Home Metallography and Biomimetics – Or New Surfaces Without Chemistry?
Article
Licensed
Unlicensed Requires Authentication

Metallography and Biomimetics – Or New Surfaces Without Chemistry?

  • T. Fox

    Tobias Fox After completing his bachelor's degree at Saarland University, Tobias Fox received the "Deutschlandstipendium" and studied the international master's program "Advanced Materials Science and Engineering" (AMASE) at Saarland University and the UPC in Barcelona. Since 2019 he is a PhD student at the Chair of Functional Materials at UdS, where he is working on the production of antibacterial surfaces by laser structuring.

    EMAIL logo
    , S. M. Lößlein , D. W. Müller and F. Mücklich
Published/Copyright: July 27, 2021
Become an author with De Gruyter Brill

Abstract

Fingerprints, a butterfly’s wings, or a lotus leaf: when it comes to surfaces, there is no such thing as coincidence in animated nature. Based on their surfaces, animals and plants control their wettability, their swimming resistance, their appearance, and much more. Evolution has optimized these surfaces and developed a microstructure that fits every need. It is all the more astonishing that, with regard to technical surfaces, man confines himself to random roughnesses or “smooth” surfaces. It is surely not a problem of a lack of incentives: structured surfaces have already provided evidence of optimizing friction and wear [1, 2, 3, 4], improving electrical contacts [5, 6], making implants biocompatible [7, 8], keeping away harmful bacteria [9], and much more. How come we continue counting on grinding, polishing, sandblasting, or etching? As so often, the problem can be found in economic cost effectiveness. It is possible to produce interesting structures such as those of the feather in Fig. 1. However, generating fine structures in the micro and nanometer range usually requires precise processing techniques. This is complex, time-consuming, and cannot readily be integrated into a manufacturing process. Things are different with Direct Laser Interference Patterning, DLIP) [10, 11]. This method makes use of the strong interference pattern of overlapped laser beams as a “stamp” to provide an entire surface area with dots, lines, or other patterns – in one shot. It thus saves time, allows for patterning speeds of up to 1 m2/min and does it without an elaborate pre- or post-treatment [10, 12]. The following article intends to outline how the method works, which structures can be generated, and how the complex multi-scale structures that nature developed over millions of years can be replicated in only one step.

Kurzfassung

Ob Fingerabdruck, Schmetterlingsflügel oder Lotusblatt, in der belebten Natur gibt es keine zufälligen Oberflächen. Über ihre Oberflächen steuern Tiere und Pflanzen ihre Benetzbarkeit, ihren Schwimmwiderstand, ihr Aussehen und vieles mehr. Die Evolution hat diese Oberflächen optimiert und für jeden Bedarf eine passende Mikrostruktur entwickelt. Umso erstaunlicher ist es, dass der Mensch sich bei seinen technischen Oberflächen auf zufällige Rauigkeiten oder „glatte“ Oberflächen beschränkt. Mangelnder Anreiz ist sicherlich nicht das Problem: Strukturierte Oberflächen haben bereits bewiesen, dass sie Reibung und Verschleiß optimieren [1, 2, 3, 4], elektrische Kontakte verbessern [5, 6], Implantate biokompatibel machen [7, 8], gefährliche Bakterien abhalten [9] und vieles mehr. Woran liegt es dann, dass wir uns weiterhin auf Schleifen, Polieren, Sandstrahlen oder Ätzen verlassen? Das Problem liegt wie so oft in der Wirtschaftlichkeit. Interessante Strukturen, wie die der Feder in Bild 1 herzustellen ist möglich, benötigt für gewöhnlich allerdings präzise Bearbeitungstechniken, um die feinen Strukturen im Mikro- und Nanometerbereich erzeugen zu können. Das ist aufwendig, kostet Zeit und ist nicht ohne Weiteres in einen Fertigungsprozess integrierbar. Die direkte Laserinterferenzstrukturierung (Direct Laser Interference Patterning: DLIP) ändert das [10, 11]. Die Methode nutzt das starke Interferenzmuster überlagerter Laserstrahlen als „Stempel“, um mit einem Schuss gleich eine ganze Fläche mit Punkten, Linien oder anderen Mustern zu versehen. Das spart Zeit und ermöglicht Strukturierungsgeschwindigkeiten von bis zu 1m2/min ohne aufwendige Vor- oder Nachbehandlung [10, 12]. Der folgende Artikel soll erläutern, wie die Methode funktioniert, welche Strukturen erzeugt werden können und wie die komplizierten mehrskaligen Strukturen, die die Natur über Jahrmillionen entwickelt hat in nur einem Schritt nachgebaut werden können.

About the author

T. Fox

Tobias Fox After completing his bachelor's degree at Saarland University, Tobias Fox received the "Deutschlandstipendium" and studied the international master's program "Advanced Materials Science and Engineering" (AMASE) at Saarland University and the UPC in Barcelona. Since 2019 he is a PhD student at the Chair of Functional Materials at UdS, where he is working on the production of antibacterial surfaces by laser structuring.

Acknowledgement

The authors would like to thank for the financial support for the project “ZuMat” (supported by the Saarland State Chancellery with resources from the European Fund for Regional Development (EFRE)) and for the project „Pulsatec“ (supported as part of the EFRE program Interreg Greater Region). Parts of this work were financially supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) under the projects “Kontrollierte bakterielle Interaktion zur Steigerung der antimikrobiellen Effizienz von Kupfer Oberflächen” (Controlled bacterial interaction for enhancing the antimicrobial efficiency of copper surfaces) (project number 415956642) and “Einfluss von Oberflächentopograpie and -chemie auf das Benetzungsverhalten lasterstrukturierter, metallischer Oberflächen” (Impact of the surface topography and chemistry on the wetting behavior of laser structured metallic surfaces) (project number 435334669).

Danksagung

Die Autoren bedanken sich für die Förderung im Projekt ZuMat (gefördert von der Staatskanzlei des Saarlandes aus Mitteln des Europäischen Fonds für Regionale Entwicklung (EFRE) sowie im Projekt Pulsatec (gefördert im EFRE-Programm Interreg Großregion). Teile dieser Arbeit wurden von der Deutschen Forschungsgemeinschaft (DFG) im Rahmen der Projekte „Kontrollierte bakterielle Interaktion zur Steigerung der antimikrobiellen Effizienz von Kupfer Oberflächen“ (Projektnummer 415956642) und „Einfluss von Oberflächentopograpie und -chemie auf das Benetzungsverhalten lasterstrukturierter, metallischer Oberflächen“ (Projektnummer 435334669) gefördert.

References / Literatur

[1] Rosenkranz, A., Hans, M., Gachot, C., Thome, A., Bonk, S.: Direct Laser Interference Patterning : Tailoring of Contact Area for Frictional and Antibacterial Properties. Lubricants 4, (2016). DOI: 10.3390/lubricants401000210.3390/lubricants4010002Search in Google Scholar

[2] Gachot, C.: Laser Interference Metallurgy of Metallic Surfaces for Tribological Applications. (2012).Search in Google Scholar

[3] Trinh, K. E. et al.: Topographical and Microstructural Effects of Laser Surface Texturing on Tin-Coated Copper Electrical Connectors under Load Cycling. IEEE Trans. Components, Packag. Manuf. Technol. 7, 582–590 (2017). DOI: 10.1109/TCPMT.2017.265922410.1109/TCPMT.2017.2659224Search in Google Scholar

[4] Grützmacher, P. G. et al.: From lab to application – Improved frictional performance of journal bearings induced by single- and multi-scale surface patterns. Tribol. Int. 127, 500–508 (2018). DOI: 10.1016/j.triboint.2018.06.03610.1016/j.triboint.2018.06.036Search in Google Scholar

[5] Trinh, K., Mücklich, F., Ramos-Moore, E.: The role of microstructure and surface topography in the electrical behavior of Sn-coated Cu contacts. ICEC 2014 27th Int. Conf. Electr. Contacts (2014).Search in Google Scholar

[6] Leidner, M. et al.: Patent DE102016214693B420 180509 (2016).Search in Google Scholar

[7] Zwahr, C. et al.: Ultrashort Pulsed Laser Surface Patterning of Titanium to Improve Osseointegration of Dental Implants. Adv. Eng. Mater. 21, 1–11 (2019). DOI: 10.1002/adem.20190063910.1002/adem.201900639Search in Google Scholar

[8] Schieber, R. et al.: Direct Laser Interference Patterning of CoCr Alloy Surfaces to Control Endothelial Cell and Platelet Response for Cardiovascular Applications. Adv. Healthc. Mater. 6, 1–14 (2017). DOI: 10.1002/adhm.20170032710.1002/adhm.201700327Search in Google Scholar PubMed

[9] Zwahr, C., Helbig, R., Werner, C., Lasagni, A. F.: Fabrication of multifunctional titanium surfaces by producing hierarchical surface patterns using laser based ablation methods. Sci. Rep. 9, 1–13 (2019). DOI: 10.1038/s41598-019-43055-310.1038/s41598-019-43055-3Search in Google Scholar PubMed PubMed Central

[10] Surfunction. Homepage-Surfunction. (2021). Available at: https://surfunction.com/technologie/laserstrukturierung/Search in Google Scholar

[11] Lasagni, A. F. et al.: Direct laser interference patterning, 20 years of development: from the basics to industrial applications. Laser-based Micro-Nanoprocessing XI. DOI: 10.1117/12.225259510.1117/12.2252595Search in Google Scholar

[12] Lang, V., Roch, T., Lasagni, A. F.: High-Speed Surface Structuring of Polycarbonate Using Direct Laser Interference Patterning: Toward 1 m2/min Fabrication Speed Barrier. Adv. Eng. Mater. 18, 1342–1348 (2016). DOI: 10.1002/adem.20160017310.1002/adem.201600173Search in Google Scholar

[13] Mücklich, F., Lasagni, A., Daniel, C.: Laser Interference Metallurgy – using interference as a tool for micro/nano structuring. International Journal of Material Research, 97, 1337 (2006). DOI: 10.3139/146.10137510.3139/146.101375Search in Google Scholar

[14] Zwahr, C., Voisiat, B., Welle, A., Günther, D.: One-Step Fabrication of Pillar and Crater-Like Structures on Titanium Using Direct Laser Interference Patterning. 1800160, 1–9 (2018). DOI: 10.1002/adem.20180016010.1002/adem.201800160Search in Google Scholar

[15] Alamri, S. et al.: Fabrication of inclined nonsymmetrical periodic micro-structures using Direct Laser Interference Patterning. Sci. Rep. 9, 1–12 (2019). DOI: 10.1038/s41598-019-41902-x10.1038/s41598-019-41902-xSearch in Google Scholar PubMed PubMed Central

[16] Lasagni, A. F.: Advanced design of periodical structures by laser interference metallurgy in the micro / nano scale on macroscopic areas. (2006).Search in Google Scholar

[17] Hügel, H., Graf, T.: Laser in der Fertigung – Strahlquellen, Systeme, Fertigungsverfahren. (2009). DOI: 10.1007/978-3-8348-9570-710.1007/978-3-8348-9570-7Search in Google Scholar

[18] Hartmann, C. A.: Laserabtrag mit zeitlicher Modulation der Energiedeposition. (2013).Search in Google Scholar

[19] Gamaly, E. G., Rode, A. V., Luther-Davies, B., Tikhonchuk, V. T.: Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics. Phys. Plasmas 9, 949 (2002). DOI: 10.1063/1.144755510.1063/1.1447555Search in Google Scholar

[20] Rethfeld, B., Ivanov, D. S., Garcia, M. E.: Modelling ultrafast laser ablation. J. Phys. D. Appl. Phys. 193001 (2017). DOI: 10.1088/1361-6463/50/19/19300110.1088/1361-6463/50/19/193001Search in Google Scholar

[21] Müller, D. W., Fox, T., Grützmacher, P. G., Suarez, S.: Applying Ultrashort Pulsed Direct Laser Interference Patterning for Functional Surfaces. 1–14 (2020). DOI: 10.1038/s41598-020-60592-410.1038/s41598-020-60592-4Search in Google Scholar PubMed PubMed Central

[22] Grützmacher, P. G. et al.: Lubricant migration on stainless steel induced by bio-inspired multi-scale surface patterns. Mater. Des. 150, 55–63 (2018). DOI: 10.1016/j.matdes.2018.04.03510.1016/j.matdes.2018.04.035Search in Google Scholar

[23] Ding, L. et al.: Butterfly wing architecture assisted CdS / Au / TiO 2 Z-scheme type photocatalytic water splitting. 8, 2–11 (2013). DOI: 10.1016/j.ijhydene.2013.04.09310.1016/j.ijhydene.2013.04.093Search in Google Scholar

[24] Lasagni, A., Kunze, T., Bieda, M., Benke, D.: Bringing the Direct Laser Interference Patterning Method to Industry: a One Tool-Complete Solution for Surface Functionalization. J. Laser Micro / Nanoeng. (2015). DOI: 10.2961/jlmn.2015.03.001910.2961/jlmn.2015.03.0019Search in Google Scholar

[25] Alamri, S. et al.: On the interplay of DLIP and LIPSS upon ultra-short laser pulse irradiation. Materials (Basel). 12, 1–9 (2019). DOI: 10.3390/ma1207101810.3390/ma12071018Search in Google Scholar PubMed PubMed Central

Received: 2021-05-03
Accepted: 2021-05-06
Published Online: 2021-07-27
Published in Print: 2021-07-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pm-2021-0034/html
Scroll to top button