Home Population, Institutions, and Violent Conflicts – How Important is Population Pressure in Violent Resource-Based Conflicts?
Article
Licensed
Unlicensed Requires Authentication

Population, Institutions, and Violent Conflicts – How Important is Population Pressure in Violent Resource-Based Conflicts?

  • Kwami Adanu ORCID logo EMAIL logo
Published/Copyright: August 1, 2023

Abstract

This paper examines the moderating role of institutions in explaining the effects of population density, income, and high-valued natural resources (oil) on violent conflict events. Panel-Corrected Standard Errors and Poisson Pseudo Maximum Likelihood estimators were applied. Results show that population density beyond 2293 persons per square kilometre increases violent conflict events. Further, institutional quality has a moderating effect on violent conflict events – stronger corruption control reduces the positive effect of significant oil production on violent conflict events and weakens the negative effect of per capita income on such events. The results suggest that reducing violent conflict events requires at least three things; (1) keeping population density below 2293 persons per square kilometre, (2) investing in institutional quality improvements, and (3) raising incomes.

JEL Classification: D74; Q01; Q34

Corresponding author: Kwami Adanu, Department of Economics, Ghana Institute of Management and Public Administration (GIMPA), Green Hill Drive, Accra, Ghana, Email:

Appendix A
Table 1:

Summary data on variables.

Variable Observation Mean Standard deviation Min Max
Annual events 1509 93.665 662.228 0 13,223
Population density 1509 128.520 219.679 2.103 2017.274
GDP per capita 1509 5665.107 9002.309 187.517 63,251.52
Oil 1509 0.402 0.490 0 1
Oil price 1509 76.269 32.159 20.190 128.010
Regulatory quality 1509 36.284 21.351 0 90.430
Corruption control 1509 33.975 22.050 0 87.204
Rule of law 1509 34.490 21.334 0.469 87.5
Corruption control – Vdem 1504 65.600 21.8 11.3 96.6
Table 2:

Pesaran (2004) test for cross-sectional dependence null: no cross-sectional dependence exists.

Tests Statistic p-Value
Annual events 13.394 0.000
Table 3:

Pesaran (2007) panel unit root test null: series is I(1).

Variables Levels First difference
Without trend With trend Without trend With trend
Statistic p-Value Statistic p-Value Statistic p-Value Statistic p-Value
Annual events 9.857 1.000 9.747 1.000 −14.091 0.000 −11.250 0.000
GDP per capita 9.627 1.000 11.324 1.000 −8.823 0.000 −7.995 0.000
Population density 16.486 1.000 15.925 1.000 −0.099 0.461 7.887 0.000
Regulatory quality 2.581 0.995 1.812 0.965 −23.542 0.000 −20.557 0.000
Corruption control 4.331 1.000 7.139 1.000 −18.232 0.000 −14.971 0.000
Rule of law 3.263 0.999 4.732 1.000 356.681 0.000 301.311 0.000
Table 4:

Kao and Westerlund panel cointegration tests.

Kao test for cointegration Westerlund cointegration test Westerlund cointegration test
Ho: no cointegration Ho: no cointegration Ho: no cointegration
Ha: all panels cointegrated Ha: all panels cointegrated Ha: some panels are cointegrated
Unadjusted modified Dickey–Fuller t −1.7577 (0.0394)
Unadjusted Dickey-Fuller t 3.7194 (0.0001)
Variance rank −2.9865 (0.0014) −1.8137 (0.0349)
Table 5a:

Results of PCSE and PPML Estimates for annual events of Violent Conflicts (Uses oil production and WGI measure of corruption).

Variables PCSE PPML
(1) (2) (1) (2)
Annual events Annual events Annual events Annual events
Population density 0.452 0.210 −0.0660*** −0.0555***
(0.395) (0.281) (0.0126) (0.0112)
Population density square −0.00104*** −0.00121*** 1.53e−05*** 1.21e−05***
(0.000101) (0.000153) (3.66e−06) (3.96e−06)
Population density*GDP per capita −8.92e−05*** −8.26e−05*** 5.29e−06*** 5.83e−06***
(1.16e−05) (1.83e−05) (1.49e−06) (1.47e−06)
Population density*oil 5.157*** 4.927*** 0.0178** 0.0186**
(0.545) (0.851) (0.00879) (0.00865)
Population density*reg. quality −0.0146*** 0.000183*
(0.00462) (0.000109)
Population density*corrupt. −0.00405 4.57e−05
control (0.00285) (6.19e−05)
GDP per capita −0.0361*** −0.0368*** −0.00102*** −0.00103***
(0.00889) (0.00695) (0.000325) (0.000269)
GDP per capita*oil 0.0180*** 0.0152*** 0.000535 0.000717**
(0.00692) (0.00579) (0.000353) (0.000364)
GDP per capita*reg. quality 0.000541*** 1.17e−05*
(9.07e−05) (6.82e−06)
GDP per capita*corrupt. control 0.000637*** 9.56e−06***
(0.000108) (3.39e−06)
Oil 1729*** 1475*** 6.574*** 6.460***
(367.5) (378.0) (1.338) (0.967)
Oil*reg. quality −18.67*** 0.00715
(2.646) (0.0479)
Oil*corrupt. control −18.88*** −0.0910**
(3.051) (0.0383)
Reg. quality 4.550*** −0.0341
(0.929) (0.0452)
Corrupt. control. 1.190*** −0.0224
(0.445) (0.0268)
Average_Events 0.956*** 0.966*** −0.000578 0.00368
(0.0255) (0.00663) (0.00838) (0.00461)
Average_GDP per capita −0.0156 −0.0180 −0.000356 0.00434
(0.0248) (0.0127) (0.00900) (0.00524)
Average_Reg. quality −10.77* −0.789
(5.594) (2.196)
Average_Corrupt. control. 1.952 0.492
(4.254) (1.651)
Average_Population density 1.038 1.619*** 0.0889 −0.0295
(0.730) (0.376) (0.247) (0.121)
Constant 286.9 −50.93 22.20 −35.29
(217.6) (202.6) (98.57) (72.12)
Observations 1509 1509 1460 1460
  1. Standard errors in parentheses, ***p < 0.01, **p < 0.05, *p < 0.1. Year and Country fixed effects included.

Table 5b:

Results of PCSE and PPML estimates for annual events of violent onflicts (uses oil price and VDEM measure of corruption).

Variables PCSE PPML
(1) (2) (1) (2)
Annual events Annual events Annual events Annual events
Population density −1.376*** −3.060*** −0.0524*** −0.0527***
(0.362) (0.254) (0.0110) (0.0138)
Population density 0.000480*** 0.000334*** 8.64e−06** 9.07e−06*
(6.34e−05) (6.87e−05) (3.97e−06) (4.77e−06)
Population density*GDP per capita −3.60e−05*** 1.50e−05*** 4.62e−06*** 5.32e−06***
(8.17e−06) (5.27e−06) (1.41e−06) (1.36e−06)
Population density*oil price 0.00274*** 0.00282*** 3.01e−05*** 3.57e−05***
(0.000676) (0.000614) (8.43e−06) (9.15e−06)
Population density*reg. quality −0.000454 0.000143*
(0.00379) (8.10e−05)
Population density*corrupt. control – vdem 1.865*** −0.00132
(0.336) (0.0108)
GDP per capita −0.0141*** −0.00483*** −0.000480* −0.000485
(0.00530) (0.00112) (0.000286) (0.000372)
GDP per capita*oil price 1.45e−06 −1.96e−05* −1.68e−06* −1.78e−06**
(1.06e−05) (1.05e−05) (9.24e−07) (8.71e−07)
GDP per capita*reg. quality 0.000212*** 8.30e−06
(6.68e−05) (5.71e−06)
GDP per capita*corrupt. control – vdem 0.00651 0.000204
(0.00532) (0.000465)
Oil price −1.502*** 2.109** −0.0191 0.0212
(0.447) (1.011) (0.0134) (0.0189)
Oil price*reg. quality 0.0294** 0.000412
(0.0130) (0.000264)
Corrupt. control – vdem*oil price −3.815*** −0.0393**
(1.532) (0.0188)
Reg. quality −5.837*** −0.0507*
(1.494) (0.0269)
Corrupt. control – vdem 292.0*** 2.463
(106.9) (3.284)
Average_Reg. quality 0.658 −0.0203
(6.048) (2.175)
Average_Events 0.979*** 0.995*** 0.00151 0.00200
(0.0254) (0.00564) (0.00797) (0.00382)
Average_GDP per cap. 0.0219 0.0374*** 0.000437 0.00116
(0.0288) (0.151) (0.00866) (0.00466)
Average_Population density 0.891 0.499 0.0705 0.0591
(0.827) (0.333) (0.240) (0.143)
Average_Corrupt. control – vdem −446.3*** 5.938
(100.0) (38.93)
Constant 175.2 73.00 −8.254 −18.66
(243.3) (117.3) (96.45) (31.06)
Observations 1509 1504 1460 1455
  1. Standard errors in parentheses, ***p < 0.01, **p < 0.05, *p < 0.1. Year and Country fixed effects included.

Table 6:

Results of PCSE and PPML estimates for annual events of violent conflicts (uses oil production, &WGI measure of corruption and rule of law).

Variables PCSE PPML
(1) (2) (3) (4)
Annual events Annual events Annual events Annual events
Population density 0.00341 0.210 −0.0555*** −0.0555***
(0.315) (0.281) (0.0116) (0.0112)
Population density square −0.000722*** −0.00121*** 2.03e−05*** 1.21e−05***
(0.000170) (0.000153) (5.68e−06) (3.96e−06)
Population density*GDP per capita −5.71e−05*** −8.26e−05*** 4.56e−06*** 5.83e−06***
(1.45e−05) (1.83e−05) (1.60e−06) (1.47e−06)
Population density*oil 4.542*** 4.927*** 0.0217** 0.0186**
(0.822) (0.851) (0.00904) (0.00865)
Population density*reg. quality −0.0238*** −0.000233**
(0.00463) (0.000110)
Population density*corrupt. control −0.00405 4.57e−05
(0.00285) (6.19e−05)
GDP per capita −0.0380*** −0.0368*** −0.000528** −0.00103***
(0.00893) (0.00695) (0.000230) (0.000269)
GDP per capita*oil 0.0291*** 0.0152*** 0.000429 0.000717**
(0.00693) (0.00579) (0.000342) (0.000364)
GDP per capita*reg. quality 0.000412*** 4.03e−08
(7.49e−05) (4.26e−06)
GDP per capita*corrupt. control 0.000637*** 9.56e−06***
(0.000108) (3.39e−06)
Oil 1390*** 1475*** 5.968*** 6.460***
(369.9) (378.0) (1.219) (0.967)
Oil*reg. quality −22.15*** −0.0563
(2.275) (0.0426)
(366.4) (372.1) (1.137) (1.024)
Oil*corrupt. control −18.88*** −0.0910**
(3.051) (0.0383)
Reg. quality 3.807*** −0.0253
(0.817) (0.0296)
Corrupt. control 1.190*** −0.0224
(0.445) (0.0268)
Average_Events 1.014*** 0.966*** 0.00717 0.00368
(0.0288) (0.00663) (0.0132) (0.00461)
Average_GDP per capita 0.0495* −0.0180 0.00728 0.00434
(0.0287) (0.0127) (0.0126) (0.00524)
Average_Reg. quality 0.202 0.707
(4.872) (1.776)
Average_Corrupt. control 1.952 0.492
(4.254) (1.651)
Average_Population density 0.218 1.619*** −0.139 −0.0295
(0.827) (0.376) (0.391) (0.121)
Constant −119.4 −50.93 −45.55 −35.29
(253.8) (202.6) (83.50) (72.12)
Observations 1509 1509 1460 1460
  1. Standard errors in parentheses, ***p < 0.01, **p < 0.05, *p < 0.1. Year and Country fixed effects included.

Table 7:

Results of negative binomial regression for annual events of violent conflicts.

Variables (1) (2)
Annual events Annual events
Population density −0.00231** −0.00405***
(0.000997) (0.000952)
Population density square 2.17e−06*** 2.59e−06***
(6.96e−07) (7.47e−07)
Population density*GDP per capita 2.43e−07*** 1.61e−07**
(8.02e−08) (7.90e−08)
Population density*oil −0.00266** −0.00369***
(0.00128) (0.00117)
Population density *reg. quality −5.39e−05**
(2.52e−05)
Population density*corrupt. control 4.24e−06
(1.81e−05)
GDP per capita −7.31e−05 −7.08e−05
(5.54e−05) (5.55e−05)
GDP per capita*oil −9.06e−05** −0.000102**
(4.28e−05) (4.43e−05)
GDP per capita*Reg. quality −8.40e−07
(7.70e−07)
GDP per capita* corrupt. control −9.24e−07
(7.44e−07)
Oil −0.237 −0.163
(0.198) (0.200)
Oil*Reg. quality 0.00668
(0.00667)
Oil*Corrupt. control 0.00990
(0.00683)
Reg. Quality 0.00921**
(0.00436)
Corrupt. control 0.00960**
(0.00416)
Average_Events 0.00166*** 0.00135***
(0.000398) (0.000380)
Average_GDP per capita −0.000300 −0.000352
(0.000284) (0.000269)
Average_Reg. quality 0.0577
(0.0626)
Average_Corrupt. control 0.0561
(0.0789)
Average_Population density 0.0262*** 0.0324***
(0.00886) (0.00700)
Constant −4.826** −5.225
(2.420) (3.425)
Observations 1460 1460
  1. Standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1. Year and country fixed effects excluded. Regression with Year and country fixed effects is non-convergent.

A. 1 List of countries included in the study
1 Afghanistan 41 Lebanon
2 Albania 42 Lesotho
3 Algeria 43 Liberia
4 Angola 44 Libya
5 Bahrain 45 Madagascar
6 Bangladesh 46 Malawi
7 Benin 47 Malaysia
8 Bosnia and Herzegovina 48 Mali
9 Botswana 49 Mauritania
10 Burkina Faso 50 Montenegro
11 Burundi 51 Morocco
12 Cambodia 52 Mozambique
13 Cameroon 53 Myanmar
14 Central African Republic 54 Namibia
15 Chad 55 Nepal
16 Croatia 56 Niger
17 Cyprus 57 Nigeria
18 Democratic rep of Congo 58 North Macedonia
19 Egypt 59 Pakistan
20 Equatorial Guinea 60 Philippines
21 Eritrea 61 Republic of Congo
22 Ethiopia 62 Russia
23 Eswatini 63 Rwanda
24 Gabon 64 Saudi Arabia
25 Gambia 65 Senegal
26 Ghana 66 Serbia
27 Greece 67 Sierra Leone
28 Guinea 68 South Africa
29 Guinea-Bissau 69 Sri Lanka
30 India 70 Tanzania
31 Indonesia 71 Thailand
32 Iran 72 Togo
33 Iraq 73 Tunisia
34 Israel 74 Turkey
35 Ivory Coast 75 Uganda
36 Jordan 76 Ukraine
37 Kenya 77 United Arab Emirates
38 Kosovo 78 Vietnam
39 Kuwait 79 Yemen
40 Laos 80 Zambia
81 Zimbabwe

References

Abreo, C., R. Bustillo, and C. Rodriguez. 2021. “The Role of Institutional Quality in the International Trade of a Latin American Country: Evidence from Colombian Export Performance.” Journal of Economic Structures 10 (1): 1–21. https://doi.org/10.1186/s40008-021-00253-5.Search in Google Scholar

Acemoglu, D., L. Fergusson, and S. Johnson. 2020. “Population and Conflict.” The Review of Economic Studies 87 (4): 1565–604. https://doi.org/10.1093/restud/rdz042.Search in Google Scholar

Akinbode, S. O., P. A. Okuneye, and C. O. Onyeukwu. 2022. “Inequality, Population Growth, and Hunger in Sub-saharan Africa.” SN Social Sciences 2 (11): 250. https://doi.org/10.1007/s43545-022-00554-x.Search in Google Scholar

Baltagi, B. H., Q. Feng, and C. Kao. 2012. “A Lagrange Multiplier Test for Cross-Sectional Dependence in a Fixed Effects Panel Data Model.” Journal of Econometrics 170 (1): 164–77. https://doi.org/10.1016/j.jeconom.2012.04.004.Search in Google Scholar

Bas, M. A., and R. Schub. 2017. “The Theoretical and Empirical Approaches to Uncertainty and Conflict in International Relations.” In Oxford Research Encyclopedia of Politics, edited by W. R. Thompson, 177–94. Oxford: Oxford University Press.10.1093/acrefore/9780190228637.013.537Search in Google Scholar

Bazzi, S., R. A. Blair, C. Blattman, O. Dube, M. Gudgeon, and R. Peck. 2022. “The Promise and Pitfalls of Conflict Prediction: Evidence from Colombia and Indonesia.” The Review of Economics and Statistics 104 (4): 764–79. https://doi.org/10.1162/rest_a_01016.Search in Google Scholar

Beck, N., and J. Katz. 1995. “What to Do (And Not to Do) with Time-Series Cross-Section Data.” American Political Science Review 89 (3): 634–47. https://doi.org/10.2307/2082979.Search in Google Scholar

Berman, N., M. Couttenier, D. Rohner, and M. Thoenig. 2017. “This Mine Is Mine! How Minerals Fuel Conflicts in Africa.” The American Economic Review 107 (6): 1564–610. https://doi.org/10.1257/aer.20150774.Search in Google Scholar

Blackwell, M., and M. P. Olson. 2022. “Reducing Model Misspecification and Bias in the Estimation of Interactions.” Political Analysis 30 (4): 495–514. https://doi.org/10.1017/pan.2021.19.Search in Google Scholar

Bleaney, M., and A. Dimico. 2017. “Ethnic Diversity and Conflict.” Journal of Institutional Economics 13 (2): 357–78. https://doi.org/10.1017/s1744137416000369.Search in Google Scholar

Bodea, C., M. Higashijima, and R. J. Singh. 2016. “Oil and Civil Conflict: Can Public Spending Have a Mitigation Effect?” World Development 78: 1–12. https://doi.org/10.1016/j.worlddev.2015.09.004.Search in Google Scholar

Boserup, E. 1965. The Conditions of Agricultural Growth. London: George Allen and Urwin.Search in Google Scholar

Breusch, T. S., and A. R. Pagan. 1980. “The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics.” The Review of Economic Studies 47 (1): 239–53. https://doi.org/10.2307/2297111.Search in Google Scholar

Brückner, M. 2010. “Population Size and Civil Conflict Risk: Is There a Causal Link?” The Economic Journal 120 (544): 535–50. https://doi.org/10.1111/j.1468-0297.2010.02352.x.Search in Google Scholar

Buhaug, H., and J. K. Rød. 2006. “Local Determinants of African Civil Wars 1970–2001.” Political Geography 25 (3): 315–35. https://doi.org/10.1016/j.polgeo.2006.02.005.Search in Google Scholar

Burret, H. T., L. P. Feld, and E. A. Köhler. 2016. “(Un-)Sustainability of Public Finances in ` German Laender: A Panel Time Series Approach.” Economic Modelling 53: 254–65. https://doi.org/10.1016/j.econmod.2015.12.001.Search in Google Scholar

Cavalcanti, T., and Á. Novo. 2005. “Institutions and Economic Development: How Strong is the Relation?” Empirical Economics 30: 263–76. https://doi.org/10.1007/s00181-004-0217-5.Search in Google Scholar

Collier, P., and A. Hoeffler. 2004. “Greed and Grievance in Civil War.” Oxford Economic Papers 56 (4): 563–95. https://doi.org/10.1093/oep/gpf064.Search in Google Scholar

Coxe, S., S. G. West, and L. S. Aiken. 2009. “The Analysis of Count Data: A Gentle Introduction to Poisson Regression and its Alternatives.” Journal of Personality Assessment 91 (2): 121–36. https://doi.org/10.1080/00223890802634175.Search in Google Scholar

Cruz, J. 2011. “Criminal Violence and Democratization in Central America: The Survival of the Violent State.” Latin American Politics and Society 53 (4): 1–33. https://doi.org/10.1111/j.1548-2456.2011.00132.x.Search in Google Scholar

Eberhardt, M. 2012. “Estimating Panel Time-Series Models with Heterogeneous Slopes.” STATA Journal 12 (1): 61–71. https://doi.org/10.1177/1536867x1201200105.Search in Google Scholar

Esty, D. C., J. A. Goldstone, T. R. Gurr, B. Harff, M. Levy, G. D. Dabelko, P. Surko, and A. N. Unger. 1998. State Failure Task Force Report: Phase II Findings. McLean, VA: Science Applications International, for State Failure Task Force.Search in Google Scholar

Farzanegan, M. R., C. Lessmann, and G. Markwardt. 2018. “Natural Resource Rents and Internal Conflicts: Can Decentralization Lift the Curse?” Economic Systems 42 (2): 186–205. https://doi.org/10.1016/j.ecosys.2017.05.009.Search in Google Scholar

Fearon, J., and D. Laitin. 2003. “Ethnicity, Insurgency, and Civil War.” American Political Science Review 97 (1): 75–90. https://doi.org/10.1017/s0003055403000534.Search in Google Scholar

Ferrara, F. 2003. “Why Regimes Create Disorder: Hobbes’s Dilemma during a Rangoon Summer.” Journal of Conflict Resolution 47 (3): 302–25. https://doi.org/10.1177/0022002703047003003.Search in Google Scholar

Gardner, W., E. P. Mulvey, and E. C. Shaw. 1995. “Regression Analyses of Counts and Rates: Poisson, Overdispersed Poisson, and Negative Binomial Models.” Psychological Bulletin 118: 392–404. https://doi.org/10.1037/0033-2909.118.3.392.Search in Google Scholar

Gartzke, E. 1999. “War Is in the Error Term.” International Organization 53 (3): 567–87. https://doi.org/10.1162/002081899550995.Search in Google Scholar

Gartzke, E., and J. J. Zhang. 2015. “Trade and War.” In The Oxford Handbook of the Political Economy of International Trade, edited by L. L. Martin, 419–38. New York: Oxford University Press.Search in Google Scholar

Gupta, S., and N. Kumar. 2021. “Three Decades of Narrow Globalization: Evaluating India’s Exports between 1991 and 2017.” Managerial and Decision Economics 42 (2): 343–59. https://doi.org/10.1002/mde.3239.Search in Google Scholar

Hegre, H., and H. M. Nygård. 2015. “Governance and Conflict Relapse.” Journal of Conflict Resolution 59 (6): 984–1016. https://doi.org/10.1177/0022002713520591.Search in Google Scholar

Hegre, H., and N. Sambanis. 2006. “Sensitivity Analysis of Empirical Results on Civil War Onset.” Journal of Conflict Resolution 50 (4): 508–35. https://doi.org/10.1177/0022002706289303.Search in Google Scholar

Hegre, H., N. W. Metternich, H. M. Nygård, and J. Wucherpfennig. 2017. “Introduction: Forecasting in Peace Research.” Journal of Peace Research 54 (2): 113–24. https://doi.org/10.1177/0022343317691330.Search in Google Scholar

Hegre, H., M. Bernhard, and J. Teorell. 2020. “Civil Society and the Democratic Peace.” Journal of Conflict Resolution 64 (1): 32–62. https://doi.org/10.1177/0022002719850620.Search in Google Scholar

Hobbes, T., and M. Missner. 2016. Thomas Hobbes: Leviathan (Longman library of primary sources in philosophy). New York: Routledge.10.4324/9781315507613Search in Google Scholar

Hoechle, D. 2007. “Robust Standard Errors for Panel Regressions with Cross-Sectional Dependence.” STATA Journal 7 (3): 281–312. https://doi.org/10.1177/1536867x0700700301.Search in Google Scholar

Holcombe, R. 2021. “Contractarian Ideology and the Legitimacy of Government.” Journal of Institutional Economics 17 (3): 379–91. https://doi.org/10.1017/s1744137420000521.Search in Google Scholar

De Hoyos, R. E., and V. Sarafidis. 2006. “Testing for Cross-Sectional Dependence in Panel-Data Models.” STATA Journal 6 (4): 482–96. https://doi.org/10.1177/1536867x0600600403.Search in Google Scholar

Kao, C. 1999. “Spurious Regression and Residual-Based Tests for Cointegration in Panel Data.” Journal of Econometrics 90: 1–44. https://doi.org/10.1016/s0304-4076(98)00023-2.Search in Google Scholar

Kapetanios, G., M. H. Pesaran, and T. Yamagata. 2011. “Panels with Non-stationary Multifactor Error Structures.” Journal of Econometrics 160 (2): 326–48. https://doi.org/10.1016/j.jeconom.2010.10.001.Search in Google Scholar

Kavka, G. S. 1983. “Hobbes’s War of All against All.” Ethics 93 (2): 291–310. https://doi.org/10.1086/292435.Search in Google Scholar

Keohane, R. O. 2019. “Hobbes’s Dilemma and Institutional Change in World Politics: Sovereignty in International Society.” In Whose World Order? Uneven Globalization and the End of the Cold War, edited by H. -H. Holme, and G. Sorensen, 165–86. New York: Routledge.10.4324/9780429267857-9Search in Google Scholar

Kilgour, D. M., and F. C. Zagare. 1991. “Credibility, Uncertainty, and Deterrence.” American Journal of Political Science 35 (2): 305–34. https://doi.org/10.2307/2111365.Search in Google Scholar

Koos, C., and J. Pierskalla. 2016. “The Effects of Oil Production and Ethnic Representation on Violent Conflict in Nigeria: A Mixed-Methods Approach.” Terrorism and Political Violence 28 (5): 888–911. https://doi.org/10.1080/09546553.2014.962021.Search in Google Scholar

Maddala, G. S., and S. Wu. 1999. “A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test.” Oxford Bulletin of Economics & Statistics 61: 631–52. https://doi.org/10.1111/1468-0084.0610s1631.Search in Google Scholar

Malthus, T. R. 1798. An Essay on the Principle of Population. London: Electronic Book.Search in Google Scholar

Mitton, K. 2022. “Natural Resources and Atrocities.” In The Oxford Handbook of Atrocity Crimes. London: Oxford University Press.10.1093/oxfordhb/9780190915629.013.7Search in Google Scholar

Newey, W., and K. West. 1994. “Automatic Lag Selection in Covariance Matrix Estimation.” The Review of Economic Studies 61 (4): 631–53. https://doi.org/10.2307/2297912.Search in Google Scholar

Nwokolo, A. 2022. “Oil Price Shocks and Civil Conflict: Evidence from Nigeria.” The World Bank Economic Review 36 (1): 171–97. https://doi.org/10.1093/wber/lhab010.Search in Google Scholar

Ogwang, T., F. Vanclay, and A. van den Assem. 2019. “Rent-seeking Practices, Local Resource Curse, and Social Conflict in Uganda’s Emerging Oil Economy.” Land 8 (4): 53. https://doi.org/10.3390/land8040053.Search in Google Scholar

Olson, M. 1993. “Dictatorship, Democracy, and Development.” American Political Science Review 87 (3): 567–76. https://doi.org/10.2307/2938736.Search in Google Scholar

Østby, G., R. Nordås, and J. K. Rød. 2009. “Regional Inequalities and Civil Conflict in Sub- Saharan Africa.” International Studies Quarterly 53 (2): 301–24. https://doi.org/10.1111/j.1468-2478.2009.00535.x.Search in Google Scholar

Pesaran, M. H. 2004. “General Diagnostic Tests for Cross Section Dependence in Panels.” In Cambridge Working Papers in Economics No: 0435. Faculty of Economics, University of Cambridge.10.2139/ssrn.572504Search in Google Scholar

Pesaran, M. H. 2007. “A Simple Panel Unit Root Test in the Presence of Cross‐section Dependence.” Journal of Applied Economics 22: 265–312. https://doi.org/10.1002/jae.951.Search in Google Scholar

Petersen-Perlman, J. D., J. C. Veilleux, and A. T. Wolf. 2017. “International Water Conflict and Cooperation: Challenges and Opportunities.” Water International 42 (2): 105–20. https://doi.org/10.1080/02508060.2017.1276041.Search in Google Scholar

Rode, M. 2013. “Do Good Institutions Make Citizens Happy, or Do Happy Citizens Build Better Institutions?” Journal of Happiness Studies 14: 1479–505. https://doi.org/10.1007/s10902-012-9391-x.Search in Google Scholar

Ross, M. L. 2008. “Blood Barrels-Why Oil Wealth Fuels Conflict.” Foreign Affairs 87: 2.10.1080/23739770.2008.11446334Search in Google Scholar

Santos Silva, J., and S. Tenreyro. 2006. “The Log of Gravity.” The Review of Economics and Statistics 88: 641–58. https://doi.org/10.1162/rest.88.4.641.Search in Google Scholar

Sarbahi, A., and O. Koren. 2022. “The Moderating Effect of Democracy on Climate-Induced Social Conflict: Evidence from Indian Districts.” Political Research Quarterly 75 (3): 892–905. https://doi.org/10.1177/10659129211034572.Search in Google Scholar

De Sherbinin, A., D. Carr, S. Cassels, and L. Jiang. 2007. “Population and Environment.” Annual Review of Environment and Resources 32: 345–73. https://doi.org/10.1146/annurev.energy.32.041306.100243.Search in Google Scholar

Sini, S., A. S. Abdul-Rahim, and C. Sulaiman. 2021. “Does Natural Resource Influence Conflict in Africa? Evidence from Panel Nonlinear Relationship.” Resources Policy 74: 102268. https://doi.org/10.1016/j.resourpol.2021.102268.Search in Google Scholar

Taydas, Z., D. Peksen, and P. James. 2010. “Why Do Civil Wars Occur? Understanding the Importance of Institutional Quality.” Civil Wars 12 (3): 195–217. https://doi.org/10.1080/13698249.2010.509544.Search in Google Scholar

Tugcu, C. T. 2018. “Chapter 8 – Panel Data Analysis in the Energy-Growth Nexus (EGN).” In The Economics and Econometrics of the Energy-Growth Nexus, edited by A. N. Menegaki, 255–71. London: Academic Press.10.1016/B978-0-12-812746-9.00008-0Search in Google Scholar

Urdal, H. 2005. “People vs. Malthus: Population Pressure, Environmental Degradation, and Armed Conflict Revisited.” Journal of Peace Research 42 (4): 417–34. https://doi.org/10.1177/0022343305054089.Search in Google Scholar

Verpoorten, M. 2012. “Leave None to Claim the Land: A Malthusian Catastrophe in Rwanda?” Journal of Peace Research 49 (4): 547–63. https://doi.org/10.1177/0022343312437773.Search in Google Scholar

Westerlund, J. 2005. “New Simple Tests for Panel Cointegration.” Econometric Reviews 24 (3): 297–316. https://doi.org/10.1080/07474930500243019.Search in Google Scholar

Yiew, T. H., M. S. Habibullah, S. H. Law, and W. N. W. Azman-Saini. 2016. “Does Bad Governance Cause Armed Conflict.” International Journal of Applied Business and Economic Research 14 (6): 3741–55.Search in Google Scholar

Zergawu, Y., Y. Walle, and J. Giménez-Gómez. 2020. “The Joint Impact of Infrastructure and Institutions on Economic Growth.” Journal of Institutional Economics 16 (4): 481–502. https://doi.org/10.1017/s1744137420000016.Search in Google Scholar

Received: 2023-01-20
Accepted: 2023-07-21
Published Online: 2023-08-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/peps-2023-0004/html
Scroll to top button