Home Effect of Different Heat Treatments with and without Deep Cryogenic Treatment on the Morphology of Mg17Al12 Intermetallic Phase and Hardness of AZ91 Magnesium Alloy
Article
Licensed
Unlicensed Requires Authentication

Effect of Different Heat Treatments with and without Deep Cryogenic Treatment on the Morphology of Mg17Al12 Intermetallic Phase and Hardness of AZ91 Magnesium Alloy

  • M. Khosroaghayani , S. R. Alavi Zaree

    Seyed Reza Alavi Zaree was born in 1976 and studied B.Sc. of Metallurgy and Materials Science Engineering at Tehran University since 1994 to 1999 and then he studied M. Sc. of Metallurgy and Materials Science at Iran university of Science & Technology since 1999 to 2001. He got his doctorate at Institut für Werkstoffwissenschaft und Werkstofftechnologie, TU-Wien, Vienna, Austria in 2009 with a thesis on Characterization of hot extruded steel particulate composites. since 2009 to present, he is Assistant Professor in metallurgy and materials science at Shahid Chamran University of Ahvaz in Iran.

    , M. Khorasanian and M. Eskandari
Published/Copyright: January 30, 2022
Become an author with De Gruyter Brill

Abstract

In this study, dissolution of the Mg17Al12 phase carried out at 413 °C within 24 h and process followed by cooling the samples in different media with various cooling rates. Some samples were directly aged and others were held in liquid nitrogen for 24 h prior to aging. In this study for investigation of microstructure, the specimens were studied using a Meiji optical microscope and Scanning Electron Microscopy and Energy Dispersive Spectroscopy analysis was used to characterize the chemical composition of the phases. Results showed that at low cooling rates, a large amount of discontinuous precipitations were formed and by increasing the cooling rate, their amount reduced and their number and sizes decreased. Application of the deep cryogenic treatment with aging causes the dimensions of the secondary phases to be slightly larger than that of the non-deep cryogenic treatment state. Deep cryogenic treatment especially in samples with high cooling rate causes reducing the amount of Al, compared to usual stoichiometric value by formation of shrinkage stress in two stages (cooling after solutioning and deep cryogenic treatment). Deep cryogenic treatment in all of the samples increased the hardness, compared to the case without deep cryogenic treatment, by increasing the amount of Al out of the structure and providing conditions for the formation of more continuous and discontinuous phases.

Kurzfassung

In dieser Untersuchung wurde die Mg17Al12- Phase bei 413 °C innerhalb von 24 h aufgelöst. Diesem Vorgang folgte eine Abkühlung der Proben in unterschiedlichen Medien und bei unterschiedlichen Abkühlgeschwindigkeiten. Einige Proben wurden direkt ausgelagert, andere wiederum wurden vor dem Auslagern 24 h lang in flüssigen Stickstoff getaucht. In dieser Arbeit zur Gefügeuntersuchung wurden die Proben mithilfe eines Meiji-Lichtmikroskops und Rasterelektronenmikroskopie betrachtet. Zur Charakterisierung der chemischen Zusammensetzung wurde eine Analyse mittels energiedispersiver Spektroskopie durchgeführt. Die Ergebnisse zeigten, dass sich bei geringen Abkühlgeschwindigkeiten eine große Menge diskontinuierlicher Ausscheidungen bildet. Bei einer Erhöhung der Abkühlgeschwindigkeit kam es zu einer Abnahme ihrer Menge bzw. Anzahl sowie der Größen. Die Anwendung der Tiefsttemperaturbehandlung, kombiniert mit einer Auslagerung, führt dazu, dass die Abmessungen der Sekundärphasen etwas größer ausfallen als es im nicht tiefsttemperaturbehandelten Zustand der Fall wäre. Verglichen mit dem üblichen stöchiometrischen Wert führt eine Tiefsttemperaturbehandlung von Proben, insbesondere bei hoher Abkühlgeschwindigkeit, durch das Auftreten von Schrumpfspannung im Rahmen zweier Schritte (Abkühlen nach dem Lösungsglühen und Tiefsttemperaturbehandlung) zu einem Rückgang der Al-Menge. Im Vergleich zum Zustand ohne diese Behandlung führte die Tiefsttemperaturbehandlung in allen Proben durch eine Zunahme der Menge an aus dem Gefüge stammendem Al zu einem Härteanstieg und schafft die Bedingungen für die Bildung weiterer kontinuierlicher und diskontinuierlicher Phasen.

About the author

S. R. Alavi Zaree

Seyed Reza Alavi Zaree was born in 1976 and studied B.Sc. of Metallurgy and Materials Science Engineering at Tehran University since 1994 to 1999 and then he studied M. Sc. of Metallurgy and Materials Science at Iran university of Science & Technology since 1999 to 2001. He got his doctorate at Institut für Werkstoffwissenschaft und Werkstofftechnologie, TU-Wien, Vienna, Austria in 2009 with a thesis on Characterization of hot extruded steel particulate composites. since 2009 to present, he is Assistant Professor in metallurgy and materials science at Shahid Chamran University of Ahvaz in Iran.

5

5 Acknowledgements

This research was funded by Shahid Chamran University of Ahvaz, Iran (Grant Numbers: SCU.EM98.236 and SCU. EM98.276). The authors would like to thank Ms. Bidarvandi for her efforts in this research.

5

5 Danksagung

Diese Forschungsarbeit wurde von der Shahid Chamran Universität von Ahvaz, Iran (Förderkennzeichen: SCU.EM98.236 und SCU.EM98.276) finanziert. Die Autoren möchten sich bei Frau Bidarvandi für ihre Bemühungen im Rahmen dieser Forschungsarbeit bedanken.

References / Literatur

[1] Kaya, A.A.; Pekguleryuz, M.O.; Kainer, K.: Fundamentals of magnesium alloy metallurgy (Woodhead Publishin, 2013). DOI: 10.1533/978085709729310.1533/9780857097293Search in Google Scholar

[2] Bamberger, M.; Dehm, G.: Annu. Rev. Mater. Res. 38, 505 (2008). DOI: 10.1146/annurev.matsci.020408.13371710.1146/annurev.matsci.020408.133717Search in Google Scholar

[3] Hutchinson, C.R.; Nie, J.F.; Gorsse, S.: Metallur. Mat. Trans. A. 36, 2093 (2005). DOI: 10.1007/s11661-005-0330-x10.1007/s11661-005-0330-xSearch in Google Scholar

[4] Friedrich, H.E.; Mordike, B.L.: Technology of magnesium: Metallurgy, Design Data, Applications (Springer Berlin Heidelberg, 2006).Search in Google Scholar

[5] Czerwinski, F.: Magnesium Alloys: Design, Processing and Properties (BOD Books on Demand, 2011). DOI: 10.5772/56010.5772/560Search in Google Scholar

[6] Song, B. et al: J. of Mater. 12, 2507 (2019).10.3390/ma12162507Search in Google Scholar

[7] Braszczyńska-Malik, K.: Journal of Alloys and Compounds 47 477, 870 (2009). DOI: 10.1016/j.jallcom.2008.11.00810.1016/j.jallcom.2008.11.008Search in Google Scholar

[8] Porter, D.A.; Easterling, K.E.; Sherif, M.: Phase Transformations in Metals and Alloys (CRC press, 2009). DOI: 10.1201/978143988357010.1201/9781439883570Search in Google Scholar

[9] Kim, S-H.; Un Lee, J.; Jin Kim, Y.; Ho Bae, J.; Sun You, B.; Hyuk Park, S.: J. Mater. Sci. Technol. 34, 265 (2018).10.1016/j.jmst.2017.11.019Search in Google Scholar

[10] Nie, J.-F.: Metall. Mater. Transac. A. 43, 3891 (2012). DOI: 10.1007/s11661-012-1217-210.1007/s11661-012-1217-2Search in Google Scholar

[11] Nie, J.-F.: Scrip. Mater. 48, 1009 (2003). DOI: 10.1016/S1359-6462(02)00497-910.1016/S1359-6462(02)00497-9Search in Google Scholar

[12] Semboshi, S.; Sato, M.; Kaneno, Y.; Iwase, A.; Takasugi, T.: j. of Mater., 10, 4 (2017). DOI: 10.3390/ma1004041510.3390/ma10040415Search in Google Scholar PubMed PubMed Central

[13] Dolata, A.J.; Dyzia, M.: Light Metals and their Alloys II, technology, Microstructure and properties (Technology & Engineering, 2012).10.4028/b-z4FG66Search in Google Scholar

[14] Amini, K.; Akhbarizadeh, A.; Javadpour, S.: Mat. & Des. (1980-2015). 54, 154 (2014). DOI: 10.1016/j.matdes.2013.07.05110.1016/j.matdes.2013.07.051Search in Google Scholar

[15] Kalsi, N.S.; Sehgal, R.; Sharma, V.S.: Mater. Manu. Proc. 25, 1077 (2010). DOI: 10.1080/1042691100372086210.1080/10426911003720862Search in Google Scholar

[16] Akhbarizadeh, A.; Javadpour, S.; Amini, K.: Mat. & Des. 45, 103 (2013). DOI: 10.1016/j.matdes.2012.08.01210.1016/j.matdes.2012.08.012Search in Google Scholar

[17] Huang, Y.; Li, Y.; Ren, X. et al., Phys. Metals Metallogr. 120, 914 (2019). DOI: 10.1134/S0031918X1907011110.1134/S0031918X19070111Search in Google Scholar

[18] Liang, W.-J. et al., Mater. sci. and tech., 23, 395 (2007). DOI: 10.1179/174328407X16124010.1179/174328407X161240Search in Google Scholar

[19] Yong, J.; Ding, C.; Qiong, J.: Met. Sci. and Heat Treat. 53, 589 (2012). DOI: 10.1007/s11041-012-9439-x10.1007/s11041-012-9439-xSearch in Google Scholar

[20] Braszczyńska, M.; Kataryna, N.: Magnes. Alloy. Des. Process. Prop., 97 (2011).Search in Google Scholar

[21] Kiełbus, A.; Jarosz, R.; Gryc, A.: J. of Crystals, 10, 536 (2020). DOI: 10.3390/cryst1006053610.3390/cryst10060536Search in Google Scholar

[22] Karaluk, E.: J. Magnes. Alloy. 7, 355 (2019).10.1016/j.jma.2019.05.001Search in Google Scholar

[23] Zeng, R.: Precipitation hardening in AZ91 magnesium alloy (Doctoral dissertation, University of Birmingham, 2013).Search in Google Scholar

[24] Robson, J.D.: Mater. Sci. Foru. 783, 461 (2014). DOI: 10.4028/www.scientific.net/MSF.783-786.46110.4028/www.scientific.net/MSF.783-786.461Search in Google Scholar

[25] Mónica, P.; Bravo, P.M.; Cárdenas, D.: J. of Mat. Proc. Tech. 239, 297 (2017). DOI: 10.1016/j.jmatprotec.2016.08.02910.1016/j.jmatprotec.2016.08.029Search in Google Scholar

[26] Li, G.-R. et al.: Inter. J. of Miner. Metal. Mat. 20, 896 (2013).10.1007/s12613-013-0812-6Search in Google Scholar

[27] Dieringa, H.: J. of Metals 7, 38 (2017). DOI: 10.3390/met702003810.3390/met7020038Search in Google Scholar

Received: 2020-02-08
Accepted: 2021-10-12
Published Online: 2022-01-30

© 2022 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 11.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pm-2022-0002/html?lang=en
Scroll to top button