Home Microstructure, Mechanical and Corrosion Properties of UNS 32205 Duplex Stainless Steel Weldment Joints by Multipass FCAW
Article
Licensed
Unlicensed Requires Authentication

Microstructure, Mechanical and Corrosion Properties of UNS 32205 Duplex Stainless Steel Weldment Joints by Multipass FCAW

  • A. Kisasoz

    born 1985, graduated with Bachelor, Master and PhD degrees in Metallurgical and Materials Engineering from Yildiz Technical University, Istanbul, Turkey in 2008, 2010 and 2015, respectively. He is working as an associate professor at Kirklareli University in Faculty of Aeronautics and Space Sciences. His main research areas are physical metallurgy and welding metallurgy.

    , M. Tümer

    born 1978, graduated with Bachelor from Zonguldak Karaelmas University and MSc and PhD from Sakarya University. After leaving his job at Ministry of Education in 2007, he continued his professional life in Yardimci Group, Turker Group and Gedik Holding. He has been working as an assistant professor at Kocaeli University in Uzunçiftlik Nuh Çimento Vocational School of Higher Education. He holds international welding engineer and non-destructive testing expert titles.

    EMAIL logo
    and A. Karaaslan
Published/Copyright: June 18, 2021
Become an author with De Gruyter Brill

Abstract

In this study, the effect of multipass welding on the microstructure, mechanical and corrosion properties of the UNS 32205 duplex stainless steels (DSS) is investigated. The UNS 32205 DSS is welded in 3 or 7 passes by flux-cored arc welding (FCAW) using E2209 T1 – 1/4 flux cored wire. The weldments are characterized by light optical microscopy (LOM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Feritscope analysis, Charpy impact tests and electrochemical corrosion tests. The results suggest that the multipass FCAW process induces the formation of γ2 in the weld seam. The mechanical and the corrosion properties of the weld joints are affected by the heat input variation and the phase transformations. Especially, the formation of the γ2 in the weld seam results in a decrease in the corrosion resistance of the joint samples.

Kurzfassung

Diese Arbeit untersucht die Auswirkungen des Mehrlagenschweißens auf das Gefüge sowie die mechanischen und Korrosionseigenschaften von rostfreien UNS 32205-Duplexstählen (Duplex Stainless Steel, DSS). DSS UNS 32205 wird 3- bzw. 7-lagig mittels Fülldraht-Lichtbogenschweißen (Flux Cored Arc Welding, FCAW) unter Verwendung von Fülldraht E2209 T1 – 1/4 verschweißt. Die Schweißverbindungen werden mittels lichtoptischer Mikroskopie (LOM), Rasterelektronenmikroskopie (REM), energiedispersiver Spektroskopie (EDX), Analyse mit einem Gerät zur Messung des Ferritgehalts, anhand von Charpy-Kerbschlagversuchen sowie elektrochemischen Korrosionstests charakterisiert. Die Ergebnisse lassen erkennen, dass das FCAW-Mehrlagenschweißen zur Bildung von γ2 in der Schweißnaht führt. Sowohl Schwankungen beim Wärmeeintrag als auch die Phasenumwandlungen wirken sich auf die mechanischen und Korrosionseigenschaften der Schweißverbindungen aus. Insbesondere die Bildung von γ2 in der Schweißnaht führt zu einer Verringerung der Korrosionsbeständigkeit der Fügeproben.

About the authors

A. Kisasoz

born 1985, graduated with Bachelor, Master and PhD degrees in Metallurgical and Materials Engineering from Yildiz Technical University, Istanbul, Turkey in 2008, 2010 and 2015, respectively. He is working as an associate professor at Kirklareli University in Faculty of Aeronautics and Space Sciences. His main research areas are physical metallurgy and welding metallurgy.

M. Tümer

born 1978, graduated with Bachelor from Zonguldak Karaelmas University and MSc and PhD from Sakarya University. After leaving his job at Ministry of Education in 2007, he continued his professional life in Yardimci Group, Turker Group and Gedik Holding. He has been working as an assistant professor at Kocaeli University in Uzunçiftlik Nuh Çimento Vocational School of Higher Education. He holds international welding engineer and non-destructive testing expert titles.

References / Literatur

[1] Zhang, Z., Jing, H., Xu, L., Han, Y., Zhao, L., Lv, X., Zhang, J.: Influence of heat input in electron beam process on microstructure and properties of duplex stainless steel welded interface. Appl Surf Sci. 2018, 435: 352–366. DOI: 10.1016/j.apsusc.2017.11.12510.1016/j.apsusc.2017.11.125Search in Google Scholar

[2] Kisasoz, A., Karaaslan, A., Bayrak, Y.: Effect of etching methods in metallographic studies of duplex stainless steel 2205. Met Sci Heat Treat. 2017, 58: 704–706. DOI: 10.1007/s11041-017-0081-510.1007/s11041-017-0081-5Search in Google Scholar

[3] Ruiz, A., Fuentes-Corona, K. J., López, V. H., León, C. A.: Microstructural and ultrasonic characterization of 2101 lean duplex stainless steel welded joint. Appl Acoust. 2017, 117: 12–19. DOI: 10.1016/j.apacoust.2016.10.01810.1016/j.apacoust.2016.10.018Search in Google Scholar

[4] Chail, G., Kangas, P.: Super and hyper duplex stainless steels: structures, properties and applications. Procedia Struct Integrity. 2016, 2: 1755–1762. DOI: 10.1016/j.prostr.2016.06.22110.1016/j.prostr.2016.06.221Search in Google Scholar

[5] Gotkowski, P., Jachym, R., Fryc, H.: Duplex steel welding in the construction of railway vehicles. Weld Int. 2014, 28: 917–922. DOI: 10.1080/09507116.2012.75323010.1080/09507116.2012.753230Search in Google Scholar

[6] Kisasoz, A., Karaaslan, A.: Finite element analysis of 2205 duplex stainless steel welds. Mater Test. 2014, 56: 795–799. DOI: 10.3139/120.11063310.3139/120.110633Search in Google Scholar

[7] Múnez, C. J., Utrilla, M. V., Ureña, A., Otero, E.: Influence of the filler material on pitting corrosion in welded duplex stainless steel 2205. Weld Int. 2010, 24: 105–110. DOI: 10.1080/0950711090284336210.1080/09507110902843362Search in Google Scholar

[8] Kang, D. H., Lee, H. W.: Effect of different chromium additions on the microstructure and mechanical properties of multipass weld joint of duplex stainless steel. Metall Mater Trans A. 2012, 43: 4678–4687. DOI: 10.1007/s11661-012-1310-610.1007/s11661-012-1310-6Search in Google Scholar

[9] Luo, J., Yuan, Y., Wang, X., Yao, Z.: Double-sided single-pass submerged arc welding for 2205 duplex stainless steel. J Mater Eng Perform. 2013, 22: 2477–2486. DOI: 10.1007/s11665-013-0529-810.1007/s11665-013-0529-8Search in Google Scholar

[10] Taban, E., Kaluc, E.: Welding behaviour of duplex and superduplex stainless steels using laser and plasma arc welding processes. Weld World: 2009, 55: 48–57. DOI: 10.1007/BF0332130710.1007/BF03321307Search in Google Scholar

[11] Ramkumar, K. D., Mishra, D., Vignesh, M. K., Raj, B. G., Arivazhagan, N., Naren, S. V., Kumar, S. S.: Metallurgical and mechanical characterization of electron beam welded super-duplex stainless steel UNS 32750. J Manuf Processes. 2015, 16: 527–534. DOI: 10.1016/j.jmapro.2014.07.01110.1016/j.jmapro.2014.07.011Search in Google Scholar

[12] Karlsson, L., Arcini, H.: Low energy input welding of duplex stainless steels. Weld World. 2012, 56: 41–47. DOI: 10.1007/BF0332138010.1007/BF03321380Search in Google Scholar

[13] Zhang, Z., Jing, H., Xu, L., Han, Y., Zhao, L., Zhang, J. Influence of microstructure and elemental partitioning on pitting corrosion resistance of duplex stainless steel welding joints. App. Surf Sci. 2017, 394: 297–314. DOI: 10.1016/j.apsusc.2016.10.04710.1016/j.apsusc.2016.10.047Search in Google Scholar

[14] Yılmaz, R., Tümer, M.: Microstructural studies and impact toughness of dissimilar weldments between AISI 316 L and AH36 steels by FCAW. Int. J. Adv. Manuf. Technol. (2013). DOI: 10.1007/s00170-012-4579-010.1007/s00170-012-4579-0Search in Google Scholar

[15] Tümer, M., Yılmaz, R.: Characterization of microstructure, chemical composition, and toughness of a multipass welded joint of austenitic stainless steel AISI316L. Int J Adv Manuf Technol. 2016, 87: 2567–2579. DOI: 10.1007/s00170-016-8614-410.1007/s00170-016-8614-4Search in Google Scholar

[16] Yang, Y., Yan, B., Li, J., Wang, J.: The effect of large heat input on the microstructure and corrosion behaviour of simulated heat affected zone in 2205 duplex stainless steel. Corros Sci. 2011, 53: 3756–3763. DOI: 10.1016/j.corsci.2011.07.02210.1016/j.corsci.2011.07.022Search in Google Scholar

[17] Sieurin, H., Sandström, R.: Austenite reformation in the heat-affected zone of duplex stainless steel 2205. Mater Sci Eng A. 2006, 418: 250–256. DOI: 10.1016/j.msea.2005.11.02510.1016/j.msea.2005.11.025Search in Google Scholar

[18] Shing-Hoa, W., Chiu, P. K., Yang, J. R., Fang, J.: Gamma phase transformation in pulsed GTAW weld metal of duplex stainless steel. Mater Sci Eng A. 2016, 420: 26–33. DOI: 10.1016/j.msea.2006.01.02810.1016/j.msea.2006.01.028Search in Google Scholar

[19] Liu, H., Jin, X.: Secondary austenite morphologies in fusion zone of welded joint after postweld heat treatment with a continuous wave laser. J Mater Sci Technol. 2012, 28: 249–254. DOI: 10.1016/S1005-0302(12)60049-810.1016/S1005-0302(12)60049-8Search in Google Scholar

[20] Karlsson, L.: Welding duplex stainless steel – A review of current recommendations. Weld World. 2012, 56: 65–76. DOI: 10.1007/BF0332135110.1007/BF03321351Search in Google Scholar

[21] Verma, J., Taiwade, R. V.: Effect of welding processes and conditions on the microstructure, mechanical properties and corrosion resistance of duplex stainless steel weldments – A review. J Manuf Processes. 2017, 25: 134–152. DOI: 10.1016/j.jmapro.2016.11.00310.1016/j.jmapro.2016.11.003Search in Google Scholar

[22] Alvarez, T. R., Pavarino, M. R. C, de Souza, G. C., Pardal, J. M., Tavares, S. S. M, Ferreira, M. L. R., Filho, I. C.: Influence of interpass temperature on the properties of duplex stainless steel during welding by submerged arc welding process. Weld Int. 2016, 30: 348–358. DOI: 10.1080/09507116.2015.109650010.1080/09507116.2015.1096500Search in Google Scholar

[23] Nowacki, J., Łukojc, A.: Microstructural transformations of heat affected zones in duplex steel welded joints. Mater Charact. 2006, 56: 436–441. DOI: 10.1016/j.matchar.2006.02.00710.1016/j.matchar.2006.02.007Search in Google Scholar

[24] Katherasan, D., Sathiya, P., Raja, A.: Shielding gas effects on flux cored arc welding of AISI 316L (N) austenitic stainless steel joints. Mater Des. 2013, 45: 43–51. DOI: 10.1016/j.matdes.2012.09.01210.1016/j.matdes.2012.09.012Search in Google Scholar

[25] Luk-Cyr, J., El-Bawab, R., Lanteigne, J., Champliaud, H., Vadean, A.: Mechanical properties of 75 % Ar /25 % CO2flux-cored arc welded E309L austenitic stainless steel. Mater Sci Eng A. 2016, 678: 197–203. DOI: 10.1016/j.msea.2016.09.09910.1016/j.msea.2016.09.099Search in Google Scholar

[26] Zhang, Z., Zhao, H., Zhang, H., Hu, J., Jin, J.: Microstructure evolution and pitting corrosion behavior of UNS S32750 super duplex stainless steel welds after short-time heat treatment. Corros Sci. 2017, 121: 22–31. DOI: 10.1016/j.corsci.2017.02.00610.1016/j.corsci.2017.02.006Search in Google Scholar

[27] Jegdić, B., Bobić, B., Radojković, B., Alić, B., Radovanović, L.: Corrosion resistance of welded joints of X5CrNi18–10 stainless steel. J Mater Process Technol. 2019, 266: 579–587. DOI: 10.1016/j.jmatprotec.2018.11.02910.1016/j.jmatprotec.2018.11.029Search in Google Scholar

[28] McPherson, N. A., Li, Y., Baker, T. N.: Microstructure and properties of as welded duplex stainless steel. Sci Technol Weld Joining. 2000, 5: 235–244. DOI: 10.1179/13621710010153826310.1179/136217100101538263Search in Google Scholar

[29] Zhang, Z., Jing, H., Xu, L., Han, Y., Zhao, L.: nvestigation on microstructure evolution and properties of duplex stainless steel joint multi-pass welded by using different methods. Mater Des. 2016, 109: 670–685. DOI: 10.1016/j.matdes.2016.07.11010.1016/j.matdes.2016.07.110Search in Google Scholar

[30] Robert, W. M.: Principles of Welding, Wiley Interscience, New York, 1999, 132–138.Search in Google Scholar

[31] Muthupandi, V., Bala Sinivasan, P., Seshadri, S. K., Sundaresan, S.: Effect of weld metal chemistry and heat input on the structure and properties of duplex stainless steel welds. Mater Sci Eng A. 2003, 358: 9–16. DOI: 10.1016/S0921-5093(03)00077-710.1016/S0921-5093(03)00077-7Search in Google Scholar

[32] Vinoth Jebaraj, A., Ajaykumar, L., Deepak, C. R., Aditya, K. V. V.: Weldability, machinability and surfacing of commercial duplex stainless steel AISI2205 for marine applications – A recent review. J Adv 2017, Res. 8: 183–199. DOI: 10.1016/j.jare.2017.01.00210.1016/j.jare.2017.01.002Search in Google Scholar

[33] Brytan, Z., Niagaj, J., Reiman, L.: Corrosion studies using potentiodynamic and EIS electrochemical techniques of welded lean duplex stainless steel UNS S82441. Appl Surf Sci. 2016, 388: 160–168. DOI: 10.1016/j.apsusc.2016.01.26010.1016/j.apsusc.2016.01.260Search in Google Scholar

[34] Padilha, A. F., Reick, W., Pohl, M.: Recrystallization-transformation combined reactions during annealing of cold rolled ferritic-austenitic duplex stainless Steel. ISIJ Int. 1998, 38: 567–571. DOI: 10.2355/isijinternational.38.56710.2355/isijinternational.38.567Search in Google Scholar

[35] Makhdoom, M. A., Ahmad, A., Kamran, M., Abid, K., Haider, W.: Microstructural and electrochemical behavior of 2205 duplex stainless steel weldments. Surf Interfaces. 2017, 9: 189–195. DOI: 10.1016/j.surfin.2017.09.00710.1016/j.surfin.2017.09.007Search in Google Scholar

[36] Jana, S.: Effect of heat input on the HAZ properties of two duplex stainless steels. J Mater Process Technol. 1992, 33: 247–261. DOI: 10.1016/0924-0136(92)90211-A10.1016/0924-0136(92)90211-ASearch in Google Scholar

[37] Nowacki, J.: Duplex-steel welding problems in the building of chemical cargo ships. Weld Int. 2004, 18: 509–515. DOI: 10.1533/wint.2004.327710.1533/wint.2004.3277Search in Google Scholar

[38] Paulraj, P., Garg, R.: Effect of welding parameters on pitting behavior of GTAW of DSS and super DSS weldments. Eng Sci Technol. 2016, 19: 1076–1083. DOI: 10.1016/j.jestch.2016.01.01310.1016/j.jestch.2016.01.013Search in Google Scholar

Received: 2021-01-30
Accepted: 2021-03-12
Published Online: 2021-06-18
Published in Print: 2021-06-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 10.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pm-2021-0025/html
Scroll to top button