Home First-principles modeling of structural and RedOx processes in high-voltage Mn-based cathodes for sodium-ion batteries
Article
Licensed
Unlicensed Requires Authentication

First-principles modeling of structural and RedOx processes in high-voltage Mn-based cathodes for sodium-ion batteries

  • Aniello Langella ORCID logo , Arianna Massaro ORCID logo , Francesca Fasulo ORCID logo , Ana B. Muñoz-García ORCID logo and Michele Pavone ORCID logo EMAIL logo
Published/Copyright: October 17, 2025

Abstract

Sodium-ion batteries are increasingly regarded as a sustainable alternative to lithium-ion technology for large-scale energy storage, but their development remains limited by the lack of durable high-energy cathodes. Among the most promising candidates, P2–Mn-based layered oxides combine high theoretical capacity with structural versatility, yet their performance is constrained by two degradation pathways: (i) the irreversible participation of lattice oxygen in the redox process and (ii) voltage-driven solid-state phase transitions. This research article synthesizes our recent ab initio investigations aimed at disentangling the atomistic origins of these processes occurring in the high-voltage regime. We show that Mn deficiency activates oxygen redox but also promotes O2 release, whereas Fe and Ru doping strengthen TM–O covalency, enabling reversible anionic redox. In parallel, we identify cooperative Jahn–Teller distortions and Na+/vacancy reorganization as the driving forces of high-voltage phase transitions and propose simple geometric descriptors as predictive tools for structural stability. Together, these insights help to establish quantum-based design guidelines for layered sodium cathodes: reinforce TM–O covalency, suppress oxygen evolution, and mitigate phase instabilities. By combining first-principles modeling with targeted compositional design, we pave the way toward the accelerated discovery of sustainable, cobalt-free, and high-energy cathodes for next-generation sodium-ion batteries.


Corresponding author: Michele Pavone, Department of Chemical Sciences, University of Naples Federico II, Complesso Univ. Monte Sant’Angelo Via Cintia 21, Naples 80126, Italy; and National Interuniversity Consortium of Materials Science and Technology – Reference Center for Electrochemical Energy Storage (INSTM-GISEL), Via G. Giusti 9, Firenze 50121, Italy, e-mail:
Article note: A collection of invited papers to celebrate the UN’s proclamation of 2025 as the International Year of Quantum Science and Technology.

Acknowledgments

This study was carried out within the NEST–Network for Energy Sustainable Transition and received funding from the European Union Next-Generation EU (PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR)–MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.3). This manuscript reflects only the authors’ views and opinions; neither the European Union nor the European Commission can be considered responsible for them. Authors also acknowledge funding from the ORANGEES project (Italian Ministry of Environment and Energy Security, Research of the National Electric System PTR 2019–2021). The computing resources and the related technical support used for this work have been provided by the CRESCO/ENEA-GRID High Performance Computing infrastructure and its staff. 113 The CRESCO/ENEAGRID High Performance Computing infrastructure is funded by ENEA, Italy, the Italian National Agency for New Technologies, Energy and Sustainable Economic Development and by Italian and European research programs; see https://www.cresco.enea.it for information.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Abraham, K. M. ACS Energy Lett. 2020, 5 (11), 3544–3547. https://doi.org/10.1021/acsenergylett.0c02181.Search in Google Scholar

2. Delmas, C. Adv. Energy Mater. 2018, 8 (17), 1703137. https://doi.org/10.1002/aenm.201703137.Search in Google Scholar

3. Yoo, H. D.; Shterenberg, I.; Gofer, Y.; Gershinsky, G.; Pour, N.; Aurbach, D. Energy Environ. Sci. 2013, 6 (8), 2265. https://doi.org/10.1039/c3ee40871j.Search in Google Scholar

4. Tarascon, J.-M. Nat. Chem. 2010, 2 (6), 510. https://doi.org/10.1038/nchem.680.Search in Google Scholar PubMed

5. Kurzweil, P. J. Power Sources 2010, 195 (14), 4424–4434. https://doi.org/10.1016/j.jpowsour.2009.12.126.Search in Google Scholar

6. Ponrouch, A.; Palacín, M. R. Philos. Trans. R. Soc. A. 2019, 377 (2152), 20180297. https://doi.org/10.1098/rsta.2018.0297.Search in Google Scholar PubMed PubMed Central

7. Hwang, J.-Y.; Myung, S.-T.; Sun, Y.-K. Chem. Soc. Rev. 2017, 46 (12), 3529–3614. https://doi.org/10.1039/c6cs00776g.Search in Google Scholar PubMed

8. Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Energy Environ. Sci. 2012, 5 (3), 5884. https://doi.org/10.1039/c2ee02781j.Search in Google Scholar

9. Doughty, D. H.; Butler, P. C.; Akhil, A. A.; Clark, N. H.; Boyes, J. D. Electrochem. Soc. Interface 2010, 19 (3), 49. https://doi.org/10.1149/2.f05103if.Search in Google Scholar

10. Liu, T.; Zhang, Y.; Jiang, Z.; Zeng, X.; Ji, J.; Li, Z.; Gao, X.; Sun, M.; Lin, Z.; Ling, M.; Zheng, J.; Liang, C. Energy Environ. Sci. 2019, 12 (5), 1512–1533.10.1039/C8EE03727BSearch in Google Scholar

11. Kim, J. G.; Son, B.; Mukherjee, S.; Schuppert, N.; Bates, A.; Kwon, O.; Choi, M. J.; Chung, H. Y.; Park, S. J. Power Sources 2015, 282, 299–322. https://doi.org/10.1016/j.jpowsour.2015.02.054.Search in Google Scholar

12. Lim, H.-D.; Park, J.-H.; Shin, H.-J.; Jeong, J.; Kim, J. T.; Nam, K.-W.; Jung, H.-G.; Chung, K. Y. Energy Storage Mater. 2020, 25, 224–250. https://doi.org/10.1016/j.ensm.2019.10.011.Search in Google Scholar

13. Chayambuka, K.; Mulder, G.; Danilov, D. L.; Notten, P. H. L. Adv. Energy Mater. 2018, 8 (16), 1800079. https://doi.org/10.1002/aenm.201800079.Search in Google Scholar

14. Huang, Y.; Zheng, Y.; Li, X.; Adams, F.; Luo, W.; Huang, Y.; Hu, L. ACS Energy Lett. 2018, 3 (7), 1604–1612. https://doi.org/10.1021/acsenergylett.8b00609.Search in Google Scholar

15. Li, L.; Zheng, Y.; Zhang, S.; Yang, J.; Shao, Z.; Guo, Z. Energy Environ. Sci. 2018, 11 (9), 2310–2340. https://doi.org/10.1039/c8ee01023d.Search in Google Scholar

16. Massaro, A.; Pecoraro, A.; Muñoz-García, A. B.; Pavone, M. J. Phys. Chem. C 2021, 125 (4), 2276–2286.10.1021/acs.jpcc.0c10107Search in Google Scholar PubMed PubMed Central

17. Barik, G.; Pal, S. J. Phys. Chem. C 2019, 123 (36), 21852–21865. https://doi.org/10.1021/acs.jpcc.9b04128.Search in Google Scholar

18. Chu, Y.; Zhang, J.; Zhang, Y.; Li, Q.; Jia, Y.; Dong, X.; Xiao, J.; Tao, Y.; Yang, Q.-H. Adv. Mater. 2023, 35 (31), 2212186. https://doi.org/10.1002/adma.202212186.Search in Google Scholar PubMed

19. Beaulieu, L. Y.; Hatchard, T. D.; Bonakdarpour, A.; Fleischauer, M. D.; Dahn, J. R. J. Electrochem. Soc. 2003, 150 (11), A1457. https://doi.org/10.1149/1.1613668.Search in Google Scholar

20. Fasulo, F.; Massaro, A.; Muñoz-García, A. B.; Pavone, M. J. Mater. Res. 2022, 37 (19), 3216–3226.10.1557/s43578-022-00579-1Search in Google Scholar

21. Brugnetti, G.; Triolo, C.; Massaro, A.; Ostroman, I.; Pianta, N.; Ferrara, C.; Sheptyakov, D.; Muñoz-García, A. B.; Pavone, M.; Santangelo, S.; Ruffo, R. Chem. Mater. 2023, 35 (20), 8440–8454. https://doi.org/10.1021/acs.chemmater.3c01196.Search in Google Scholar PubMed PubMed Central

22. Ke, M.; Wan, M.; Dong, W.; Wei, T.; Dou, H.; Zhang, X. Next Mater. 2025, 6, 100480. https://doi.org/10.1016/j.nxmate.2024.100480.Search in Google Scholar

23. Wang, P.-F.; You, Y.; Yin, Y.-X.; Guo, Y.-G. Adv. Energy Mater. 2018, 8 (8), 1701912. https://doi.org/10.1002/aenm.201701912.Search in Google Scholar

24. Delmas, C.; Fouassier, C.; Hagenmuller, P. Physica B+C 1980, 99 (1), 81–85. https://doi.org/10.1016/0378-4363(80)90214-4.Search in Google Scholar

25. Delmas, C.; Braconnier, J.-J.; Fouassier, C.; Hagenmuller, P. Solid State Ionics 1981, 3–4, 165–169. https://doi.org/10.1016/0167-2738(81)90076-x.Search in Google Scholar

26. Massaro, A.; Fasulo, F.; Pecoraro, A.; Langella, A.; Muñoz-García, A. B.; Pavone, M. Phys. Chem. Chem. Phys. 2023, 25 (28), 18623–18641. https://doi.org/10.1039/d3cp01201h.Search in Google Scholar PubMed

27. Hou, P.; Li, F.; Wang, Y.; Yin, J.; Xu, X. J. Mater. Chem. A 2019, 7 (9), 4705–4713. https://doi.org/10.1039/c8ta10980j.Search in Google Scholar

28. Fang, C.; Huang, Y.; Zhang, W.; Han, J.; Deng, Z.; Cao, Y.; Yang, H. Adv. Energy Mater. 2016, 6 (5), 1501727. https://doi.org/10.1002/aenm.201501727.Search in Google Scholar

29. Bai, X.; Sathiya, M.; Mendoza-Sánchez, B.; Iadecola, A.; Vergnet, J.; Dedryvère, R.; Saubanère, M.; Abakumov, A. M.; Rozier, P.; Tarascon, J.-M. Adv. Energy Mater. 2018, 8 (32), 1802379.10.1002/aenm.201802379Search in Google Scholar

30. Grimaud, A.; Hong, W. T.; Shao-Horn, Y.; Tarascon, J.-M. Nat. Mater. 2016, 15 (2), 121–126. https://doi.org/10.1038/nmat4551.Search in Google Scholar PubMed

31. Edelman, D. A.; Eum, D.; Chueh, W. C. Nat. Sustain. 2024, 7 (3), 234–235. https://doi.org/10.1038/s41893-024-01297-8.Search in Google Scholar

32. Larcher, D.; Tarascon, J.-M. Nat. Chem. 2015, 7 (1), 19–29. https://doi.org/10.1038/nchem.2085.Search in Google Scholar PubMed

33. Huang, J.; Xu, L.; Ye, D.; Wu, W.; Qiu, S.; Tang, Z.; Wu, X. J. Alloys Compd. 2024, 976, 173397. https://doi.org/10.1016/j.jallcom.2023.173397.Search in Google Scholar

34. Wang, C.; Liu, L.; Zhao, S.; Liu, Y.; Yang, Y.; Yu, H.; Lee, S.; Lee, G.-H.; Kang, Y.-M.; Liu, R.; Li, F.; Chen, J. Nat. Commun. 2021, 12 (1), 2256. https://doi.org/10.1038/s41467-021-22523-3.Search in Google Scholar PubMed PubMed Central

35. Massaro, A.; Muñoz-García, A. B.; Prosini, P. P.; Gerbaldi, C.; Pavone, M. ACS Energy Lett. 2021, 6 (7), 2470–2480.10.1021/acsenergylett.1c01020Search in Google Scholar

36. Lu, Z.; Dahn, J. R. J. Electrochem. Soc. 2001, 148 (11), A1225. https://doi.org/10.1149/1.1407247.Search in Google Scholar

37. Wang, H.; Yang, B.; Liao, X.-Z.; Xu, J.; Yang, D.; He, Y.-S.; Ma, Z.-F. Electrochim. Acta 2013, 113, 200–204. https://doi.org/10.1016/j.electacta.2013.09.098.Search in Google Scholar

38. Ma, C.; Alvarado, J.; Xu, J.; Clément, R. J.; Kodur, M.; Tong, W.; Grey, C. P.; Meng, Y. S. J. Am. Chem. Soc. 2017, 139 (13), 4835–4845. https://doi.org/10.1021/jacs.7b00164.Search in Google Scholar PubMed

39. Li, Y.; Mazzio, K. A.; Yaqoob, N.; Sun, Y.; Freytag, A. I.; Wong, D.; Schulz, C.; Baran, V.; Mendez, A. S. J.; Schuck, G.; Zając, M.; Kaghazchi, P.; Adelhelm, P. Adv. Mater. 2024, 36 (18), 2309842. https://doi.org/10.1002/adma.202309842.Search in Google Scholar PubMed

40. de la Llave, E.; Talaie, E.; Levi, E.; Nayak, P. K.; Dixit, M.; Rao, P. T.; Hartmann, P.; Chesneau, F.; Major, D. T.; Greenstein, M.; Aurbach, D.; Nazar, L. F. Chem. Mater. 2016, 28 (24), 9064–9076. https://doi.org/10.1021/acs.chemmater.6b04078.Search in Google Scholar

41. Jiang, K.; Zhang, X.; Li, H.; Zhang, X.; He, P.; Guo, S.; Zhou, H. ACS Appl. Mater. Interfaces 2019, 11 (16), 14848–14853. https://doi.org/10.1021/acsami.9b03326.Search in Google Scholar PubMed

42. Li, L.; Su, G.; Lu, C.; Ma, X.; Ma, L.; Wang, H.; Cao, Z. Chem. Eng. J. 2022, 446, 136923. https://doi.org/10.1016/j.cej.2022.136923.Search in Google Scholar

43. Langella, A.; Massaro, A.; Muñoz-García, A. B.; Pavone, M. Chem. Mater. 2024, 36 (5), 2370–2379.10.1021/acs.chemmater.3c02981Search in Google Scholar

44. Massaro, A.; Langella, A.; Gerbaldi, C.; Elia, G. A.; Muñoz-García, A. B.; Pavone, M. ACS Appl. Energy Mater. 2022, 5 (9), 10721–10730. https://doi.org/10.1021/acsaem.2c01455.Search in Google Scholar

45. Massaro, A.; Langella, A.; Muñoz-García, A. B.; Pavone, M. J. Am. Ceram. Soc. 2023, 106 (1), 109–119.10.1111/jace.18494Search in Google Scholar

46. Langella, A.; Massaro, A.; Muñoz-García, A. B.; Pavone, M. ACS Energy Lett. 2025, 10 (3), 1089–1098.10.1021/acsenergylett.4c03335Search in Google Scholar PubMed PubMed Central

47. Yao, Z.; Chan, M. K. Y.; Wolverton, C. Chem. Mater. 2022, 34 (10), 4536–4547. https://doi.org/10.1021/acs.chemmater.2c00322.Search in Google Scholar

48. Sathiya, M.; Rousse, G.; Ramesha, K.; Laisa, C. P.; Vezin, H.; Sougrati, M. T.; Doublet, M.-L.; Foix, D.; Gonbeau, D.; Walker, W.; Prakash, A. S.; Ben Hassine, M.; Dupont, L.; Tarascon, J.-M. Nat. Mater. 2013, 12 (9), 827–835. https://doi.org/10.1038/nmat3699.Search in Google Scholar PubMed

49. Assat, G.; Tarascon, J.-M. Nat. Energy 2018, 3 (5), 373–386. https://doi.org/10.1038/s41560-018-0097-0.Search in Google Scholar

50. Soundharrajan, V.; Alfaruqi, M. H.; Alfaza, G.; Lee, J.; Lee, S.; Park, S.; Nithiananth, S.; Pham, D. T.; Hwang, J.-Y.; Kim, J. J. Mater. Chem. A 2023, 11 (28), 15518–15531. https://doi.org/10.1039/d3ta02291a.Search in Google Scholar

51. Kim, Y.; Oh, G.; Lee, J.; Baek, J.; Alfaza, G.; Lee, S.; Mathew, V.; Kansara, S.; Hwang, J.-Y.; Kim, J. ACS Appl. Mater. Interfaces 2024, 16 (5), 5896–5904. https://doi.org/10.1021/acsami.3c17166.Search in Google Scholar PubMed

52. Minnetti, L.; Paparoni, F.; Zitolo, A.; Silly, M. G.; Torretti, E.; Rezvani, J.; Nobili, F. Acta Mater. 2025, 301, 121518. https://doi.org/10.1016/j.actamat.2025.121518.Search in Google Scholar

53. Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54 (16), 11169–11186. https://doi.org/10.1103/physrevb.54.11169.Search in Google Scholar PubMed

54. Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59 (3), 1758–1775. https://doi.org/10.1103/physrevb.59.1758.Search in Google Scholar

55. Blöchl, P. E. Phys. Rev. B 1994, 50 (24), 17953–17979. https://doi.org/10.1103/physrevb.50.17953.Search in Google Scholar PubMed

56. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77 (18), 3865–3868. https://doi.org/10.1103/physrevlett.77.3865.Search in Google Scholar

57. Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140 (4A), A1133–A1138. https://doi.org/10.1103/physrev.140.a1133.Search in Google Scholar

58. Kim, H.; Koo, S.; Lee, J.; Lee, J.; Park, S.; Cho, M.; Kim, D. Energy Storage Mater. 2022, 45, 432–441. https://doi.org/10.1016/j.ensm.2021.12.005.Search in Google Scholar

59. Shi, X.-H.; Wang, Y.-P.; Cao, X.; Wu, S.; Hou, Z.; Zhu, Z. ACS Omega 2022, 7 (17), 14875–14886. https://doi.org/10.1021/acsomega.2c00375.Search in Google Scholar PubMed PubMed Central

60. Vergnet, J.; Saubanère, M.; Doublet, M.-L.; Tarascon, J.-M. Joule 2020, 4 (2), 420–434.10.1016/j.joule.2019.12.003Search in Google Scholar

61. Ben Yahia, M.; Vergnet, J.; Saubanère, M.; Doublet, M.-L. Nat. Mater. 2019, 18 (5), 496–502. https://doi.org/10.1038/s41563-019-0318-3.Search in Google Scholar PubMed

62. Fabris, S.; De Gironcoli, S.; Baroni, S.; Vicario, G.; Balducci, G. Phys. Rev. B 2005, 71 (4), 041102. https://doi.org/10.1103/physrevb.71.041102.Search in Google Scholar

63. Pacchioni, G. J. Chem. Phys. 2008, 128 (18), 182505. https://doi.org/10.1063/1.2819245.Search in Google Scholar PubMed

64. Wang, L.; Maxisch, T.; Ceder, G. Phys. Rev. B 2006, 73 (19), 195107. https://doi.org/10.1103/physrevb.73.195107.Search in Google Scholar

65. Mosey, N. J.; Liao, P.; Carter, E. A. J. Chem. Phys. 2008, 129 (1), 014103. https://doi.org/10.1063/1.2943142.Search in Google Scholar PubMed

66. Verma, P.; Truhlar, D. G. Theor. Chem. Acc. 2016, 135 (8), 182. https://doi.org/10.1007/s00214-016-1927-4.Search in Google Scholar

67. Franchini, C.; Bayer, V.; Podloucky, R.; Paier, J.; Kresse, G. Phys. Rev. B 2005, 72 (4), 045132. https://doi.org/10.1103/physrevb.72.045132.Search in Google Scholar

68. Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22 (3), 587–603. https://doi.org/10.1021/cm901452z.Search in Google Scholar

69. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132 (15), 154104. https://doi.org/10.1063/1.3382344.Search in Google Scholar PubMed

70. Pecoraro, A.; Schiavo, E.; Maddalena, P.; Muñoz-García, A. B.; Pavone, M. J. Comput. Chem. 2020, 41 (22), 1946–1955. https://doi.org/10.1002/jcc.26364.Search in Google Scholar PubMed

71. Barone, V.; Casarin, M.; Forrer, D.; Pavone, M.; Sambi, M.; Vittadini, A. J. Comput. Chem. 2009, 30 (6), 934–939. https://doi.org/10.1002/jcc.21112.Search in Google Scholar PubMed

72. Sannino, G. V.; Pecoraro, A.; Maddalena, P.; Bruno, A.; Veneri, P. D.; Pavone, M.; Muñoz-García, A. B. Sustain. Energy Fuels 2023, 7 (19), 4855–4863. https://doi.org/10.1039/d3se00362k.Search in Google Scholar

73. Pecoraro, A.; Fasulo, F.; Pavone, M.; Muñoz-García, A. B. Chem. Commun. 2023, 59 (34), 5055–5058. https://doi.org/10.1039/d3cc00960b.Search in Google Scholar PubMed

74. Coppola, C.; Pecoraro, A.; Muñoz-García, A. B.; Infantino, R.; Dessì, A.; Reginato, G.; Basosi, R.; Sinicropi, A.; Pavone, M. Phys. Chem. Chem. Phys. 2022, 24 (24), 14993–15002.10.1039/D2CP01270GSearch in Google Scholar

75. Pecoraro, A.; Maddalena, P.; Pavone, M.; Muñoz García, A. B. Materials 2022, 15 (16), 5703. https://doi.org/10.3390/ma15165703.Search in Google Scholar PubMed PubMed Central

76. Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13 (12), 5188–5192. https://doi.org/10.1103/physrevb.13.5188.Search in Google Scholar

77. Zunger, A.; Wei, S.-H.; Ferreira, L. G.; Bernard, J. E. Phys. Rev. Lett. 1990, 65 (3), 353–356. https://doi.org/10.1103/physrevlett.65.353.Search in Google Scholar

78. Gehringer, D.; Friák, M.; Holec, D. Comput. Phys. Commun. 2023, 286, 108664.10.1016/j.cpc.2023.108664Search in Google Scholar

79. Nagle-Cocco, L. A. V.; Dutton, S. E. J. Appl. Crystallogr. 2024, 57 (1), 20–33. https://doi.org/10.1107/s1600576723009925.Search in Google Scholar

80. Therrien, F.; Graf, P.; Stevanović, V. J. Chem. Phys. 2020, 152 (7), 074106. https://doi.org/10.1063/1.5131527.Search in Google Scholar PubMed

81. Qian, G.-R.; Dong, X.; Zhou, X.-F.; Tian, Y.; Oganov, A. R.; Wang, H.-T. Comput. Phys. Commun. 2013, 184 (9), 2111–2118. https://doi.org/10.1016/j.cpc.2013.04.004.Search in Google Scholar

82. Glass, C. W.; Oganov, A. R.; Hansen, N. Comput. Phys. Commun. 2006, 175 (11), 713–720. https://doi.org/10.1016/j.cpc.2006.07.020.Search in Google Scholar

83. Goodenough, J. B. Annu. Rev. Mater. Sci. 1998, 28 (1), 1–27. https://doi.org/10.1146/annurev.matsci.28.1.1.Search in Google Scholar

84. Sturge, M. D. Solid State Physics, Vol. 20; Academic Press: New York and London, 1968; pp 91–211.10.1016/S0081-1947(08)60218-0Search in Google Scholar

85. Jung, H.; Kim, J.; Kim, S. J. Appl. Phys. 2022, 132 (5), 055101. https://doi.org/10.1063/5.0086903.Search in Google Scholar

86. Gehring, G. A.; Gehring, K. A. Rep. Prog. Phys. 1975, 38 (1), 1–89. https://doi.org/10.1088/0034-4885/38/1/001.Search in Google Scholar

87. Wang, P.-F.; Jin, T.; Zhang, J.; Wang, Q.-C.; Ji, X.; Cui, C.; Piao, N.; Liu, S.; Xu, J.; Yang, X.-Q.; Wang, C. Nano Energy 2020, 77, 105167. https://doi.org/10.1016/j.nanoen.2020.105167.Search in Google Scholar

88. Manzi, J.; Paolone, A.; Palumbo, O.; Corona, D.; Massaro, A.; Cavaliere, R.; Muñoz-García, A. B.; Trequattrini, F.; Pavone, M.; Brutti, S. Energies 2021, 14 (5), 1230. https://doi.org/10.3390/en14051230.Search in Google Scholar

89. Li, X.; Ma, X.; Su, D.; Liu, L.; Chisnell, R.; Ong, S. P.; Chen, H.; Toumar, A.; Idrobo, J.-C.; Lei, Y.; Bai, J.; Wang, F.; Lynn, J. W.; Lee, Y. S.; Ceder, G. Nat. Mater. 2014, 13 (6), 586–592. https://doi.org/10.1038/nmat3964.Search in Google Scholar PubMed

90. Mori, S.; Chen, C. H.; Cheong, S.-W. Nature 1998, 392 (6675), 473–476. https://doi.org/10.1038/33105.Search in Google Scholar

91. Margadonna, S.; Karotsis, G. J. Am. Chem. Soc. 2006, 128 (51), 16436–16437. https://doi.org/10.1021/ja0669272.Search in Google Scholar PubMed

92. Raveau, B.; Hervieu, M.; Maignan, A.; Martin, C. J. Mater. Chem. 2001, 11 (1), 29–36. https://doi.org/10.1039/b003243n.Search in Google Scholar

93. Massaro, A.; Fasulo, F.; Langella, A.; Muñoz-Garcia, A. B.; Pavone, M. Computational Design of Battery Materials; Hanaor, D. A. H., Ed.; Springer International Publishing: Cham, 2024; pp. 367–401.10.1007/978-3-031-47303-6_13Search in Google Scholar

94. Wang, P.-F.; You, Y.; Yin, Y.-X.; Wang, Y.-S.; Wan, L.-J.; Gu, L.; Guo, Y.-G. Angew. Chem. 2016, 128 (26), 7571–7575. https://doi.org/10.1002/ange.201602202.Search in Google Scholar

95. Massaro, A.; Lingua, G.; Bozza, F.; Piovano, A.; Prosini, P. P.; Muñoz-García, A. B.; Pavone, M.; Gerbaldi, C. Chem. Mater. 2024, 36 (14), 7046–7055. https://doi.org/10.1021/acs.chemmater.4c01311.Search in Google Scholar PubMed PubMed Central

96. Saubanère, M.; McCalla, E.; Tarascon, J.-M.; Doublet, M.-L. Energy Environ. Sci. 2016, 9 (3), 984–991. https://doi.org/10.1039/c5ee03048j.Search in Google Scholar

97. Dietrich, H. Angew. Chem. 1961, 73 (14), 511–512. https://doi.org/10.1002/ange.19610731425.Search in Google Scholar

98. Cramer, C. J.; Tolman, W. B.; Theopold, K. H.; Rheingold, A. L. Proc. Natl. Acad. Sci. U. S. A. 2003, 100 (7), 3635–3640. https://doi.org/10.1073/pnas.0535926100.Search in Google Scholar PubMed PubMed Central

99. Zhang, Y.; Wu, M.; Ma, J.; Wei, G.; Ling, Y.; Zhang, R.; Huang, Y. ACS Cent. Sci. 2020, 6 (2), 232–240. https://doi.org/10.1021/acscentsci.9b01166.Search in Google Scholar PubMed PubMed Central

100. Shen, Q.; Liu, Y.; Zhao, X.; Jin, J.; Wang, Y.; Li, S.; Li, P.; Qu, X.; Jiao, L. Adv. Funct. Mater. 2021, 31 (51), 2106923. https://doi.org/10.1002/adfm.202106923.Search in Google Scholar

101. Wang, Q.; Jiang, K.; Feng, Y.; Chu, S.; Zhang, X.; Wang, P.; Guo, S.; Zhou, H. ACS Appl. Mater. Interfaces 2020, 12 (35), 39056–39062. https://doi.org/10.1021/acsami.0c09082.Search in Google Scholar PubMed

102. Yu, Y.; Karayaylali, P.; Nowak, S. H.; Giordano, L.; Gauthier, M.; Hong, W.; Kou, R.; Li, Q.; Vinson, J.; Kroll, T.; Sokaras, D.; Sun, C.-J.; Charles, N.; Maglia, F.; Jung, R.; Shao-Horn, Y. Chem. Mater. 2019, 31 (19), 7864–7876. https://doi.org/10.1021/acs.chemmater.9b01821.Search in Google Scholar PubMed PubMed Central

103. Kiziltas-Yavuz, N.; Bhaskar, A.; Dixon, D.; Yavuz, M.; Nikolowski, K.; Lu, L.; Eichel, R.-A.; Ehrenberg, H. J. Power Sources 2014, 267, 533–541. https://doi.org/10.1016/j.jpowsour.2014.05.110.Search in Google Scholar

104. Charles, N.; Yu, Y.; Giordano, L.; Jung, R.; Maglia, F.; Shao-Horn, Y. Chem. Mater. 2020, 32 (13), 5502–5514. https://doi.org/10.1021/acs.chemmater.0c00245.Search in Google Scholar

105. Pramanik, A.; Manche, A. G.; Lindgren, F.; Ericsson, T.; Häggström, L.; Cordes, D. B.; Armstrong, A. R. Energy Storage Mater. 2024, 73, 103821. https://doi.org/10.1016/j.ensm.2024.103821.Search in Google Scholar

106. Van Vleck, J. H. J. Chem. Phys. 1939, 7 (1), 72–84. https://doi.org/10.1063/1.1750327.Search in Google Scholar

107. Fayaz, M.; Lai, W.; Li, J.; Chen, W.; Luo, X.; Wang, Z.; Chen, Y.; Li, D.; Abbas, S. M.; Chen, Y. Mater. Res. Bull. 2024, 170, 112593. https://doi.org/10.1016/j.materresbull.2023.112593.Search in Google Scholar

108. Li, L.; Shen, J.; Xiao, Q.; He, C.; Zheng, J.; Chu, C.; Chen, C. Chin. Chem. Lett. 2025, 36 (11), 110421. https://doi.org/10.1016/j.cclet.2024.110421.Search in Google Scholar

109. Li, C.-N.; Liang, H.-P.; Zhao, B.-Q.; Wei, S.-H.; Zhang, X. J. Mater. Inform. 2024, 4 (3).Search in Google Scholar

110. Wengert, S.; Csányi, G.; Reuter, K.; Margraf, J. T. Chem. Sci. 2021, 12 (12), 4536–4546. https://doi.org/10.1039/d0sc05765g.Search in Google Scholar PubMed PubMed Central

111. An, R.; Xie, C.; Chu, D.; Li, F.; Pan, S.; Yang, Z. ACS Appl. Mater. Interfaces 2024, 16 (28), 36658–36666. https://doi.org/10.1021/acsami.4c10477.Search in Google Scholar PubMed

112. Guo, X.; Wang, Z.; Yang, J.-H.; Gong, X.-G. J. Mater. Chem. A 2024, 12 (17), 10124–10136. https://doi.org/10.1039/d4ta00721b.Search in Google Scholar

113. Ponti, G.; Palombi, F.; Abate, D.; Ambrosino, F.; Aprea, G.; Bastianelli, T.; Beone, F.; Bertini, R.; Bracco, G.; Caporicci, M.; Calosso, B.; Chinnici, M.; Colavincenzo, A.; Cucurullo, A.; Dangelo, P.; De Rosa, M.; De Michele, P.; Funel, A.; Furini, G.; Giammattei, D.; Giusepponi, S.; Guadagni, R.; Guarnieri, G.; Italiano, A.; Magagnino, S.; Mariano, A.; Mencuccini, G.; Mercuri, C.; Migliori, S.; Ornelli, P.; Pecoraro, S.; Perozziello, A.; Pierattini, S.; Podda, S.; Poggi, F.; Quintiliani, A.; Rocchi, A.; Sciò, C.; Simoni, F.; Vita, A. 2014 International Conference on High Performance Computing & Simulation (HPCS), 2014; pp. 1030–1033.Search in Google Scholar

Received: 2025-09-23
Accepted: 2025-10-06
Published Online: 2025-10-17

© 2025 IUPAC & De Gruyter

Downloaded on 18.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2025-0622/html
Scroll to top button