiierung erfassten Bilddaten (insgesamt 3730 Bilder). Automatisierte und manuelle Auswertungen werden miteinander verglichen. Die Bilder zeigen Graphitanoden sowie NMC 622-Kathoden. Bezüglich der Farbigkeit werten wir verschiedene, auf klassischer Bildverarbeitung basierende Verfahren aus. Die so berechneten Metriken werden mit den mit ColorNet erzielten Ergebnissen verglichen. ColorNet ist ein auf tiefen neuronalen Faltungsnetzen (Deep Convolutional Neural Networks) basierender trainierbarer Schätzer der Farbigkeit. Wir stellen einen Ansatz zur überwachten semantischen Segmentierung vor, bei dem für die Schichtdickenmessung und die daraus abgeleitete Anodenausdehnung U-Net zum Einsatz kommt.

About the authors

A. Jansche

is currently pursuing his Ph.D. in applied machine learning for materials microscopy. He received his bachelor's degree in Computer Science and his research master's degree in Advanced Materials and Manufacturing from Aalen University, Germany. He has been working as a research assistant at the Materials Research Institute Aalen since 2015 and as a software engineer for automated microscopy since 2012. His research includes deep neural networks, computer vision and materials microscopy.

S. Desapogu

is currently pursuing his master's degree in the field of Engineering Sciences at TH Rosenheim. Since 2021 he has been working as a student assistant at Materials Research Institute Aalen. There he was working on semantic segmentation with deep neural networks for 2D and 3D data as well as image feature extraction for regression models. His research interests include deep neural networks and computer vision.

6

6 Acknowledgements

The authors acknowledge funding projects CharLiSiKo (03XP0333A) and MiCha (03XP0317A) in the AQua cluster funded by the German Federal Ministry of Education and Research (BMBF).

6

6 Danksagung

Die Autoren bedanken sich für die Förderung der Projekte CharLiSiKo (03XP0333A) und MiCha (03XP0317A) im AQua-Cluster durch das Bundesministerium für Bildung und Forschung (BMBF).

References / Literatur

[1] Hogrefe, C.; Waldmann, T.; Molinero, M. B.; Wildner, L.; Axmann, P.; Wohlfahrt- Mehrens, M.: journal of the Electrochemical Society (2022), pp. 5–11. DOI: 10.1149/1945-7111/ac6c5710.1149/1945-7111/ac6c57Search in Google Scholar

[2] Ronneberger, O.; Fischer, P.: Brox, T.: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 Lecture Notes in Computer Science. 9351, pp. 234–241. DOI: 10.1007/978-3-319-24574-4_2810.1007/978-3-319-24574-4_28Search in Google Scholar

[3] Krawczyk, P.; Baumgartl, H.; Jansche, A.; Bernthaler, T.; Buettner, R.; Schneider, G.: IEEE 17th International Conference on Automation Science and Engineering (2021) (CASE), pp. 1332–1337. DOI: 10.1109/CASE49439.2021.955140410.1109/CASE49439.2021.9551404Search in Google Scholar

[4] Sarkar, D.; Bali, R.; Sharma, T.: Practical Machine Learning with Python, 1st Edition, Apress publishing, Berkeley, CA, 2018. DOI: 10.1007/978-1-4842-3207-1_110.1007/978-1-4842-3207-1_1Search in Google Scholar

[5] Seo, H.; Khuzani, M. B.; Vasudevan, V.; Huang, C.; Ren, H.; Xiao, R.; Jia, X.; Xing, L.: Medical physics. 47 (2020) 5, pp. e148–e167. DOI: 10.1002/mp.1364910.1002/mp.13649Search in Google Scholar PubMed PubMed Central

[6] Müller, S.; Sauter, C.; Shunmugasundaram, R.; Wenzler, N.; Andrade, V. D.; Carlo, F. D.; Konukoglu, E; Wood, V.: Nature Communications. 12 (2021), p. 6205.10.1038/s41467-021-26480-9Search in Google Scholar PubMed PubMed Central

[7] Mo, Y.; Wu, Y.; Yang, X.; Liu, F.; Liao, Y.: Neurocomputing. 493 (2022), pp. 626–646. DOI: 10.1016/j.neucom.2022.01.00510.1016/j.neucom.2022.01.005Search in Google Scholar

[8] Choudhary, A. K.; Jansche, A.; Grubesa, T.; Trier, F.; Goll, D.; Bernthaler, T.; Schneider, G.: Materials Characterization. 186 (2022). DOI: 10.1016/j.matchar.2022.11179010.1016/j.matchar.2022.111790Search in Google Scholar

[9] Jansche, A.; Choudhary, A. K.; Bernthaler, T.; Schneide, G.: Machine learning based detection and deep learning based image inpainting of preparation artefacts in micrographs, in: TechConnect AI World Innovation Conferences, 2021, USA. DOI: 10.1149/1.139354810.1149/1.1393548Search in Google Scholar

[10] Winter, M.; Wrodnigg, G. H.; Besenhard, J. O.; Novák, P.: Journal of The Electrochemical Society. 147 (2000) 7, p. 2427.10.1149/1.1393548Search in Google Scholar

[11] Maire, P.; Evans, A.; Kaiser, H.; Scheifele, W.; Novák, P.: Journal of The Electrochemical Society. 155 (2008) 11, p. A862. DOI: 10.1149/1.297969610.1149/1.2979696Search in Google Scholar

[12] Biltzer, B.; Gruhle, A.: Journal of Power Sources (2014), pp. 297–302. DOI: 10.1016/j.jpowsour.2014.03.14210.1016/j.jpowsour.2014.03.142Search in Google Scholar

[13] Bauer, M.; Wachtler, M.; Stöwe, H.; Persson, J. V.; Danzer, M. A.: Journal of Power Sources. 93–102 (2016), p. 317. DOI: 10.1016/j.jpowsour.2016.03.07810.1016/j.jpowsour.2016.03.078Search in Google Scholar

[14] Schweidler, S.; de Biasi, L.; Schiele, A.; Hartmann, P.; Brezensinski, T.; Janek, J.: The Journal of Physical Chemistry C. 122 (2018) 16, pp. 8829–8835. DOI: 10.1021/acs.jpcc.8b0187310.1021/acs.jpcc.8b01873Search in Google Scholar

[15] Michael, H.: Journal of The Electrochemical Society. 168 (2021) 1, p. 010507. DOI: 10.1149/1945-7111/abd64810.1149/1945-7111/abd648Search in Google Scholar

[16] Waldmann, T.; Hogg, B.-I.; Wohlfahrt-Mehrens, M.: Journal of Power Sources. 384 (2018), pp. 107–124. DOI: 10.1016/j.jpowsour.2018.02.06310.1016/j.jpowsour.2018.02.063Search in Google Scholar

[17] Uhlmann, C.; Illig, J. ; Ender, M. ; Schuster, R. ; Ivers-Tiffée, E.: Journal of Power Sources. 279 (2015), pp. 428–438. DOI: 10.1016/j.jpowsour.2015.01.04610.1016/j.jpowsour.2015.01.046Search in Google Scholar

[18] Zinth, V.; von Lüders, C.; Hofmann, M.; Hattendorff, J.; Buchberger, I.; Erhard, S.; Rebelo-Kornmeier, J.; Jossen, A.; Gilles, R. Journal of Power Sources. 271 (2014), pp. 152–159. DOI: 10.1016/j.jpowsour.2014.07.16810.1016/j.jpowsour.2014.07.168Search in Google Scholar

[19] Hogrefe, C.; Hein, S.; Waldmann, T.; Danner, T.; Richter, K.; Latz, A.; Wohlfahrt-Mehrens, M.: Journal of The Electrochemical Society. 167 (2020) 14, p. 140546. DOI: 10.1149/1945-7111/abc8c310.1149/1945-7111/abc8c3Search in Google Scholar

[20] Lodico, J. J.; Woodall, M.; Chan, H. L.; Hubbard, W. A.; Regan, B. C.: Microscopy and Microanalysis. 23 (2017) S1, pp. 1982–1983. DOI: 10.1017/S143192761701057110.1017/S1431927617010571Search in Google Scholar

[21] Woo, K. C.; Kamitakahara, W. A.; DiVincenzo, D. P.; Robinson, D. S.; Mertwoy, H.; Milliken, J. W.; Fischer, J. E.: Physical Review Letters. 50 (1983), pp. 182–185. DOI: 10.1103/PhysRevLett.50.18210.1103/PhysRevLett.50.182Search in Google Scholar

[22] Nalimova, V.; Guérard, D.; Lelaurain, M.; Fateev, O.: Carbon. 33 (1995) 2, pp. 177–181. DOI: 10.1134/S107042721608004810.1134/S1070427216080048Search in Google Scholar

[23] Hasler, D.; & Süsstrunk, S.: SPIE Electronic Imaging Human Vision and Electronic Imaging VIII. 5007 (2003), pp. 87–96. DOI: 10.1117/12.47737810.1117/12.477378Search in Google Scholar

[24] Panetta, K.; Gao, C.; Agaian, S.: IEEE Transactions on Consumer Electronics. 59 (2013) 3, pp. 643–651. DOI: 10.1109/TCE.2013.662625110.1109/TCE.2013.6626251Search in Google Scholar

[25] Yendrikhovskij, S.; Blommaert, F. J.; Ridder, H. d.: Color and Imaging Conference (1998), pp. 140-145.Search in Google Scholar

[26] Zerman, E.; Rana, A.; Smolic, A.: IEEE International Conference on Image Processing (ICIP) (2019), pp. 3791–3795. DOI: 10.1109/ICIP.2019.880340710.1109/ICIP.2019.8803407Search in Google Scholar

[27] Amati, C.; Mitra, N. J.; Weyrich, T.: Proceedings of the Workshop on Computational Aesthetics (2014), pp. 23–31. DOI: 10.1145/2630099.263080110.1145/2630099.2630801Search in Google Scholar

[28] Unknown Author (online synonym user287001): Graph Design StackExchange (2020), https://graphicdesign.stackexchange.com/a/133423.Search in Google Scholar

[29] Hahn, M.: Electrochemical and Solid-State Letters. 11 (2008) 9, p. A151. DOI: 10.1149/1.294057310.1149/1.2940573Search in Google Scholar

Received: 2022-07-11
Accepted: 2022-07-20
Published Online: 2023-03-04
Published in Print: 2023-02-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 15.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pm-2022-1022/html?lang=en
Scroll to top button