Home The effect of shielding gas on weldability of the AISI 420 martensitic stainless steel
Article
Licensed
Unlicensed Requires Authentication

The effect of shielding gas on weldability of the AISI 420 martensitic stainless steel

  • İ. Açar

    PhD, studied at Metallurgical and Materials Engineering, Faculty of Technology, Gazi University, His research interest is in materials science, mainly stainless steels and welding.

    , B. Çevik

    PhD, Assoc. Prof. Dr., Mechanical Engineering, has been working at Department of Biosystems Engineering of Düzce University. His research interest is in materials science, mainly machine materials and manufacturing technologies, steels and aluminum alloys welding.

    and B. Gülenç
Published/Copyright: February 3, 2023
Become an author with De Gruyter Brill

Abstract

Most of weld defects occurring in the welding of martensitic stainless steels are caused by the presence of hydrogen. Thus, the effects of hydrogen in the weld zone need to be well-understood to estimate the quality and service life of martensitic stainless steel joints. In the present study, AISI 420 martensitic stainless steel materials were welded by using different combinations of shielding gas via the gas metal arc welding (GMAW) method. It is known that shielding gases also play a critical role in heat input, cooling rate, microstructure of weld seam, weld defects, and mechanical properties besides drying of molten weld pool. Thus, it is important to investigate the effects of shielding gases and gas combinations on the welding of martensitic stainless steels in the welding process. In the present study, 100 % Ar, 97 % Ar + 3 % H2 and 93 % Ar + 7 % H2 gas combinations were employed. The welded sheets were subjected to the metallographic examination as well as hardness, tensile, and bending tests. The effect of the tests and the combination of shielding gas on the mechanical and microstructural properties of AISI 420 stainless steel was investigated. The results indicated that a noticeable grain coarsening occurred in the microstructure of the weld metal and heat affected zones (HAZs) after the addition of H2 into the Ar gas during the welding process. The highest tensile strength was obtained from the joints with 100 % Ar gas. As a result of the tensile test, rupture occurred in the base metal-HAZ transition zone in all the welded samples. In the joints welded with 97 % Ar + 3 % H2 and 93 % Ar + 7 % H2 gas combinations, fracture occurred in the base metal-HAZ transition zone during the bending test.

Kurzfassung

Die meisten beim Schweißen von rostfreien martensitischen Stählen auftretenden Schweißfehler sind auf das Vorhandensein von Wasserstoff zurückzuführen. Um die Qualität und die Lebensdauer von Verbindungen aus rostfreiem martensitischem Stahl einschätzen zu können, muss daher umfassend verstanden werden, wie sich Wasserstoff auf die Schweißzone auswirkt. Im Rahmen der vorliegenden Arbeit wurden Werkstoffe aus rostfreiem martensitischem Stahl AISI 420 mit unterschiedlichen Schutzgaskombinationen mittels Metallschutzgasschweißen (Gas Metal Arc Welding, GMAW) gefügt. Bekannt ist, dass sich, neben einem Austrocknen des flüssigen Schweißbads, auch Schutzgase maßgeblich auf den Wärmeeintrag, die Abkühlgeschwindigkeit, das Gefüge der Schweißnaht, Schweißfehler und die mechanischen Eigenschaften auswirken. Es ist demnach wichtig, die Auswirkungen von Schutzgasen und Gasgemischen beim Schweißen von rostfreien martensitischen Stählen zu untersuchen. Im Rahmen der vorliegenden Untersuchung wurde mit 100 % Ar-Gas und den Gemischen 97 % Ar + 3 % H2 und 93 % Ar + 7 % H2 gearbeitet. Die verschweißten Bleche wurden metallographisch untersucht und sowohl Zug- und Biegeversuchen als auch Härteprüfungen unterzogen. Basierend auf diesen Untersuchungen und Tests wurde ermittelt, wie sich die Schutzgaszusammensetzungen auf die mechanischen und mikrostrukturellen Eigenschaften von rostfreiem Stahl AISI 420 auswirken. Die Ergebnisse zeigten, dass es bei einer Zugabe von H2 zum Ar-Gas während des Schweißvorgangs im Gefüge des Schweißguts und der WEZs zu einer deutlichen Kornvergröberung kommt. Die höchste Zugfestigkeit wurde bei Schweißnähten erreicht, für deren Fertigung 100 % Ar-Gas verwendet wurde. Im Rahmen des Zugversuchs kam es bei allen Schweißproben zum Bruch im Übergangsbereich von Grundmetall und WEZ. In den mit den Gaskombinationen 97 % Ar + 3 % H2 und 93 % Ar + 7 % H2 geschweißten Nähten kam es während des Biegeversuchs im Übergangsbereich von Grundmetall und WEZ zum Bruch.

About the authors

İ. Açar

PhD, studied at Metallurgical and Materials Engineering, Faculty of Technology, Gazi University, His research interest is in materials science, mainly stainless steels and welding.

Assoc. Prof. Dr. B. Çevik

PhD, Assoc. Prof. Dr., Mechanical Engineering, has been working at Department of Biosystems Engineering of Düzce University. His research interest is in materials science, mainly machine materials and manufacturing technologies, steels and aluminum alloys welding.

References / Literatur

[1] Derazkola, H. A.; García Gil, E.; Murillo-Marrodán, A.; Méresse, D.: Metals 11, (2021), p. 572. DOI: 10.3390/met1104057210.3390/met11040572Search in Google Scholar

[2] Kim, M. S.; Park, K. S.; Kim, D. I.; Suh, J. Y.; Shim, J. H.; Hong, K. T.; Choi, S. H.: Mater. Sci. Eng. A 801 (2021), p. 140416. DOI: 10.1016/j.msea.2020.14041610.1016/j.msea.2020.140416Search in Google Scholar

[3] Manilova, E.: Microsc. Microanal. 12 (2006), pp. 1612–1613. DOI: 10.1017/S143192760606478610.1017/S1431927606064786Search in Google Scholar

[4] Zhang, H.; Wei, Z.; Xie, F.; Sun, B.: Materials 12 (2019), p. 1290. DOI: 10.3390/ma12081290.10.3390/ma12081290Search in Google Scholar PubMed PubMed Central

[5] Ben Lenda, O.; Tara, A.; Lazar, F.; Jbara, O.; Hadjadj, A.; Saad, E.: Strength Mater. 52 (2020), pp. 71–80. DOI: 10.1007/s11223-020-00151-410.1007/s11223-020-00151-4Search in Google Scholar

[6] Ren, F.; Chen, F.; Chen, J.; Tang, X.: J. Manuf. Process. 31 (2018), pp. 640–649. DOI: 10.1016/j.jmapro.2017.12.01510.1016/j.jmapro.2017.12.015Search in Google Scholar

[7] Seifert, M.; Siebert, S.; Huth, S.; Theisen, W.; Berns, H.: Steel Res. Int. 86 (2015), pp. 1508–1516. DOI: 10.1002/srin.20140050310.1002/srin.201400503Search in Google Scholar

[8] Aghajani, H.; Pouranvari, M.: Science and Technology of Welding and Joining, 24 (2019), pp. 185–192. DOI: 10.1080/13621718.2018.148306510.1080/13621718.2018.1483065Search in Google Scholar

[9] Alizadeh-Sh, M.; Marashi, S. P. H.; Pouranvari, M.: Science and Technology of Welding and Joining, 19 (2014), pp. 595–602. DOI: 10.1179/1362171814Y.000000023010.1179/1362171814Y.0000000230Search in Google Scholar

[10] Sree Arravind, M.; Kumar, S. R.; Kumaran, S. S.; Venkateswarlu, D.: Materials Science Forum 969 (2019), pp. 601–606. DOI: 10.4028/www.scientific.net MSF.969.60110.4028/www.scientific.net/MSF.969.601Search in Google Scholar

[11] Sebastián, Z.; Estela, S.; Hernán, S.: Journal of Iron and Steel Research International 20 (2013), pp. 124–132. DOI: 10.1016/S1006-706X(13)60225-310.1016/S1006-706X(13)60225-3Search in Google Scholar

[12] Taban, E.; Deleu, E.; Dhooge, A.; Kaluc, E.: Science and Technology of Welding and Joining 13 (2008), pp. 327–334. DOI: 10.1179/174329307X21371010.1179/174329307X213710Search in Google Scholar

[13] Teker, T.; Kurşun, T.: Materials and Manufacturing Processes 26 (2011), pp. 926–932. DOI: 10.1080/10426914.2011.55190910.1080/10426914.2011.551909Search in Google Scholar

[14] Taban, E.; Dhooge, A.; Kaluc, E.: Materials and Manufacturing Processes 24 (2009), pp. 649–656. DOI: 10.1080/1042691090276915210.1080/10426910902769152Search in Google Scholar

[15] Hareer, S.; Ali, H.; Jamal, J.: Anbar Journal of Engineering Sciences, 8 (2020), pp. 94–100. DOI: 10.37649/aengs.2020.17127910.37649/aengs.2020.171279Search in Google Scholar

[16] Taban, E.; Deleu, E.; Dhooge, A.; Kaluc, E.: Kovove Materialy 45 (2007), pp. 67–74.Search in Google Scholar

[17] Çevik, B.; Koç, M.: Kovove Materialy 57 (2019), pp. 307–316. DOI: 10.4149/km_2019_5_30710.4149/km_2019_5_307Search in Google Scholar

[18] Cevik, B.: Journal of Polytechnic, 20 (2017), pp. 675–680. DOI: 10.2339/politeknik.33939710.2339/politeknik.339397Search in Google Scholar

[19] Sathiya, P.; Mishra, M. K.; Shanmugarajan, B.: Materials & Design 33 (2012), pp. 203–212. DOI: 10.1016/j.matdes.2011.06.06510.1016/j.matdes.2011.06.065Search in Google Scholar

[20] Açar, İ.; Gülenç, B.: Materials Testing, 63 (2021), pp. 97–101. DOI: 10.1515/mt-2020-001410.1515/mt-2020-0014Search in Google Scholar

[21] Çevik, B.: Materials Testing, 60 (2018), pp. 863–868. DOI: 10.3139/120.11122510.3139/120.111225Search in Google Scholar

[22] Cevik, B.: Journal of Polytechnic, 21 (2018), pp. 489–495. DOI: 10.2339/politeknik.38964210.2339/politeknik.389642Search in Google Scholar

[23] Katherasan, D.; Sathiya, P.; Raja, A.: Materials & Design 45 (2013), pp. 43–51. DOI: 10.1016/j.matdes.2012.09.01210.1016/j.matdes.2012.09.012Search in Google Scholar

[24] Anand, N. R.; Chavan, V. M.; Sawant, N. K.: International Journal Mechanical Engineering and Robotics Research 2 (2013), pp. 253–262.Search in Google Scholar

[25] Bermejo, M. V.; Karlsson, L.; Svensson, L. E.; Hurtig, K.; Rasmuson, H.; Frodigh, M.; Bengtsson, P.: Welding in the World 59 (2015), pp. 239–249. DOI: 10.1007/s40194-014-0199-710.1007/s40194-014-0199-7Search in Google Scholar

[26] Zhang, X. Y.; Zha, X. Q.; Gao, L. Q.; Hei, P. H.; Ren, Y. F.: Materials, 14 (2021), p. 2671. DOI: 10.3390/ma1410267110.3390/ma14102671Search in Google Scholar PubMed PubMed Central

[27] Filho, D. F.; Ferraresi, V. A.; Scotti, A.: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 224 (2010), pp. 951–961. DOI: 10.1243/09544054JEM163110.1243/09544054JEM1631Search in Google Scholar

[28] Anttila, S.; Porter, D. A.: Welding in the World 58 (2014), pp. 805–817. DOI: 10.1007/s40194-014-0160-910.1007/s40194-014-0160-9Search in Google Scholar

[29] Eliezer, D.; Nissim, Y.; Kannengießer, T.: Materials Testing 52 (2010), pp. 306–315. DOI: 10.3139/120.11013510.3139/120.110135Search in Google Scholar

[30] Padhy, G. K.; Komizo, Y. I.: Transactions of JWRI 42 (2013), pp. 39–62.Search in Google Scholar

[31] Kah, P.; Martikainen, J.: Int J Adv Manuf Technol 64 (2013), pp. 1411–1421. DOI: 10.1007/s00170-012-4111-610.1007/s00170-012-4111-6Search in Google Scholar

[32] Paquin, M.; Thibault, D.; Bocher, P.; Lévesque, J. B.; Verreman, Y.; Shinozaki, K.: Welding in the World 59 (2015), pp. 521–532. DOI: 10.1007/s40194-014-0199-710.1007/s40194-014-0199-7Search in Google Scholar

[33] Prabakaran, T.; Prabhakar, M.; Sathiya, P.: Surface Review and Letters 24 (2017), p. 1750069. DOI: 10.1142/S0218625X1750069X10.1142/S0218625X1750069XSearch in Google Scholar

Received: 2021-10-13
Accepted: 2022-06-15
Published Online: 2023-02-03
Published in Print: 2023-01-30

© 2023 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 3.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pm-2021-1000/html
Scroll to top button