Investigation on light-assisted preventive effects on dentin erosion
-
Mary A.S. de-Melo
Abstract
Background and objective: Dental erosion is now recognized as an important cause of tooth tissue loss. This in vitro study aimed at evaluating the effect of low intensity diode lasers (λ=660 or 808 nm; 100 J/cm2) and a blue light emitting diode (LED) (λ=430–480 nm; central wavelength=455 nm; 1200 mW/cm2) combined with fluoride application on the inhibition of early dentin erosion.
Materials and methods: Human root dentin slabs were randomly assigned to eight groups (n=10), as follows: G1 – control, G2 – fluoride (5 min), G3 – LED (455 nm), G4 – laser (660 nm), G5 – laser (808 nm), G6 – fluoride+LED, G7 – fluoride+laser (660 nm) and G8 – fluoride+laser (808 nm). After being submitted to a 2-h-acquired pellicle formation, the slabs were treated according to the groups (1× per day) and subsequently exposed to cyclic erosive challenges (0.01 m HCl for 60 s, 4× per day), over a period of 3 days. Surface changes were determined by microhardness and profilometry analyses. The temperature was also evaluated during irradiation. Kruskal-Wallis and Student-Newman-Keuls tests were used to compare the percentage of surface microhardness change (%SMHC) and ANOVA to assess tissue wear and temperature rise.
Results: For all irradiated groups, temperature changes were below 1.6°C and were not statistically significant different (p>0.05). Treated groups did not present evidence of erosion reduction for wear rates (p=0.27); however, for %SMHC analysis, a statistically significant difference was found between the control and treated groups (p=0.008).
Conclusion: All treatments were able to reduce the loss of hardness of dentin submitted to a slight erosive challenge. However, no synergic effect was found when fluoride application was combined with light irradiation.
Zusammenfassung
Hintergrund und Ziel: Dentalerosion gilt als eine der Hauptursachen von Zahngewebeverlust. Die vorliegende In-vitro-Studie untersucht die Wirkung eines Low-Intensity-Diodenlasers (λ=660 oder 808 nm, 100 J/cm2) und einer blau emittierenden LED (λ=430–480 nm; mittlere Wellenlänge=455 nm; 1200 mW/cm2) in Kombination mit Fluorid-Anwendung auf die Hemmung der frühen Dentinerosion.
Materialien und Methoden: Humane Wurzeldentin-Schnitte wurden nach dem Zufallsprinzip acht Versuchsgruppen (n=10) zugeordnet: G1 – Kontrollgruppe, G2 – Fluorid (5 min), G3 – LED (455 nm), G4 – Laser (660 nm), G5 – Laser (808 nm), G6 – Fluorid+LED, G7 – Fluorid+Laser (660 nm) und G8 – Fluorid+Laser (808 nm). Nachdem die Proben zur Pellikelbildung für 2 h einer Speichellösung ausgesetzt wurden, wurden die Schnitte entsprechend ihrer Gruppenzuordnung über einen Zeitraum von 3 Tagen 1× täglich behandelt und anschließend zyklisch einer erosiven Substanz (0,01 m HCl für 60 s, 4× täglich) ausgesetzt. Die Oberflächenveränderungen wurden anhand von Mikrohärtebestimmungen und Profilometrieanalysen evaluiert. Während der Laser-/Lichtbestrahlung wurde außerdem die Temperatur ermittelt.
Kruskal-Wallis- und Student-Newman-Keuls-Tests wurden angewendet, um die prozentuale Änderung der Oberflächenmikrohärte (%SMHC) statistisch auszuwerten und eine Varianzanalyse (ANOVA), um den Gewebeverschleiß und die Erwärmung zu beurteilen.
Ergebnisse: Für alle lichtexponierten Gruppen lagen die Temperaturänderungen unter 1,6°C und wiesen keine statistisch signifikanten Unterschiede auf (p>0,05). Es konnte keine statistisch signifikante Reduktion der Erosion nachgewiesen werden (p=0,27), jedoch ergab sich für %SMHC ein statistisch signifikanter Unterschied zwischen der Kontroll- und den lichtbehandelten Gruppen (p=0,008).
Fazit: Mit allen Behandlungsregimen konnte der Härteverlust von Dentin reduziert werden, was den Widerstand gegen erosive Einflüsse leicht verbessern könnte. Es konnte jedoch kein synergistischer Effekt bei kombinierter Licht/Fluorid-Anwendung festgestellt werden.
This research received the financial support of Grant # 152.01.00/09 from the state of Ceará research foundation (FUNCAP).
References
[1] Lussi A, Jaeggi T. Erosion – diagnosis and risk factors. Clin Oral Investig 2008;12(Suppl 1):S5–13.10.1007/s00784-007-0179-zSearch in Google Scholar PubMed PubMed Central
[2] Bartlett DW. The role of erosion in tooth wear: aetiology, prevention and management. Int Dent J 2005;55(4 Suppl 1):277–84.10.1111/j.1875-595X.2005.tb00065.xSearch in Google Scholar
[3] Attin T, Siegel S, Buchalla W, Lennon AM, Hannig C, Becker K. Brushing abrasion of softened and remineralised dentin: an in situ study. Caries Res 2004;38(1):62–6.10.1159/000073922Search in Google Scholar PubMed
[4] Lussi A, Hellwig E, Zero D, Jaeggi T. Erosive tooth wear: diagnosis, risk factors and prevention. Am J Dent 2006;19(6):319–25.Search in Google Scholar
[5] Abrahamsen TC. The worn dentition–pathognomonic patterns of abrasion and erosion. Int Dent J 2005;55(4 Suppl 1):268–76.10.1111/j.1875-595X.2005.tb00064.xSearch in Google Scholar
[6] Auad SM, Waterhouse PJ, Nunn JH, Moynihan PJ. Dental caries and its association with sociodemographics, erosion, and diet in schoolchildren from southeast Brazil. Pediatr Dent 2009;31(3):229–35.Search in Google Scholar
[7] Peres KG, Armênio MF, Peres MA, Traebert J, De Lacerda JT. Dental erosion in 12-year-old schoolchildren: a cross-sectional study in Southern Brazil. Int J Paediatr Dent 2005;15(4):249–55.10.1111/j.1365-263X.2005.00643.xSearch in Google Scholar PubMed
[8] Van’t Spijker A, Rodriguez JM, Kreulen CM, Bronkhorst EM, Bartlett DW, Creugers NH. Prevalence of tooth wear in adults. Int J Prosthodont 2009;22(1):35–42.Search in Google Scholar
[9] Magalhães AC, Wiegand A, Rios D, Honório HM, Buzalaf MA. Insights into preventive measures for dental erosion. J Appl Oral Sci 2009;17(2):75–86.10.1590/S1678-77572009000200002Search in Google Scholar PubMed PubMed Central
[10] Amaechi BT, Higham SM. Dental erosion: possible approaches to prevention and control. J Dent 2005;33(3):243–52.10.1016/j.jdent.2004.10.014Search in Google Scholar PubMed
[11] Jensdottir T, Bardow A, Holbrook P. Properties and modification of soft drinks in relation to their erosive potential in vitro. J Dent 2005;33(7):569–75.10.1016/j.jdent.2004.12.002Search in Google Scholar PubMed
[12] Lussi A. Dental erosion – novel remineralizing agents in prevention or repair. Adv Dent Res 2009;21(1):13–6.10.1177/0895937409335592Search in Google Scholar PubMed
[13] Jones L, Lekkas D, Hunt D, McIntyre J, Rafir W. Studies on dental erosion: An in vivo-in vitro model of endogenous dental erosion–its application to testing protection by fluoride gel application. Aust Dent J 2002;47(4):304–8.10.1111/j.1834-7819.2002.tb00542.xSearch in Google Scholar PubMed
[14] Sobral MA, Lachowski KM, de Rossi W, Braga SR, Ramalho KM. Effect of Nd:YAG laser and acidulated phosphate fluoride on bovine and human enamel submitted to erosion/abrasion or erosion only: an in vitro preliminary study. Photomed Laser Surg 2009;27(5):709–13.10.1089/pho.2008.2318Search in Google Scholar PubMed
[15] Rodrigues LK, Nobre Dos Santos M, Featherstone JD. In situ mineral loss inhibition by CO2 laser and fluoride. J Dent Res 2006;85(7):617–21.10.1177/154405910608500707Search in Google Scholar PubMed
[16] Hicks J, Winn D 2nd, Flaitz C, Powell L. In vivo caries formation in enamel following argon laser irradiation and combined fluoride and argon laser treatment: a clinical pilot study. Quintessence Int 2004;35(1):15–20.Search in Google Scholar
[17] Magalhães AC, Rios D, Machado MA, Da Silva SM, Lizarelli Rde F, Bagnato VS, Buzalaf MA. Effect of Nd:YAG irradiation and fluoride application on dentine resistance to erosion in vitro. Photomed Laser Surg 2008;26(6): 559–63.10.1089/pho.2007.2231Search in Google Scholar PubMed
[18] Steiner-Oliveira C, Nobre-dos-Santos M, Zero DT, Eckert G, Hara AT. Effect of a pulsed CO2 laser and fluoride on the prevention of enamel and dentine erosion. Arch Oral Biol 2010;55(2): 127–33.10.1016/j.archoralbio.2009.11.010Search in Google Scholar PubMed
[19] de Sant’Anna GR, dos Santos EA, Soares LE, do Espírito Santo AM, Martin AA, Duarte DA, Pacheco-Soares C, Brugnera Jr A. Dental enamel irradiated with infrared diode laser and photo-absorbing cream: part 2 – EDX study. Photomed Laser Surg 2009;27(5):771–82.10.1089/pho.2008.2401Search in Google Scholar PubMed PubMed Central
[20] Vlacic J, Meyers IA, Kim J, Walsh LJ. Laser-activated fluoride treatment of enamel against an artificial caries challenge: comparison of five wavelengths. Aust Dent J 2007; 52(2):101–5.10.1111/j.1834-7819.2007.tb00472.xSearch in Google Scholar PubMed
[21] Vieira AH, Santiago SL. Management of dentinal hypersensitivity. Gen Dent 2009;57(2):120–6; quiz 127–8.Search in Google Scholar
[22] Goharkhay K, Moritz A, Schoop U, Wernisch J. Laser treatment of hypersensitive dentin: comparative ESEM investigations. J Oral Laser Appl 2007;4:211–23.Search in Google Scholar
[23] de-Melo MA, Passos VF, Alves JJ, Barros EB, Santiago SL, Rodrigues LK. The effect of diode laser irradiation on dentin as a preventive measure against dental erosion: an in vitro study. Lasers Med Sci 2011;26(5):615–21.10.1007/s10103-010-0865-ySearch in Google Scholar PubMed
[24] Vlacic J, Meyers IA, Walsh LJ. Laser-activated fluoride treatment of enamel as prevention against erosion. Aust Dent J 2007;52(3):175–80.10.1111/j.1834-7819.2007.tb00485.xSearch in Google Scholar PubMed
[25] Westerman GH, Flaitz CM, Powell GL, Hicks MJ. Enamel caries initiation and progression after argon laser irradiation: in vitro argon laser systems comparison. J Clin Laser Med Surg 2002;20(5):257–62.10.1089/10445470260420768Search in Google Scholar PubMed
[26] Westerman GH, Hicks MJ, Flaitz C, Powell GL. In vitro enamel caries formation: argon laser, light-emitting diode and APF treatment effect. Am J Dent 2004;17(6):383–7.Search in Google Scholar
[27] Barone A, Aldini NN, Fini M, Giardino R, Calvo Guirado JL, Covani U. Xenograft versus extraction alone for ridge preservation after tooth removal: a clinical and histomorphometric study. J Periodontol 2008;79(8):1370–7.10.1902/jop.2008.070628Search in Google Scholar PubMed
[28] Holbrook WP, Furuholm J, Gudmundsson K, Theodórs A, Meurman JH. Gastric reflux is a significant causative factor of tooth erosion. J Dent Res 2009;88(5):422–6.10.1177/0022034509336530Search in Google Scholar PubMed
[29] Flaitz CM, Hicks MJ, Westerman GH, Berg JH, Blankenau RJ, Powell GL. Argon laser irradiation and acidulated phosphate fluoride treatment in caries-like lesion formation in enamel: an in vitro study. Pediatr Dent 1995;17(1):31–5.Search in Google Scholar
[30] de-Paula DM, Melo MAS, Lima JPM, Nobre-dos-Santos M, Zanin ICJ, Rodrigues LKA. In vitro assessment of thermal changes in human teeth during photodynamic antimicrobial chemotherapy performed with red light sources. Laser Phys 2010;20(6):1475–80.10.1134/S1054660X10110046Search in Google Scholar
[31] Ramalho KM, Eduardo Cde P, Heussen N, Rocha RG, Lampert F, Apel C, Esteves-Oliveira M. Protective effect of CO2 laser (10.6 μm) and fluoride on enamel erosion in vitro. Lasers Med Sci 2013;28(1):71–8.10.1007/s10103-012-1071-xSearch in Google Scholar PubMed
[32] Azevedo DT, Faraoni-Romano JJ, Derceli Jdos R, Palma-Dibb RG. Effect of Nd:YAG laser combined with fluoride on the prevention of primary tooth enamel demineralization. Braz Dent J 2012;23(2):104–9.10.1590/S0103-64402012000200003Search in Google Scholar PubMed
[33] Magalhães AC, Wiegand A, Rios D, Buzalaf MA, Lussi A. Fluoride in dental erosion. Monogr Oral Sci 2011;22:158–70.10.1159/000325167Search in Google Scholar PubMed
[34] Kato IT, Zezell DM, Mendes FM, Wetter NU. Alterations in enamel remineralization in vitro induced by blue light. Laser Phys 2012;20(6):1469–74.10.1134/S1054660X10110095Search in Google Scholar
[35] Hara AT, Ando M, Cury JA, Serra MC, González-Cabezas C, Zero DT. Influence of the organic matrix on root dentine erosion by citric acid. Caries Res 2005;39(2):134–8.10.1159/000083159Search in Google Scholar PubMed
[36] Wiegand A, Attin T. Influence of fluoride on the prevention of erosive lesions – a review. Oral Health Prev Dent 2003;1(4):245–53.Search in Google Scholar
[37] Hsu CY, Jordan TH, Dederich DN, Wefel JS. Laser-matrix-fluoride effects on enamel demineralization. J Dent Res 2001;80(9):1797–801.10.1177/00220345010800090501Search in Google Scholar PubMed
[38] Passos VF, Melo MA, Vasconcellos AA, Rodrigues LK, Santiago SL. Comparison of methods for quantifying dental wear caused by erosion and abrasion. Microsc Res Tech 2013;76(2):178–83.10.1002/jemt.22150Search in Google Scholar PubMed
[39] Hjortsjö C, Jonski G, Young A, Saxegaard E. Effect of acidic fluoride treatments on early enamel erosion lesions – a comparison of calcium and profilometric analyses. Arch Oral Biol 2010;55(3):229–34.10.1016/j.archoralbio.2010.01.003Search in Google Scholar PubMed
[40] Asmussen E, Peutzfeldt A. Temperature rise induced by some light emitting diode and quartz-tungsten-halogen curing units. Eur J Oral Sci 2005;113(1):96–8.10.1111/j.1600-0722.2004.00181.xSearch in Google Scholar PubMed
©2013 by Walter de Gruyter Berlin Boston
Articles in the same Issue
- Masthead
- Masthead
- Editorial
- Medical use of lasers and photonics in Russia – Therapeutic applications
- Editorial note
- Welcoming address to new Editorial Board Members
- Magazine section
- Snapshots
- Original contributions
- Low toxic ytterbium complexes of 2,4-dimethoxyhematoporphyrin IX for luminescence diagnostics of tumors
- Polymers as enhancers of photodynamic activity of chlorin photosensitizers for photodynamic therapy
- Modification of the mechanical and chemical properties of dental enamel using Er laser radiation with sub-ablative energy density
- Investigation on light-assisted preventive effects on dentin erosion
- Preliminary research reports
- Technique for measuring laser radiation intensity in biological tissues
- Laser-based non-invasive spectrophotometry – An overview of possible medical applications
- Study on the effective ablation volume of microwave ablation of porcine livers
- Short communication
- Percutaneous laser disc decompression: A minimally invasive procedure for the treatment of intervertebral disc prolapse – the Bangladesh perspective/Perkutane Laser-Diskusdekompression: Ein minimal-invasives Verfahren zur Behandlung von Bandscheibenvorfall – Ein Erfahrungsbericht aus Bangladesch
- Press release
- PHOTONICS Interview with Prof. Dr. Waidelich
- Congress report
- LASER safety through international information interchange: An introduction to the International Laser Safety Conference (ILSC®) and report of the “ILSC 2013”
- Congress announcements
- Interdisciplinary Laser Course on Medical Laser Applications (incl. PDT): Basics – Safety (LSO) – Clinical Overview
- Congresses 2013/2014
Articles in the same Issue
- Masthead
- Masthead
- Editorial
- Medical use of lasers and photonics in Russia – Therapeutic applications
- Editorial note
- Welcoming address to new Editorial Board Members
- Magazine section
- Snapshots
- Original contributions
- Low toxic ytterbium complexes of 2,4-dimethoxyhematoporphyrin IX for luminescence diagnostics of tumors
- Polymers as enhancers of photodynamic activity of chlorin photosensitizers for photodynamic therapy
- Modification of the mechanical and chemical properties of dental enamel using Er laser radiation with sub-ablative energy density
- Investigation on light-assisted preventive effects on dentin erosion
- Preliminary research reports
- Technique for measuring laser radiation intensity in biological tissues
- Laser-based non-invasive spectrophotometry – An overview of possible medical applications
- Study on the effective ablation volume of microwave ablation of porcine livers
- Short communication
- Percutaneous laser disc decompression: A minimally invasive procedure for the treatment of intervertebral disc prolapse – the Bangladesh perspective/Perkutane Laser-Diskusdekompression: Ein minimal-invasives Verfahren zur Behandlung von Bandscheibenvorfall – Ein Erfahrungsbericht aus Bangladesch
- Press release
- PHOTONICS Interview with Prof. Dr. Waidelich
- Congress report
- LASER safety through international information interchange: An introduction to the International Laser Safety Conference (ILSC®) and report of the “ILSC 2013”
- Congress announcements
- Interdisciplinary Laser Course on Medical Laser Applications (incl. PDT): Basics – Safety (LSO) – Clinical Overview
- Congresses 2013/2014