Abstract
Research on various languages shows that dynamic approaches to vowel acoustics – in particular Vowel-Inherent Spectral Change (VISC) – can play a vital role in characterising and classifying monophthongal vowels compared with a static model. This study’s aim was to investigate whether dynamic cues also allow for better description and classification of the Hijazi Arabic (HA) vowel system, a phonological system based on both temporal and spectral distinctions. Along with static and dynamic F1 and F2 patterns, we evaluated the extent to which vowel duration, F0, and F3 contribute to increased/decreased discriminability among vowels. Data were collected from 20 native HA speakers (10 females and 10 males) producing eight HA monophthongal vowels in a word list with varied consonantal contexts. Results showed that dynamic cues provide further insights regarding HA vowels that are not normally gleaned from static measures alone. Using discriminant analysis, the dynamic cues (particularly the seven-point model) had relatively higher classification rates, and vowel duration was found to play a significant role as an additional cue. Our results are in line with dynamic approaches and highlight the importance of looking beyond static cues and beyond the first two formants for further insights into the description and classification of vowel systems.
Funding source: Taibah University
Funding source: IdEx Université Paris Cité
Award Identifier / Grant number: (ANR-18-IDEX-0001)
Acknowledgments
This work was supported by Taibah University to the first author (WA) and partially supported by a public grant overseen by the IdEx Université Paris Cité (ANR-18-IDEX-0001) as part of the Labex Empirical Foundations of Linguistics – EFL to the second author (JA). We thank all of our subjects who participated in this study.
-
Ethical approval: Ethical Approval to collect this study was obtained from Newcastle University Ethics Committee (Ref: 2427/2017).
-
Author contributions: The authors confirm contribution to the paper as follows: WA: Data collection; WA and JAT: Data analysis tools (e.g., PRAAT, R and RStudio); WA, JA, and GK: Made a substantial contribution to the conceptualisation of the article, the analysis and interpretation of data, revising the article critically for important intellectual content, and approving the version to be published.
-
Conflict of interest: The authors have no conflicts of interest to declare.
The set of target words that were used for the HA.
HA vowels | ||||
---|---|---|---|---|
HA vowel | Place of articulation | IPA | HA word | English gloss |
/uː/ | Bilabial_ Alveolar | /buːsi/ /buːz/ |
بُوسيa
بُوز |
A female name Mouth |
Alveolar_Alveolar | /duːd/ /tuːt/ |
دُود تُوت |
Worms Blueberry |
|
Velar_Alveolar | /kuːsa/ /kuːra/ |
كُوسة كُورة |
Zucchini Ball |
|
/u/ | Bilabial_ Alveolar | /burj/ /burr/ |
بُرج بُر |
Tower Wheat |
Alveolar_Alveolar | /duss/ /durj/ |
دُس دُرج |
Hide Drawer |
|
Velar_Alveolar | /kull/ /guddaːm/ |
كُل قُدام |
Eat Deal |
|
/iː/ | Bilabial_ Alveolar | /biːsaːn/ /biːr/ |
بِيسان بِير |
A female name Well |
Alveolar_Alveolar | /ʒadiːd/ /diːdaːn/ |
جَديد دِيدان |
New Worms |
|
Velar_Alveolar | /kiːs/ /giːss/ |
كِيس قِيس |
Bag Measure |
|
/i/ | Bilabial_ Alveolar | /biss/ /bilaːl/ |
بِس بِلال |
Cat A male name |
Alveolar_Alveolar | /diss/ /dirham/ |
دِس دِرهم |
Hide Dirham (Currency) |
|
Velar_Alveolar | /kidd/ /kilma/ |
كِد كِلمة |
To work hard Word |
|
/aː/ | Bilabial_ Alveolar | /baːss/ /baːt/ |
باس بات |
Kissed Slept |
Alveolar_Alveolar | /daːs/ /miħtaːs/ |
داس مِحتاس |
Step Messy |
|
Velar_Alveolar | /kaːs/ /kaːsir/ |
كاس كاسر |
Cup Breaker |
|
/a/ | Bilabial_ Alveolar | /bass/ /bard/ |
بَسْ بَرد |
Enough Cold |
Alveolar_Alveolar | /dall/ /dass/ |
دَل دَس |
Guide Hid |
|
Velar_Alveolar | /kadd/ /katt/ |
كَد كَت |
Worked hard Threw something (Liquid) |
|
/oː/ | Bilabial_ Alveolar | /boːse/ /boːt/ |
بَوس بَوت |
Kiss Football boot |
Alveolar_Alveolar | /doːla/ /doːriː/ |
دَولة دَوري |
Country League |
|
Velar_Alveolar | /koːt/ /koːla/ |
كَوت كولا |
Jacket Cola |
|
/eː/ | Bilabial_ Alveolar | /beːt/ /beːz/ |
بَيت بَيز |
House Oven mitts |
Alveolar_Alveolar | /deːsam/ /teːss/ |
دَيسم تَيس |
A male name Male-goat |
|
Velar_Alveolar | /geːd/ /keːd/ |
قَيد كَيد |
Constraint Cunning |
-
aIn the Arabic script, ħarakāt (“diacritics”) are used to indicate the short vowels and placed below or above the root consonants.
Average of the formant frequencies (at 20, 30, 40, 50, 60, 70, and 80 %) and vowel duration for each Hijazi Arabic vowel.
F0 (Hz) | F1 (Hz) | F2 (Hz) | F3 (Hz) | Duration (ms) | ||
---|---|---|---|---|---|---|
/uː/ | 20 % | 180 | 428 | 992 | 2,663 | 169 |
30 % | 181 | 431 | 954 | 2,689 | ||
40 % | 182 | 432 | 932 | 2,709 | ||
50 % | 184 | 435 | 924 | 2,720 | ||
60 % | 185 | 440 | 966 | 2,732 | ||
70 % | 186 | 446 | 1,021 | 2,729 | ||
80 % | 186 | 452 | 1,133 | 2,714 | ||
/iː/ | 20 % | 174 | 379 | 2,173 | 2,757 | 169 |
30 % | 174 | 381 | 2,193 | 2,770 | ||
40 % | 175 | 379 | 2,197 | 2,763 | ||
50 % | 176 | 380 | 2,220 | 2,756 | ||
60 % | 177 | 384 | 2,206 | 2,751 | ||
70 % | 178 | 390 | 2,173 | 2,723 | ||
80 % | 179 | 393 | 2,153 | 2,704 | ||
/aː/ | 20 % | 173 | 633 | 1,573 | 2,571 | 175 |
30 % | 173 | 670 | 1,538 | 2,548 | ||
40 % | 174 | 688 | 1,500 | 2,533 | ||
50 % | 175 | 702 | 1,491 | 2,514 | ||
60 % | 175 | 716 | 1,471 | 2,538 | ||
70 % | 176 | 716 | 1,464 | 2,538 | ||
80 % | 178 | 700 | 1,462 | 2,510 | ||
/eː/ | 20 % | 176 | 507 | 1,941 | 2,610 | 187 |
30 % | 178 | 496 | 1,999 | 2,605 | ||
40 % | 180 | 480 | 2,046 | 2,610 | ||
50 % | 183 | 464 | 2,089 | 2,622 | ||
60 % | 186 | 449 | 2,107 | 2,639 | ||
70 % | 187 | 436 | 2,105 | 2,645 | ||
80 % | 187 | 426 | 2,121 | 2,654 | ||
/oː/ | 20 % | 178 | 515 | 1,194 | 2,608 | 172 |
30 % | 179 | 522 | 1,139 | 2,629 | ||
40 % | 180 | 518 | 1,090 | 2,658 | ||
50 % | 181 | 510 | 1,037 | 2,663 | ||
60 % | 183 | 506 | 1,040 | 2,669 | ||
70 % | 184 | 502 | 1,065 | 2,674 | ||
80 % | 185 | 499 | 1,136 | 2,653 | ||
/u/ | 20 % | 181 | 466 | 1,213 | 2,614 | 80 |
30 % | 181 | 476 | 1,206 | 2,613 | ||
40 % | 182 | 482 | 1,203 | 2,606 | ||
50 % | 183 | 488 | 1,214 | 2,607 | ||
60 % | 184 | 491 | 1,230 | 2,611 | ||
70 % | 186 | 491 | 1,243 | 2,610 | ||
80 % | 186 | 487 | 1,249 | 2,604 | ||
/i/ | 20 % | 177 | 444 | 1,969 | 2,642 | 79 |
30 % | 177 | 455 | 1,968 | 2,644 | ||
40 % | 177 | 463 | 1,962 | 2,644 | ||
50 % | 178 | 469 | 1,953 | 2,648 | ||
60 % | 179 | 472 | 1,947 | 2,640 | ||
70 % | 180 | 471 | 1,915 | 2,627 | ||
80 % | 181 | 467 | 1,901 | 2,630 | ||
/a/ | 20 % | 176 | 547 | 1,720 | 2,582 | 92 |
30 % | 177 | 568 | 1,721 | 2,565 | ||
40 % | 177 | 581 | 1,723 | 2,559 | ||
50 % | 179 | 586 | 1,727 | 2,544 | ||
60 % | 180 | 586 | 1,725 | 2,546 | ||
70 % | 182 | 577 | 1,720 | 2,528 | ||
80 % | 184 | 563 | 1,731 | 2,517 |
The statistical results of the acoustic cues of Hijazi Arabic vowels; grey cells denote non-significant results.
F0 | F1 | F2 | F3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Diff | p< | Diff | p< | Diff | p< | Diff | p< | ||
/aː/ vs. /a/ | Static model | −4.03 | 0.9832 | 115.1 | 0.0001 | −235.4 | 0.0001 | −29.7 | 0.9392 |
Offset model | 0.78 | 0.9964 | 27.8 | 0.0001 | 81.4 | 0.0001 | 32.3 | 0.5303 | |
Slope model | −0.05 | 0.0001 | 0.28 | 0.0001 | −0.8 | 0.0001 | 0.36 | 0.5565 | |
Direction model (two-point) | −4.53 | 0.9689 | 111.6 | 0.0001 | −208.2 | 0.0001 | −9.03 | 0.9999 | |
Direction model (three-point) | −4.36 | 0.7543 | 112.8 | 0.0001 | −217.3 | 0.0001 | −15.9 | 0.9940 | |
Direction model (seven-point) | −4.44 | 0.0686 | 116.5 | 0.0001 | −224.0 | 0.0001 | −12.7 | 0.9249 | |
/uː/ vs. /u/ | Static model | 0.20 | 1.0000 | −53.1 | 0.0001 | −290.3 | 0.0001 | −112.9 | 0.0002 |
Offset model | −0.63 | 0.9991 | 1.02 | 0.9999 | −43.6 | 0.0679 | −12.2 | 0.9960 | |
Slope model | −0.01 | 0.9922 | −0.07 | 0.5969 | 0.30 | 0.7266 | 0.27 | 0.8425 | |
Direction model (two-point) | −0.46 | 1.0000 | −36.4 | 0.0001 | −167.9 | 0.0001 | −79.2 | 0.0001 | |
Direction model (three-point) | −0.24 | 1.0000 | −42.0 | 0.0001 | −208.7 | 0.0001 | −90.4 | 0.0001 | |
Direction model (seven-point) | −0.03 | 1.0000 | −45.1 | 0.0003 | −233.5 | 0.0001 | −98.7 | 0.0001 | |
/iː/ vs. /i/ | Static model | −2.45 | 0.9992 | −89.1 | 0.0001 | −266.6 | 0.0001 | −108.0 | 0.0005 |
Offset model | 1.68 | 0.7876 | 2.78 | 0.9954 | 26.8 | 0.5976 | 4.23 | 0.9999 | |
Slope model | −0.01 | 0.9890 | −0.19 | 0.0001 | 0.6 | 0.0001 | −0.15 | 0.9933 | |
Direction model (two-point) | −2.74 | 0.9982 | −68.8 | 0.0001 | −228.1 | 0.0001 | −94.8 | 0.0001 | |
Direction model (three-point) | −2.64 | 0.9742 | −75.6 | 0.0001 | −240.9 | 0.0001 | −99.1 | 0.0001 | |
Direction model (seven-point) | −2.60 | 0.5824 | −79.1 | 0.0001 | −243.0 | 0.0001 | −107.2 | 0.0001 | |
/oː/ vs. /eː/ | Static model | −1.88 | 0.9998 | 45.7 | 0.0001 | −1,051.7 | 0.0001 | 40.9 | 0.7404 |
Offset model | −3.9 | 0.0001 | −35.9 | 0.0001 | 19.2 | 0.8929 | −13.4 | 0.9931 | |
Slope model | −0.01 | 0.8251 | 0.39 | 0.0001 | −1.3 | 0.0001 | 0.01 | 1.0000 | |
Direction model (two-point) | −0.46 | 1.0000 | 41.3 | 0.0001 | −865.8 | 0.0001 | 79.2 | 0.3511 | |
Direction model (three-point) | −0.82 | 0.9999 | 42.1 | 0.0001 | −927.8 | 0.0001 | 12.7 | 0.9985 | |
Direction model (seven-point) | −1.08 | 0.9935 | 44.7 | 0.0001 | −958.1 | 0.0001 | 24.4 | 0.3007 | |
/eː/ vs. /i/ | Static model | −4.74 | 0.9584 | 4.31 | 0.9942 | −135.6 | 0.0001 | 26.2 | 0.9694 |
Offset model | −6.69 | 0.0001 | −55.4 | 0.0001 | −105.7 | 0.0001 | −33.3 | 0.4902 | |
Slope model | −0.02 | 0.1979 | 0.71 | 0.0001 | −1.81 | 0.0001 | −0.42 | 0.3351 | |
Direction model (two-point) | −2.57 | 0.9988 | −11.4 | 0.9998 | −112.1 | 0.0006 | 3.91 | 1.0000 | |
Direction model (three-point) | −3.29 | 0.9225 | −6.17 | 0.9999 | −117.3 | 0.0001 | 11.3 | 0.9992 | |
Direction model (seven-point) | −3.73 | 0.1567 | −2.50 | 0.9999 | −120.1 | 0.0001 | 12.8 | 0.9195 | |
/oː/ vs. /u/ | Static model | 2.08 | 0.9997 | −19.4 | 0.0831 | 177.3 | 0.0001 | −56.1 | 0.3436 |
Offset model | −0.90 | 0.9916 | −24.2 | 0.0001 | 15.9 | 0.9586 | −30.2 | 0.6174 | |
Slope model | 0.01 | 1.0000 | 0.27 | 0.0001 | 1.06 | 0.0001 | −0.33 | 0.6564 | |
Direction model (two-point) | 2.35 | 0.9993 | −25.7 | 0.0001 | 123.4 | 0.0001 | −21.4 | 0.9964 | |
Direction model (three-point) | 2.26 | 0.9892 | −28.6 | 0.0001 | 153.0 | 0.0001 | −33.0 | 0.7804 | |
Direction model (seven-point) | −0.03 | 1.0000 | −30.2 | 0.0001 | 160.9 | 0.0001 | −41.5 | 0.0056 |
References
Abdoh, Eman. 2011. A study of the phonological structure and representation of first words in Arabic. Leicester, UK: University of Leicester PhD thesis.Search in Google Scholar
Adank, Patti, Roel Smits & Roeland van Hout. 2004a. A comparison of vowel normalization procedures for language variation research. The Journal of the Acoustical Society of America 116(5). 3099–3107. https://doi.org/10.1121/1.1795335.Search in Google Scholar
Adank, Patti, Roeland van Hout & Roel Smits. 2004b. An acoustic description of the vowels of Northern and Southern Standard Dutch. The Journal of the Acoustical Society of America 116(3). 1729–1738. https://doi.org/10.1121/1.1779271.Search in Google Scholar
Al-Mazrouei, Aisha, Aisha Negm & Vladimir Kulikov. 2023. The vowel system of Qatari Arabic: Evidence for peripheral/non-peripheral distinction between long and short vowels. Journal of the International Phonetic Association 53(3). 1–19. https://doi.org/10.1017/S0025100323000117.Search in Google Scholar
Almbark, Rana & Sam Hellmuth. 2015. Acoustic analysis of the Syrian vowel system. Proceedings of the 18th International Congress of Phonetic Sciences (ICPhS). Glasgow, UK: The University of Glasgow.Search in Google Scholar
Almurashi, Wael, Jalal Al-Tamimi & Ghada Khattab. 2020. Static and dynamic cues in vowel production in Hijazi Arabic. The Journal of the Acoustical Society of America 147(4). 2917–2927. https://doi.org/10.1121/10.0001004.Search in Google Scholar
Al-Tamimi, Jalal. 2007a. Indices dynamiques et perception des voyelles: étude translinguistique en arabe dialectal et en français (Dynamic indices and vowel perception: translinguistic study in Arabic and in French dialects). Lyon, France: University Lyon PhD research. Available at: http://theses.univ-lyon2.fr/documents/lyon2/2007/al-tamimi_je.Search in Google Scholar
Al-Tamimi, Jalal. 2007b. Static and dynamic cues in vowel production: A cross dialectal study in Jordanian and Moroccan Arabic. In Proceedings of the 16th ICPhS, 541–544. Saarbrücken, Germany: Saarland University.Search in Google Scholar
Al-Tamimi, Jalal & Emmanuel Ferragne. 2005. Does vowel space size depend on language vowel inventories? Evidence from two Arabic dialects and French. Proceedings of the 9th European conference on speech communication and technology, 2465–2468. Lisbon, Portugal: International Speech Communication Association.10.21437/Interspeech.2005-756Search in Google Scholar
Alzaidi, Muhammad. 2014. Information structure and intonation in Hijazi Arabic. Colchester, UK: University of Essex PhD thesis.Search in Google Scholar
Arnaud, Vincent, Caroline Sigouina & Johanna-Pascale Roy. 2011. Acoustic description of Quebec French high vowels: First results. Proceedings of the 17th ICPhS, 244–247. Hong Kong, China: City University of Hong Kong.Search in Google Scholar
Baayen, Harald, Douglas Davidson & Douglas Bates. 2008. Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language 59(4). 390–412. https://doi.org/10.1016/j.jml.2007.12.005.Search in Google Scholar
Barr, Dale. 2013. Random effects structure for testing interactions in linear mixed-effects models. Quantitative Psychology and Measurement 4. 1–2. https://doi.org/10.3389/fpsyg.2013.00328.Search in Google Scholar
Barr, Dale, Roger Levy, Christoph Scheepers & Harry Tily. 2013. Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language 68(3). 255–278. https://doi.org/10.1016/j.jml.2012.11.001.Search in Google Scholar
Bates, Douglas, Martin Mächler, Ben Bolker & Steve Walker. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67(1). 1–48. https://doi.org/10.18637/jss.v067.i01.Search in Google Scholar
Boersma, Paul & David Weenink. 2022. Praat: Doing phonetics by computer. Available at: http://www.praat.org.Search in Google Scholar
Cardoso, Amanda. 2015. Dialectology, phonology, diachrony: Liverpool English realisations of PRICE and MOUTH. Edinburgh, UK: University of Edinburgh PhD research.Search in Google Scholar
Chladkova, Kateřina & Silke Hamann. 2011. High vowels in Southern British English: /u/-fronting does not result in merger. Proceedings of the 17th ICPhS, 476–479. Hong Kong, China: City University of Hong Kong.Search in Google Scholar
Clopper, Cynthia & David Pisoni. 2004. Some acoustic cues for the perceptual categorization of American English regional dialects. Journal of Phonetics 32(1). 111–140. https://doi.org/10.1016/S0095-4470(03)00009-3.Search in Google Scholar
Darcy, Isabelle & Joan Mora. 2015. Tongue movement in a second language: The case of Spanish/ei/-/e/ for English learners of Spanish. Proceedings of the 18th ICPhS. Glasgow, UK: The University of Glasgow.Search in Google Scholar
Elvin, Jaydene, Daniel Williams & Paola Escudero. 2016. Dynamic acoustic properties of monophthongs and diphthongs in Western Sydney Australian English. The Journal of the Acoustical Society of America 140(1). 576–581. https://doi.org/10.1121/1.4952387.Search in Google Scholar
Fabricius, Anne, Dominic Watt & Daniel Johnson. 2009. A comparison of three speaker-intrinsic vowel formant frequency normalization algorithms for sociophonetics. Language Variation and Change 21(3). 413–435. https://doi.org/10.1017/S0954394509990160.Search in Google Scholar
Farrington, Charlie, Tyler Kendall & Valerie Fridland. 2018. Vowel dynamics in the southern vowel shift. American Speech: A Quarterly of Linguistic Usage 93(2). 186–222. https://doi.org/10.1215/00031283-6926157.Search in Google Scholar
Ferguson, Sarah & Diane Kewley-Port. 2002. Vowel intelligibility in clear and conversational speech for normal-hearing and hearing-impaired listeners. The Journal of the Acoustical Society of America 112(1). 259–271. https://doi.org/10.1121/1.1482078.Search in Google Scholar
Fox, Robert. 1983. Perceptual structure of monophthongs and diphthongs in English. Language and Speech 26(1). 21–60. https://doi.org/10.1177/002383098302600103.Search in Google Scholar
Fox, Robert & Ewa Jacewicz. 2009. Cross-dialectal variation in formant dynamics of American English vowels. The Journal of the Acoustical Society of America 126(5). 2603–2618. https://doi.org/10.1121/1.3212921.Search in Google Scholar
Gottfried, Michael, James Miller & Donald Meyer. 1993. Three approaches to the classification of American English vowels. Journal of Phonetics 21(3). 205–229. https://doi.org/10.1016/S0095-4470(19)31337-3.Search in Google Scholar
Harrington, Jonathan & Stephen Cassidy. 1994. Dynamic and target theories of vowel classification: Evidence from monophthongs and diphthongs in Australian English. Language and Speech 37(4). 357–373. https://doi.org/10.1177/002383099403700402.Search in Google Scholar
Hillenbrand, James. 2013. Static and dynamic approaches to vowel perception. In Geoffrey Morrison & Peter Assmann (eds.), Vowel inherent spectral change, 9–30. Berlin: Springer.10.1007/978-3-642-14209-3_2Search in Google Scholar
Hillenbrand, James, Michael Clark & Terrance Nearey. 2001. Effects of consonant environment on vowel formant patterns. The Journal of the Acoustical Society of America 109(2). 748–763. https://doi.org/10.1121/1.1337959.Search in Google Scholar
Hillenbrand, James, Laura Getty, Michael Clark & Kimberlee Wheeler. 1995. Acoustic characteristics of American English vowels. The Journal of the Acoustical Society of America 97(5). 3099–3111. https://doi.org/10.1121/1.411872.Search in Google Scholar
Hillenbrand, James & Terrance Nearey. 1999. Identification of resynthesized /hvd/ utterances: Effects of formant contour. The Journal of the Acoustical Society of America 105(6). 3509–3523. https://doi.org/10.1121/1.424676.Search in Google Scholar
Hothorn, Torsten, Frank Bretz, Peter Westfall, Richard Heiberger, Andre Schuetzenmeister & Susan Scheibe. 2016. Package “multcomp”: Simultaneous inference in general parametric models. R package version 1.4-16. Available at: http://cran.stat.sfu.ca/web/packages/multcomp/multcomp.pdf.Search in Google Scholar
Huang, Caroline. 1992. Modelling human vowel identification using aspects of formant trajectory and context. In Yoh’ichi Tohkura, Eric Vatikiotis-Bateson & Yoshinori Sagisaka (eds.), Speech perception, production and linguistic structure, 43–61. Amsterdam: IOS Press.Search in Google Scholar
Jin, Su-Hyun & Chang Liu. 2013. The vowel inherent spectral change of English vowels spoken by native and non-native speakers. The Journal of the Acoustical Society of America 133(5). 363–369. https://doi.org/10.1121/1.4798620.Search in Google Scholar
Khattab, Ghada. 2007. A phonetic study of gemination in Lebanese Arabic. Proceedings of the 16th ICPhS, 153–158. Saarbrücken, Germany: Saarland University.Search in Google Scholar
Khattab, Ghada & Jalal Al-Tamimi. 2008. Durational cues for gemination in Lebanese Arabic. Language and Linguistics 11(22). 39–55.Search in Google Scholar
Lobanov, Boris. 1971. Classification of Russian vowels spoken by different speakers. The Journal of the Acoustical Society of America 49. 606–608. https://doi.org/10.1121/1.1912396.Search in Google Scholar
Manuel, Sharon. 1990. The role of contrast in limiting vowel-to-vowel coarticulation in different languages. The Journal of the Acoustical Society of America 88(3). 1286–1298. https://doi.org/10.1121/1.399705.Search in Google Scholar
McDougall, Kirsty. 2002. Speaker-characterising properties of formant dynamics: A case study. Proceedings of the 9th Australian international conference on speech science and technology, 403–408. Melbourne: Australian Speech Science and Technology Association.Search in Google Scholar
McDougall, Kirsty. 2006. Dynamic features of speech and the characterisation of speakers: Towards a new approach using formant frequencies. International Journal of Speech Language and the Law 13(1). 89–126. https://doi.org/10.1558/sll.2006.13.1.89.Search in Google Scholar
McDougall, Kirsty & Francis Nolan. 2007. Discrimination of speakers using the formant dynamics of /uː/ in British English. Proceedings of the 16th ICPhS, 1825–1828. Saarbrücken, Germany: Saarland University.Search in Google Scholar
Meunier, Christine, Cheryl Frenck-Mestre, Taissia Lelekov-Boissard & Martine Le Besnerais. 2003. Production and perception of vowels: Does the density of the system play a role? Proceedings of the 15th ICPhS, 723–726. Barcelona, Spain: Causal Productions.Search in Google Scholar
Mok, Peggy. 2013. Does vowel inventory density affect vowel-to-vowel coarticulation? Language and Speech 56(2). 191–209. https://doi.org/10.1177/0023830912443948.Search in Google Scholar
Morrison, Geoffrey & Peter Assmann. 2013. Vowel inherent spectral change. Berlin: Springer.10.1007/978-3-642-14209-3Search in Google Scholar
Morrison, Geoffrey & Terrance Nearey. 2007. Testing theories of vowel inherent spectral change. The Journal of the Acoustical Society of America 122(1). 15–22. https://doi.org/10.1121/1.2739111.Search in Google Scholar
Nearey, Terrance. 2013. Vowel inherent spectral change in vowels in North American English. In Geoffrey Morrison & Peter Assmann (eds.), Vowel inherent spectral change, 49–85. Berlin: Springer.10.1007/978-3-642-14209-3_4Search in Google Scholar
Nearey, Terrance & Peter Assmann. 1986. Modeling the role of inherent spectral change in vowel identification. The Journal of the Acoustical Society of America 80(5). 1297–1308. https://doi.org/10.1121/1.394433.Search in Google Scholar
Neel, Amy. 2004. Formant detail needed for vowel identification. Acoustics Research Letters Online 5(4). 125–131. https://doi.org/10.1121/1.1764452.Search in Google Scholar
Oh, Eunjin. 2013. Dynamic spectral patterns of American English front monophthong vowels produced by Korean-English bilingual speakers and Korean late learners of English. Linguistic Research 30(2). 293–312. https://doi.org/10.17250/khisli.30.2.201308.007.Search in Google Scholar
Peterson, Gordon & Harold Barney. 1952. Control methods used in a study of the vowels. The Journal of the Acoustical Society of America 24(2). 175–184. https://doi.org/10.1121/1.1906875.Search in Google Scholar
Pinheiro, José, Douglas Bates, Saikat DebRoy, Deepayan Sarkar, Siem Heisterkamp & Bert Van Willigen. 2017. Package “nlme”. Linear and nonlinear mixed effects models. R package version 3.1-152. Available at: https://CRAN.R-project.org/package=nlme.Search in Google Scholar
R Core Team. 2022. R: A language and environment for statistical computing (version 4.0.4). Vienna, Austria: R Foundation for Statistical Computing. [Software Resource]. Available at: https://www.R-project.org/.Search in Google Scholar
Rosner, Burton & John Pickering. 1994. Vowel perception and production. Oxford: Oxford University Press.10.1093/acprof:oso/9780198521389.001.0001Search in Google Scholar
RStudio. 2022. Rstudio: Integrated development environment for R (version 1.4.1103). Boston, MA: RStudio. [Software Resource]. Available at: https://rstudio.com/.Search in Google Scholar
Schwartz, Geoffrey. 2021. The phonology of vowel VISC-osity–acoustic evidence and representational implications. Glossa: A Journal of General Linguistics 6(1). 1–30. https://doi.org/10.5334/gjgl.1182.Search in Google Scholar
Singmann, Henrik, Ben Bolker, Jake Westfall, Frederik Aust, Mattan Ben-Shachar, Søren Højsgaard, John Fox, Michael Lawrence, Ulf Mertens, Jonathon Love, Russell Lenth & Rune Christensen. 2018. afex: Analysis of factorial experiments. R Package Version 0.28-1. Available at: https://CRAN.R-project.org/package=afex.Search in Google Scholar
Slifka, Janet. 2003. Tense/lax vowel classification using dynamic spectral cues. Proceedings of the 15th ICPhS, 921–924. Barcelona, Spain: Causal Productions.Search in Google Scholar
Stevens, Kenneth & Arthur S. House. 1963. Perturbation of vowel articulations by consonantal context: An acoustical study. Journal of Speech and Hearing Research 6(2). 111–128. https://doi.org/10.1044/jshr.0602.111.Search in Google Scholar
Tiffany, William. 1953. Vowel recognition as a function of duration, frequency modulation and phonetic context. The Journal of Speech and Hearing Disorders 18(3). 289–301. https://doi.org/10.1044/jshd.1803.289.Search in Google Scholar
Van Son, Rob & Louis Pols. 1992. Formant movements of Dutch vowels in a text, read at normal and fast rate. The Journal of the Acoustical Society of America 92(1). 121–127. https://doi.org/10.1121/1.404277.Search in Google Scholar
Venables, Bill & Brian Ripley. 2002. Modern applied statistics with S, 4th edn. New York: Springer. R package version 7.3-53.1.10.1007/978-0-387-21706-2Search in Google Scholar
Watson, Catherine & Jonathan Harrington. 1999. Acoustic evidence for dynamic formant trajectories in Australian English vowels. The Journal of the Acoustical Society of America 106(1). 458–468. https://doi.org/10.1121/1.427069.Search in Google Scholar
Wickham, Hadley. 2016. ggplot2: Elegant graphics for data analysis. New York: Springer-Verlag. R package version 3.3.3. Available at: https://ggplot2.tidyverse.org.Search in Google Scholar
Wickham, Hadley. 2017. Package tidyverse: Easily install and load the “tidyverse”. R package version 1.3.0. Available at: https://cran.r-project.org/web/packages/tidyverse/tidyverse.pdf.10.32614/CRAN.package.tidyverseSearch in Google Scholar
Wickham, Hadley, Romain François, Lionel Henry & Kirill Müller. 2019. Dplyr: A grammar of data manipulation. R package version 1.0.4. Available at: https://CRAN.R-project.org/package=dplyr.Search in Google Scholar
Williams, Daniel & Paola Escudero. 2014. A cross-dialectal acoustic comparison of vowels in Northern and Southern British English. The Journal of the Acoustical Society of America 136(5). 2751–2761. https://doi.org/10.1121/1.4896471.Search in Google Scholar
Wood, Simon. 2015. Package “mgcv”. R package version 1.8-34. Available at: http://cran.r-project.org/web/packages/mgcv/mgcv.pdf.Search in Google Scholar
Yang, Byunggon. 1996. A comparative study of American English and Korean vowels produced by male and female speakers. Journal of Phonetics 24(2). 245–261. https://doi.org/10.1006/jpho.1996.0013.Search in Google Scholar
Yuan, Jiahong. 2013. The spectral dynamics of vowels in Mandarin Chinese. Proceedings of the 14th annual conference of the International Speech Communication Association, 1193–1197. Lyon, France: International Speech Communication Association.10.21437/Interspeech.2013-18Search in Google Scholar
Zahorian, Stephen & Amir Jagharghi. 1993. Spectral-shape features versus formants as acoustic correlates for vowels. The Journal of the Acoustical Society of America 94(4). 1966–1982. https://doi.org/10.1121/1.407520.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston