Home Investigation on light-assisted preventive effects on dentin erosion
Article
Licensed
Unlicensed Requires Authentication

Investigation on light-assisted preventive effects on dentin erosion

Untersuchungen zu licht-assistierten präventiven Effekten auf die Dentinerosion
  • Mary A.S. de-Melo , Francisco F.C. Silva , Vanara F. Passos , Sérgio L. Santiago and Lidiany K.A. Rodrigues EMAIL logo
Published/Copyright: June 19, 2013
Become an author with De Gruyter Brill

Abstract

Background and objective: Dental erosion is now recognized as an important cause of tooth tissue loss. This in vitro study aimed at evaluating the effect of low intensity diode lasers (λ=660 or 808 nm; 100 J/cm2) and a blue light emitting diode (LED) (λ=430–480 nm; central wavelength=455 nm; 1200 mW/cm2) combined with fluoride application on the inhibition of early dentin erosion.

Materials and methods: Human root dentin slabs were randomly assigned to eight groups (n=10), as follows: G1 – control, G2 – fluoride (5 min), G3 – LED (455 nm), G4 – laser (660 nm), G5 – laser (808 nm), G6 – fluoride+LED, G7 – fluoride+laser (660 nm) and G8 – fluoride+laser (808 nm). After being submitted to a 2-h-acquired pellicle formation, the slabs were treated according to the groups (1× per day) and subsequently exposed to cyclic erosive challenges (0.01 m HCl for 60 s, 4× per day), over a period of 3 days. Surface changes were determined by microhardness and profilometry analyses. The temperature was also evaluated during irradiation. Kruskal-Wallis and Student-Newman-Keuls tests were used to compare the percentage of surface microhardness change (%SMHC) and ANOVA to assess tissue wear and temperature rise.

Results: For all irradiated groups, temperature changes were below 1.6°C and were not statistically significant different (p>0.05). Treated groups did not present evidence of erosion reduction for wear rates (p=0.27); however, for %SMHC analysis, a statistically significant difference was found between the control and treated groups (p=0.008).

Conclusion: All treatments were able to reduce the loss of hardness of dentin submitted to a slight erosive challenge. However, no synergic effect was found when fluoride application was combined with light irradiation.

Zusammenfassung

Hintergrund und Ziel: Dentalerosion gilt als eine der Hauptursachen von Zahngewebeverlust. Die vorliegende In-vitro-Studie untersucht die Wirkung eines Low-Intensity-Diodenlasers (λ=660 oder 808 nm, 100 J/cm2) und einer blau emittierenden LED (λ=430–480 nm; mittlere Wellenlänge=455 nm; 1200 mW/cm2) in Kombination mit Fluorid-Anwendung auf die Hemmung der frühen Dentinerosion.

Materialien und Methoden: Humane Wurzeldentin-Schnitte wurden nach dem Zufallsprinzip acht Versuchsgruppen (n=10) zugeordnet: G1 – Kontrollgruppe, G2 – Fluorid (5 min), G3 – LED (455 nm), G4 – Laser (660 nm), G5 – Laser (808 nm), G6 – Fluorid+LED, G7 – Fluorid+Laser (660 nm) und G8 – Fluorid+Laser (808 nm). Nachdem die Proben zur Pellikelbildung für 2 h einer Speichellösung ausgesetzt wurden, wurden die Schnitte entsprechend ihrer Gruppenzuordnung über einen Zeitraum von 3 Tagen 1× täglich behandelt und anschließend zyklisch einer erosiven Substanz (0,01 m HCl für 60 s, 4× täglich) ausgesetzt. Die Oberflächenveränderungen wurden anhand von Mikrohärtebestimmungen und Profilometrieanalysen evaluiert. Während der Laser-/Lichtbestrahlung wurde außerdem die Temperatur ermittelt.

Kruskal-Wallis- und Student-Newman-Keuls-Tests wurden angewendet, um die prozentuale Änderung der Oberflächenmikrohärte (%SMHC) statistisch auszuwerten und eine Varianzanalyse (ANOVA), um den Gewebeverschleiß und die Erwärmung zu beurteilen.

Ergebnisse: Für alle lichtexponierten Gruppen lagen die Temperaturänderungen unter 1,6°C und wiesen keine statistisch signifikanten Unterschiede auf (p>0,05). Es konnte keine statistisch signifikante Reduktion der Erosion nachgewiesen werden (p=0,27), jedoch ergab sich für %SMHC ein statistisch signifikanter Unterschied zwischen der Kontroll- und den lichtbehandelten Gruppen (p=0,008).

Fazit: Mit allen Behandlungsregimen konnte der Härteverlust von Dentin reduziert werden, was den Widerstand gegen erosive Einflüsse leicht verbessern könnte. Es konnte jedoch kein synergistischer Effekt bei kombinierter Licht/Fluorid-Anwendung festgestellt werden.


Corresponding author: Lidiany K.A. Rodrigues, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, 944 Cap. Francisco Pedro Street – Rodolfo Teófilo, Zip Code: 60430-170, Fortaleza-CE, Brazil

This research received the financial support of Grant # 152.01.00/09 from the state of Ceará research foundation (FUNCAP).

References

[1] Lussi A, Jaeggi T. Erosion – diagnosis and risk factors. Clin Oral Investig 2008;12(Suppl 1):S5–13.10.1007/s00784-007-0179-zSearch in Google Scholar PubMed PubMed Central

[2] Bartlett DW. The role of erosion in tooth wear: aetiology, prevention and management. Int Dent J 2005;55(4 Suppl 1):277–84.10.1111/j.1875-595X.2005.tb00065.xSearch in Google Scholar

[3] Attin T, Siegel S, Buchalla W, Lennon AM, Hannig C, Becker K. Brushing abrasion of softened and remineralised dentin: an in situ study. Caries Res 2004;38(1):62–6.10.1159/000073922Search in Google Scholar PubMed

[4] Lussi A, Hellwig E, Zero D, Jaeggi T. Erosive tooth wear: diagnosis, risk factors and prevention. Am J Dent 2006;19(6):319–25.Search in Google Scholar

[5] Abrahamsen TC. The worn dentition–pathognomonic patterns of abrasion and erosion. Int Dent J 2005;55(4 Suppl 1):268–76.10.1111/j.1875-595X.2005.tb00064.xSearch in Google Scholar

[6] Auad SM, Waterhouse PJ, Nunn JH, Moynihan PJ. Dental caries and its association with sociodemographics, erosion, and diet in schoolchildren from southeast Brazil. Pediatr Dent 2009;31(3):229–35.Search in Google Scholar

[7] Peres KG, Armênio MF, Peres MA, Traebert J, De Lacerda JT. Dental erosion in 12-year-old schoolchildren: a cross-sectional study in Southern Brazil. Int J Paediatr Dent 2005;15(4):249–55.10.1111/j.1365-263X.2005.00643.xSearch in Google Scholar PubMed

[8] Van’t Spijker A, Rodriguez JM, Kreulen CM, Bronkhorst EM, Bartlett DW, Creugers NH. Prevalence of tooth wear in adults. Int J Prosthodont 2009;22(1):35–42.Search in Google Scholar

[9] Magalhães AC, Wiegand A, Rios D, Honório HM, Buzalaf MA. Insights into preventive measures for dental erosion. J Appl Oral Sci 2009;17(2):75–86.10.1590/S1678-77572009000200002Search in Google Scholar PubMed PubMed Central

[10] Amaechi BT, Higham SM. Dental erosion: possible approaches to prevention and control. J Dent 2005;33(3):243–52.10.1016/j.jdent.2004.10.014Search in Google Scholar PubMed

[11] Jensdottir T, Bardow A, Holbrook P. Properties and modification of soft drinks in relation to their erosive potential in vitro. J Dent 2005;33(7):569–75.10.1016/j.jdent.2004.12.002Search in Google Scholar PubMed

[12] Lussi A. Dental erosion – novel remineralizing agents in prevention or repair. Adv Dent Res 2009;21(1):13–6.10.1177/0895937409335592Search in Google Scholar PubMed

[13] Jones L, Lekkas D, Hunt D, McIntyre J, Rafir W. Studies on dental erosion: An in vivo-in vitro model of endogenous dental erosion–its application to testing protection by fluoride gel application. Aust Dent J 2002;47(4):304–8.10.1111/j.1834-7819.2002.tb00542.xSearch in Google Scholar PubMed

[14] Sobral MA, Lachowski KM, de Rossi W, Braga SR, Ramalho KM. Effect of Nd:YAG laser and acidulated phosphate fluoride on bovine and human enamel submitted to erosion/abrasion or erosion only: an in vitro preliminary study. Photomed Laser Surg 2009;27(5):709–13.10.1089/pho.2008.2318Search in Google Scholar PubMed

[15] Rodrigues LK, Nobre Dos Santos M, Featherstone JD. In situ mineral loss inhibition by CO2 laser and fluoride. J Dent Res 2006;85(7):617–21.10.1177/154405910608500707Search in Google Scholar PubMed

[16] Hicks J, Winn D 2nd, Flaitz C, Powell L. In vivo caries formation in enamel following argon laser irradiation and combined fluoride and argon laser treatment: a clinical pilot study. Quintessence Int 2004;35(1):15–20.Search in Google Scholar

[17] Magalhães AC, Rios D, Machado MA, Da Silva SM, Lizarelli Rde F, Bagnato VS, Buzalaf MA. Effect of Nd:YAG irradiation and fluoride application on dentine resistance to erosion in vitro. Photomed Laser Surg 2008;26(6): 559–63.10.1089/pho.2007.2231Search in Google Scholar PubMed

[18] Steiner-Oliveira C, Nobre-dos-Santos M, Zero DT, Eckert G, Hara AT. Effect of a pulsed CO2 laser and fluoride on the prevention of enamel and dentine erosion. Arch Oral Biol 2010;55(2): 127–33.10.1016/j.archoralbio.2009.11.010Search in Google Scholar PubMed

[19] de Sant’Anna GR, dos Santos EA, Soares LE, do Espírito Santo AM, Martin AA, Duarte DA, Pacheco-Soares C, Brugnera Jr A. Dental enamel irradiated with infrared diode laser and photo-absorbing cream: part 2 – EDX study. Photomed Laser Surg 2009;27(5):771–82.10.1089/pho.2008.2401Search in Google Scholar PubMed PubMed Central

[20] Vlacic J, Meyers IA, Kim J, Walsh LJ. Laser-activated fluoride treatment of enamel against an artificial caries challenge: comparison of five wavelengths. Aust Dent J 2007; 52(2):101–5.10.1111/j.1834-7819.2007.tb00472.xSearch in Google Scholar PubMed

[21] Vieira AH, Santiago SL. Management of dentinal hypersensitivity. Gen Dent 2009;57(2):120–6; quiz 127–8.Search in Google Scholar

[22] Goharkhay K, Moritz A, Schoop U, Wernisch J. Laser treatment of hypersensitive dentin: comparative ESEM investigations. J Oral Laser Appl 2007;4:211–23.Search in Google Scholar

[23] de-Melo MA, Passos VF, Alves JJ, Barros EB, Santiago SL, Rodrigues LK. The effect of diode laser irradiation on dentin as a preventive measure against dental erosion: an in vitro study. Lasers Med Sci 2011;26(5):615–21.10.1007/s10103-010-0865-ySearch in Google Scholar PubMed

[24] Vlacic J, Meyers IA, Walsh LJ. Laser-activated fluoride treatment of enamel as prevention against erosion. Aust Dent J 2007;52(3):175–80.10.1111/j.1834-7819.2007.tb00485.xSearch in Google Scholar PubMed

[25] Westerman GH, Flaitz CM, Powell GL, Hicks MJ. Enamel caries initiation and progression after argon laser irradiation: in vitro argon laser systems comparison. J Clin Laser Med Surg 2002;20(5):257–62.10.1089/10445470260420768Search in Google Scholar PubMed

[26] Westerman GH, Hicks MJ, Flaitz C, Powell GL. In vitro enamel caries formation: argon laser, light-emitting diode and APF treatment effect. Am J Dent 2004;17(6):383–7.Search in Google Scholar

[27] Barone A, Aldini NN, Fini M, Giardino R, Calvo Guirado JL, Covani U. Xenograft versus extraction alone for ridge preservation after tooth removal: a clinical and histomorphometric study. J Periodontol 2008;79(8):1370–7.10.1902/jop.2008.070628Search in Google Scholar PubMed

[28] Holbrook WP, Furuholm J, Gudmundsson K, Theodórs A, Meurman JH. Gastric reflux is a significant causative factor of tooth erosion. J Dent Res 2009;88(5):422–6.10.1177/0022034509336530Search in Google Scholar PubMed

[29] Flaitz CM, Hicks MJ, Westerman GH, Berg JH, Blankenau RJ, Powell GL. Argon laser irradiation and acidulated phosphate fluoride treatment in caries-like lesion formation in enamel: an in vitro study. Pediatr Dent 1995;17(1):31–5.Search in Google Scholar

[30] de-Paula DM, Melo MAS, Lima JPM, Nobre-dos-Santos M, Zanin ICJ, Rodrigues LKA. In vitro assessment of thermal changes in human teeth during photodynamic antimicrobial chemotherapy performed with red light sources. Laser Phys 2010;20(6):1475–80.10.1134/S1054660X10110046Search in Google Scholar

[31] Ramalho KM, Eduardo Cde P, Heussen N, Rocha RG, Lampert F, Apel C, Esteves-Oliveira M. Protective effect of CO2 laser (10.6 μm) and fluoride on enamel erosion in vitro. Lasers Med Sci 2013;28(1):71–8.10.1007/s10103-012-1071-xSearch in Google Scholar PubMed

[32] Azevedo DT, Faraoni-Romano JJ, Derceli Jdos R, Palma-Dibb RG. Effect of Nd:YAG laser combined with fluoride on the prevention of primary tooth enamel demineralization. Braz Dent J 2012;23(2):104–9.10.1590/S0103-64402012000200003Search in Google Scholar PubMed

[33] Magalhães AC, Wiegand A, Rios D, Buzalaf MA, Lussi A. Fluoride in dental erosion. Monogr Oral Sci 2011;22:158–70.10.1159/000325167Search in Google Scholar PubMed

[34] Kato IT, Zezell DM, Mendes FM, Wetter NU. Alterations in enamel remineralization in vitro induced by blue light. Laser Phys 2012;20(6):1469–74.10.1134/S1054660X10110095Search in Google Scholar

[35] Hara AT, Ando M, Cury JA, Serra MC, González-Cabezas C, Zero DT. Influence of the organic matrix on root dentine erosion by citric acid. Caries Res 2005;39(2):134–8.10.1159/000083159Search in Google Scholar PubMed

[36] Wiegand A, Attin T. Influence of fluoride on the prevention of erosive lesions – a review. Oral Health Prev Dent 2003;1(4):245–53.Search in Google Scholar

[37] Hsu CY, Jordan TH, Dederich DN, Wefel JS. Laser-matrix-fluoride effects on enamel demineralization. J Dent Res 2001;80(9):1797–801.10.1177/00220345010800090501Search in Google Scholar PubMed

[38] Passos VF, Melo MA, Vasconcellos AA, Rodrigues LK, Santiago SL. Comparison of methods for quantifying dental wear caused by erosion and abrasion. Microsc Res Tech 2013;76(2):178–83.10.1002/jemt.22150Search in Google Scholar PubMed

[39] Hjortsjö C, Jonski G, Young A, Saxegaard E. Effect of acidic fluoride treatments on early enamel erosion lesions – a comparison of calcium and profilometric analyses. Arch Oral Biol 2010;55(3):229–34.10.1016/j.archoralbio.2010.01.003Search in Google Scholar PubMed

[40] Asmussen E, Peutzfeldt A. Temperature rise induced by some light emitting diode and quartz-tungsten-halogen curing units. Eur J Oral Sci 2005;113(1):96–8.10.1111/j.1600-0722.2004.00181.xSearch in Google Scholar PubMed

Erhalten: 2013-1-20
Revidiert: 2013-5-3
Angenommen: 2013-5-29
Online erschienen: 2013-6-19
Erschienen im Druck: 2013-8-1

©2013 by Walter de Gruyter Berlin Boston

Articles in the same Issue

  1. Masthead
  2. Masthead
  3. Editorial
  4. Medical use of lasers and photonics in Russia – Therapeutic applications
  5. Editorial note
  6. Welcoming address to new Editorial Board Members
  7. Magazine section
  8. Snapshots
  9. Original contributions
  10. Low toxic ytterbium complexes of 2,4-dimethoxyhematoporphyrin IX for luminescence diagnostics of tumors
  11. Polymers as enhancers of photodynamic activity of chlorin photosensitizers for photodynamic therapy
  12. Modification of the mechanical and chemical properties of dental enamel using Er laser radiation with sub-ablative energy density
  13. Investigation on light-assisted preventive effects on dentin erosion
  14. Preliminary research reports
  15. Technique for measuring laser radiation intensity in biological tissues
  16. Laser-based non-invasive spectrophotometry – An overview of possible medical applications
  17. Study on the effective ablation volume of microwave ablation of porcine livers
  18. Short communication
  19. Percutaneous laser disc decompression: A minimally invasive procedure for the treatment of intervertebral disc prolapse – the Bangladesh perspective/Perkutane Laser-Diskusdekompression: Ein minimal-invasives Verfahren zur Behandlung von Bandscheibenvorfall – Ein Erfahrungsbericht aus Bangladesch
  20. Press release
  21. PHOTONICS Interview with Prof. Dr. Waidelich
  22. Congress report
  23. LASER safety through international information interchange: An introduction to the International Laser Safety Conference (ILSC®) and report of the “ILSC 2013”
  24. Congress announcements
  25. Interdisciplinary Laser Course on Medical Laser Applications (incl. PDT): Basics – Safety (LSO) – Clinical Overview
  26. Congresses 2013/2014
Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/plm-2013-0023/html
Scroll to top button